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Abstract Visual comfort assessment (VCA) for

stereoscopic images is a particularly significant yet

challenging task in 3D quality of experience research

field. Although the subjective assessment given by

human observers is known as the most reliable way to

evaluate the experienced visual discomfort, it is time-

consuming and non-systematic. Therefore, it is of

great importance to develop objective VCA

approaches that can faithfully predict the degree of

visual discomfort as human beings do. In this paper, a

novel two-stage objective VCA framework is pro-

posed. The main contribution of this study is that the

important visual attention mechanism of human visual

system is incorporated for visual comfort-aware

feature extraction. Specifically, in the first stage, we

first construct an adaptive 3D visual saliency detection

model to derive saliency map of a stereoscopic image,

and then a set of saliency-weighted disparity statistics

are computed and combined to form a single feature

vector to represent a stereoscopic image in terms of

visual comfort. In the second stage, a high dimensional

feature vector is fused into a single visual comfort

score by performing random forest algorithm.

Experimental results on two benchmark databases

confirm the superior performance of the proposed

approach.

Keywords Quality of experience (QoE) � Three-
dimensional (3D) � Visual comfort assessment

(VCA) � 3D Visual saliency � Random forest (RF)

1 Introduction

Recent decades have witnessed a booming develop-

ment of data transmission and display technologies

and users’ demand for video services with high quality

of experience (QoE) has become considerably urgent.

With the additional depth sensation provided by

stereoscopic three-dimensional (3D) visual media, a

growing body of attention has been drawn to advanced

3D videos due to the enhanced viewing experience to

viewers [1–4]. However, increasing complaints on the

experienced visual discomfort (also termed as visual

fatigue in some other literatures) have also become the

focus that is extensively concerned by the researchers

in both industrial and academic communities [1–4].

Especially, it is of great significance to evaluate the

degree of experienced visual discomfort when viewing

stereoscopic images. As known, the most reliable way

to measure visual discomfort is the subjective assess-

ment conducted by human observers (the ultimate

receiver of 3D contents). However, subjective
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assessment is always labor-consuming and non-sys-

tematic. Therefore, how to develop objective visual

comfort assessment (VCA) approaches that can auto-

matically predict the degree of experienced visual

comfort is both meaningful and desirable.

In the literature, it has been discovered that factors

including binocular disparity, conflict between accom-

modation and vergence, binocular mismatch, spatial

frequency, crosstalk, and depth motion are all relevant

with visual discomfort [5–7]. Especially, the excessive

binocular horizontal disparity and unnatural accom-

modation-convergence conflict are identified as the

most influential ones among these factors. The posi-

tion shift between two projected retinal images, which

is known as binocular horizontal disparity, contributes

largely to the stereoscopic depth perception. That is,

binocular horizontal disparity provides a direct depth

clue that modifies the visual perception of the

immediate 3D environment by inducing convergence

movements, which are deeply related to visual

discomfort.

Based on this principle, several disparity statistics-

based VCA approaches have been proposed over the

past several decades. In [2], mean and range of

disparities were calculated from an entire image frame

in a video sequence for VCA. The range of disparities

was computed by the difference between the maxi-

mum and minimum 10 % of disparity magnitudes

over all pixels in an entire image. Yano et al. [8]

computed the ratio of absolute disparity magnitude

summation between the regions near and far from the

screen for VCA. Kim et al. [9] calculated the

horizontal and vertical disparity as the predictive

features to estimate the degree of visual comfort. Choi

et al. [10] presented a VCA model for 3D video by

computing spatial and temporal complexity of depth

image as the predictive features. Recently, Jiang et al.

[11] learned a preference learning model for VCA.

Three types of features including zone of comfort,

depth of focus, and spatial frequency are extracted

from disparity map to represent a stereoscopic image

in terms of visual discomfort. One point should be

emphasized is that the visual comfort-aware features

of all the above-mentioned schemes are derived from a

global perspective. The global perspective corre-

sponds to that each pixel or location in a scene is

treated equally for global feature descriptor construc-

tion, which ignores the important visual attention

mechanism of human visual system (HVS). It has been

well discovered that the HVS can exhibit high

selectivity towards raw input visual signals, implying

that different pixels or locations are of different visual

sensitivity and perceptual importance values [12].

Inspired by the visual attention mechanism of HVS,

there have been some early attempts to improve the

performance of the traditional global-based VCA

schemes by considering this important visual property.

For instance, Sohn et al. [13] extracted salient object-

dependent disparity characteristics to predict the

visual comfort of stereoscopic images. The relative

disparity values between adjacent objects and the

stimulus size of foreground object are extracted as the

salient object-dependent features. Lee et al. [14]

proposed a VCA model by combining the width of

foreground object with the disparity statistics from the

observation that smaller stimulus width tended to

induce larger visual discomfort. Yong et al. [15]

derived an objective VCA model by taking human

visual attention into account. The used 3D visual

saliency map is obtained by linearly combining the 2D

saliency map and normalized depth map with equal

weights. The most significant problem is that whether

the assigned equal weights to 2D saliency and depth

maps are rational and optimal to reflect the human

attention fixation distribution under 3D viewing

condition.

In this paper, we propose a new VCA approach

using saliency-weighted disparity statistics fused with

random forest (RF). The main contributions of this

paper are threefold: (1) instead of extracting the

features from a global perspective, we extract

saliency-weighted disparity statistics (i.e., disparity

magnitude, disparity contrast, disparity dispersion,

and disparity skewness) as the predictive features for

VCA; (2) we propose an adaptive 3D visual saliency

detection model to derive pixel-wise saliency maps. In

particular, the 2D saliency and depth maps are fused

with adaptive weights, which are determined by the

entropy of depth map; (3) RF [16] is applied to learn a

visual comfort predictor, providing the latent mapping

from high dimensional feature space to low dimen-

sional quality score space. The organization structure

of this paper is sketched as follows. In Sect. 2, an

overview of the proposed approach is presented.

Section 3 illustrates the details of the proposed

approach. Experimental results and analyses are

presented in Sect. 4. Finally, we draw the conclusions

in Sect. 5.
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2 Overview of the Proposed Approach

The problem of VCA is similar to the recent focused

blind image quality assessment (BIQA) which aims to

automatically measure the perceptual quality of dis-

torted images without the reference for comparison

[17]. Generally speaking, mainstream of the learning-

based BIQA approaches work in the following three

steps:

(a) Quality-aware feature extraction;

(b) Model training with machine learning (ML)

algorithms;

(c) Model testing on new samples (training and

testing samples are independent).

Similar with the mainstream of learning-based BIQA

framework, the proposed VCA approach is also

composed of feature representation, model training,

and model testing modules. In particular, for feature

representation, 3D saliency-weighted disparity statis-

tics are extracted to represent the visual discomfort of

a stereoscopic image. Especially, the 3D saliency map

is derived by fusing 2D saliency and depth maps with

adaptive weights, which are determined by the entropy

of depth map. Then, we apply the RF algorithm to

learn a regression model from multi-dimensional

statistical features to a single visual comfort score.

RF is shown to be an effective tool to learn the

relationship between visual comfort-aware feature

vectors and quality score. Finally, the learned regres-

sion model is tested on new samples for performance

benchmarking. Note that the samples used for training

and testing are rigorously independent. Figure 1

presents the overall flowchart of our proposed three-

stage VCA framework. Obviously, the key modules in

the framework lie in how to derive the 3D saliency

map and to extract visual-comfort features. We will

elaborate these procedures in the next section.

3 The Proposed VCA Approach

3.1 3D Saliency Detection Model

Human visual system (HVS) employs an attentional

mechanism to perceive the raw visual signals by

allocating limited visual computational resources to

those perceptual important regions. The perceptual

important regions are termed as salient regions which

are usually different from their surrounding regions in

terms of low-level attributes such as intensity, color,

texture and orientation, etc. In order to better under-

stand where human looks, there have been many

studies devoted to predicting human fixations under

free-viewing conditions. As the most influential work,

Itti et al. [18] proposed a well-known saliency model,

which first computes feature maps of luminance, color

and orientation using a center-surround operator

across different scales, and then performs normaliza-

tion and summation to generate the saliency map.

Salient regions showing high local contrast with their

surrounding regions in terms of any of the three
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Fig. 1 The framework of the proposed VCA approach
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features are highlighted in the saliency map. Based on

this milestone work, many relevant saliency compu-

tational models were successively proposed based on

the center-surround mechanism while implemented

using a variety of features including local contrasts of

color, texture and shape features, oriented sub-band

decomposition based energy, ordinal signatures of

edge and color orientation histograms. Later, Harel

et al. [19] developed a graph-based visual saliency

(GBVS) model which extended Itti’s model by using a

more accurate measure of dissimilarity. In [20],

Goferman et al. proposed a context-aware saliency

detection model that can extract salient regions to

represent a scene. They claimed that people tend to

describe the scene rather than the single salient object.

Hou et al. [21] introduced a simple image descriptor

referred to as the image signature for human fixation

prediction. They demonstrated that image signature

preferentially contains information about the fore-

ground of an image-a property which is useful for

detecting salient image regions. Li et al. [22] proposed

a new bottom-up paradigm for detecting visual

saliency, characterized by a scale-space analysis of

the amplitude spectrum of natural images. Most

recently, Martinel et al. [23] introduced a saliency

computation approach named Kernelized Graph-

Based Visual Saliency (KGBVS) that extends the

standard GBVS algorithm by using different kernels in

the computation of transition probabilities. For a more

comprehensive overview on this field, researchers can

refer to [12].

Note that the above saliency models are all

proposed for 2D images, which may not completely

suitable for cases of 3D visual saliency detection.

Compared with various saliency detection models

proposed for 2D images, how to understand the role of

additional depth information on the deployment of

human fixations under 3D viewing condition is of

great importance. Previous studies have found that

both low-level appearance features (e.g., intensity,

color, texture and orientation) and depth cues are

related with human fixation behaviors when viewing

stereoscopic images [24]. We apply off-the-shelf 2D

saliency models to estimate 2D saliency maps to

reflect the effect of low-level appearance features to

human fixation behaviors. For depth information, we

use the binocular disparity map for depth-aware

saliency estimation since disparity map provide a

direct cue to create depth sensation in current

stereoscopic imaging system. On the basis of the

common sense that objects near the observer will

achieve more attention so as to induce more severe

visual discomfort compared with objects far away

from the observer, we formulate the 3D visual saliency

as

S3D ¼ ð1� aÞ � S2D þ a � SDepth ð1Þ

where S2D is a standard GBVS map and SDepth is a

normalized disparity map. The parameter a is an

adaptive value that controls the relative importance

between 2D saliency and depth saliency.

By analyzing the ground truth fixation data of

stereoscopic images with different depth structures,

we have the following observations. First, scenes with

obvious salient object tend to have relatively compact

fixation distribution while scenes with non-salient

object tend to have relatively dispersive fixation

distribution. Second, the fixation data of salient object

scenes tend to focus on the salient object while the

fixation data of non-salient object scenes tend to

spread over the whole image. That is to say, depth

information will have different impacts on human

fixation distribution of stereoscopic images with

different depth structures. Examples of scenes with

salient object and non-salient object along with their

corresponding fixation density maps can be found in

Fig. 2.

Inspired by this observation, we intuitively think

that the determination of parameter a should be

adaptive with depth structure so as to better charac-

terize the influence of depth saliency. In particular, we

propose to compute the entropy of disparity map to

reflect the deployment of depth structure, assuming

that scenes with complex depth structure will have

lower disparity entropy values and vice versa. To

measure the entropy of a disparity map, we first

quantize the gray-scale into K bins in the range of

[0,255], and then compute the entropy as Eq. (2).

E ¼ �
Xk

l ¼ 1

p½dðlÞ� ln ðp½d lð Þ�Þ ð2Þ

where d(l) represents the disparity value of the l-th bin

and p[d(l)] is the probability of the l-th bin. Since we

have known that a disparity map with uniform

distribution in terms of the depth gray-scale will have

the maximum entropy value, the maximal entropy

value is a constant which can be denoted by Emax. We
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assume that parameter a is linearly proportional to the
disparity entropy value. Based on this assumption, we

compute the ratio of E and Emax to adaptively adjust

parameter a

a ¼ E

Emax

ð3Þ

It is worthy emphasizing that, by using the adaptive

parameter to combine 2D saliency and depth saliency,

the relative importance between them is well charac-

terized. Examples of some stereoscopic images asso-

ciated with their 3D saliency maps are shown in Fig. 3.

As compared with the ground truth fixation density

maps, the estimated saliency maps can well predict

human fixations due to the consideration of adaptive

weights between 2D saliency and depth saliency.

3.2 Saliency-Weighted Disparity Statistics

This section involves extracting visual comfort-aware

statistics from disparity maps by using the previously

estimated 3D saliency maps as weights. The used

disparity statistics include disparity magnitude, dispar-

ity contrast, disparity dispersion, and disparity

skewness, which have been demonstrated to be deeply

relevant with visual comfort [25]. Specifically, given a

stereoscopic image I3D (x, y)={IL(x, y), IR(x, y)} and its

corresponding disparitymap, d(x, y) wefirst compute its

3D saliencymap S3D (x, y) by using the above described

adaptive 3D saliency detection model, then the related

saliency-weighted disparity statistics are given by

(a) 3D saliency-weighted disparity magnitude:

f1 ¼
1

dm
�
XM

i¼1

XN

j¼1

S3Dði; jÞ � jdði; jÞjÞ
 !,

XM

i¼1

XN

j¼1

S3Dði; jÞ
 !

ð4Þ

(b) 3D saliency -weighted disparity contrast:

f2 ¼
1

dm
�
XM

i¼1

XN

j¼1

SS3Dði; jÞ � jdcði; jÞj
 !,

XM

i¼1

XN

j¼1

SS3Dði; jÞ
 !

ð5Þ

(c) 3D saliency-weighted disparity dispersion:

Fig. 2 Examples of stereoscopic images (in red-green

anaglyph formats) with salient object and non-salient object

along with their corresponding fixation density maps. The first

row shows the scene with salient object while the second row

shows the scene with non-salient object
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(d) 3D saliency-weighted disparity skewness:

f4 ¼
XM

i ¼ 1

XN

j ¼ 1

S3Dði; jÞ � dði; jÞ
 !,

XM

i ¼ 1

XN

j ¼ 1

S3Dði; jÞ � dði; jÞ
 !

ð7Þ

where {dc(x, y)} is the disparity contrast map calculated

by using center-surrounding operator, M and N are the

width and height of d(x, y), respectively, and dm is the

maximum disparity magnitude as a normalized factor.

In addition, we also utilize the fact that excessive

binocular disparity magnitude tends to induce visual

discomfort. In general, stereoscopic images with even

a small amount of excessive binocular disparities may

still be perceived as uncomfortable, which motivates

us to take the percentages of maximum and minimum

disparity values into account for VCA. The average

disparity values of the maximum and minimum p %

disparity values are given by

(e) the average value of the maximum p %

disparities:

f5 ¼ 1

dm
� 1

NðXþ
p Þ

X

ði; jÞ 2 Xþ
p

dði; jÞ

0

@

1

A ð8Þ

(f) the average value of the minimum p %

disparities:

f6 ¼ 1

dm
� 1

NðX�
p Þ

X

ði; jÞ 2 X�
p

d ði; jÞ

0
@

1
A ð9Þ

where Xþ
p and X�

p represent the sets of pixels whose

disparities belong to the maximum and minimum p %

disparities over all pixels in d (x, y),N(Xp
?) andN(Xp

-) are

the number of pixels in Xp
? and Xp

-, respectively. In our

experiment, the number of p % is empirically set to 5 %.

As a result, a 6-dimensional feature vector can be

obtained by combining all the 3D saliency-weighted

disparity statistics: Fp = [f1, f2, f3, f4, f5, f6].

3.3 Learning with Random Forest (RF)

In order to predict a single visual comfort score for a

stereoscopic image, we learn a regression model from

a set of training samples. Through feature extraction,

each stereoscopic image can be represented as a 6-

dimensional feature vector. Given a training set Xa =

{I1, I2, …, IN}, a set of visual comfort-aware feature

vectors FXa
= {F1, F2, …, FN} can be acquired. Then,

with FXa
and their corresponding subjective scores,

visual comfort regression model/ (�) is constructed by
using RF algorithm. At the testing stage, given a to-be-

assessed stereoscopic image, by extracting the feature

vectors, i.e., Ft, and feeding them into the learned

regression model, the quality scores are predicted by:

Qt = / (Ft).

Here, of course, other machine learning (ML)

algorithms also can be adopted. However, the moti-

vations that we choose the RF algorithm as the

regression model in our approach are two folds. First,

it has been demonstrated that the RF algorithm is the

best one among 179 ML algorithms arising from 17

families when testing on 121 datasets. Although the

difference is not statistically significant with the

second best, i.e., the SVM with Gaussian kernel, we

experimentally found that the RF algorithm is slightly

better than support vector regression in our approach.

Second, as we all known, in subjective VCA exper-

iments, the ultimate visual comfort score is obtained

by averaging the evaluation from different subjects.

Inspired by this fact, we adopt the RF algorithm, the

training and testing procedures of which are similar to

the subjective VCA process, as the regressionmodel in

our approach. Actually, this method combines the

‘‘bagging’’ theory and the random selection of

features. In the implementation of RF algorithm, there

are two most important hyperparameters namely the

number of trees ntree and the number of variables to

split on at each node mtry. We set ntree = 1000 and

mtry = 2 in our experiment. In addition, the impact of

different RF hyperparameters will be presented and

analyzed in Sect. 4.4.3.

f3 ¼ 1

dm
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XM

i ¼ 1

XM

i ¼ 1

S3Dði; jÞ � dði; jÞ2
 !,

XM

i ¼ 1

XM

i ¼ 1

S3Dði; jÞ
 !vuut ð6Þ
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4 Experimental Results

4.1 Databases Description

In order to evaluate the performance of our proposed

approach, two benchmark databases are used: NBU

S3D-VCA database [11] and IVY database [13]. The

NBU database contains 82 indoor and 118 outdoor

stereoscopic images with a wide range of horizontal

disparities. The MOS of visual comfort for each

stereoscopic image is provided, which is obtained via

a large scale standard human subjective studies. More

details about this database can be found in [11]. The

IVY database contains a total number of 120 stereo

image pairs with a Full-HD resolution (i.e.,

1920 9 1080 pixels). All these images were captured

using a 3D digital camera with dual lenses (Fujifilm

FinePix 3DW3). The magnitude of maximum crossed

horizontal disparity of each image pair ranges from

0.11 to 5.07 degrees in their experimental

Fig. 3 Examples of stereoscopic images (in red-green anaglyph formats) associated with their estimated 3D saliencymaps and fixation

density maps
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environments. A large-scale standard subjective

assessment was also conducted on these images to

generate the associated subjective scores (i.e., MOS)

to serve as the ground truth.

4.2 Performance Criteria

For performance evaluation, four performance criteria

including Pearson linear correlation coefficient

(PLCC), Spearman rank order correlation coefficient

(SRCC), Kendall rank-order correlation coefficient

(KRCC), and Root mean squared error (RMSE),

between the predicted visual comfort scores and MOSs

are computed. Among them, PLCC and RMSE are used

to measure the prediction accuracy, and SRCC and

KRCCare used tomeasure the predictionmonotonicity.

For a well-defined model, we have PLCC =

SRCC = KRCC = 1 and RMSE = 0. As recom-

mended by the Video Quality Experts Group [26], we

perform a nonlinear regression using the following

logisitic function on the objective visual comfort scores

given by VCA models before computing these criteria.

The used logistic mapping function is defined as

MOSpi ¼ b
1

2
� 1

1 þ exp ðb2 ðsi � b3ÞÞ

� �

þ b4x þ b5
ð10Þ

where bj (j = 1, 2,…, 5) are free model parameters to

be fitted, MOSpi is the mapped visual comfort score,

and si is the objective score given by the VCA model.

4.3 Experimental Protocol

The performance of a VCA model is evaluated by a

200 times 10-fold cross validation on each individual

database. Specifically, we first randomly divide the

each database into 10 non-overlapped subsets. For

each fold, 9 subsets are used for training, and the

remaining one subset is used for testing. This process

will be repeated 10 folds so that each subset is used as

the testing set only once. In addition, to ensure that the

performance evaluation results were not dependent on

a specific split, this kind of 10-fold cross validation

was iterated 200 times by randomly splitting. Finally,

the overall performance of a VCA model was com-

puted as the average results over 2000 iterations

(= 200 times 9 10 folds).

4.4 Performance Evaluation

4.4.1 Overall Performance Comparison

We compare the proposed approach with five state-of-

the-art schemes, i.e., Kim’s [9], Choi’s [10], Sohn’s

[13], and Jung’s [15] schemes. As shown in Table 1,

the PLCC, RMSE, SRCC, and KRCC results of these

schemes on NBU database in terms of the mean values

measured over 2000 iterations are presented. Note that

a higher mean value corresponds to a better perfor-

mance. It is obvious that, the proposed model shows

the best performance against all the other compared

schemes in terms of all the performance criteria. As

shown in Table 2, the similar observation can also be

observed from the results on IVY database in terms of

SRCC and KRCC, which further demonstrate the

promising performance of our proposed approach on

reflecting human subjective perception of visual

discomfort.

Although the scheme proposed by Jung et al. [15]

also takes the human visual attention into account, it

also exhibits worse performance than our proposed

approach since the used 3D saliency map in [15] is

generated by directly combining 2D saliency map and

depth map with equal weights, which is not rational

and cannot well address the issue of human fixation

prediction under stereo viewing condition. Moreover,

only two statistics including disparity magnitude and

disparity gradient are extracted to represent a stereo-

scopic image in terms of visual comfort, which is

usually inadequate to fully account for the sensation of

experienced visual comfort of observers when viewing

stereoscopic images. Another interesting observation

is that the proposed approach is also slightly better

than the Sohn’s scheme in [13], which is also designed

from the perspective of object-dependent feature

Table 1 Mean values of different VCA schemes on NBU

database measured over 2000 iterations

Schemes PLCC SRCC KRCC RMSE

Kim’s [9] 0.7350 0.6672 0.4987 0.5363

Choi’s [10] 0.7046 0.6474 0.4832 0.5676

Sohn’s [13] 0.7868 0.7608 0.5781 0.4820

Jung’s [15] 0.7784 0.7647 0.5824 0.5035

Proposed 0.8049 0.7769 0.5954 0.4628
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representation. However, this scheme only focuses on

the statistics of most salient object while ignoring all

the remaining parts of the scene. It is somewhat

unreasonable because excessive disparity or crosstalk

occurred in other regions can also lead to visual

discomfort. Overall speaking, the proposed VCA

approach can achieve a high consistency with human

subjective perception due to the consideration of 3D

visual saliency and the proposed adaptive 3D saliency

detection model can well reflect the influence of depth

structure on human fixation deployment under stereo

viewing.

4.4.2 Effectiveness of 3D Saliency-Weighted

Disparity Statistics

Since the performance of the proposed approach is

highly dependent on the extracted visual comfort-

aware features, it is quite interesting to examine

whether these features will also be effective if

incorporate them into the features used by off-the-

shelf VCA schemes. Without loss of generality, we

only conduct the experiments on the NBU database.

Table 3 and Fig. 4 show the average PLCC, SRCC,

KRCC and RMSE results over 2000 iterations by

incorporating the proposed visual comfort-aware

features into the off-the-shelf VCA schemes (i.e.,

Kim’s [9], Choi’s [10], Sohn’s [13], and Jung’s [15]

schemes) on this database. It is obvious that, compared

with the original results in Table 1, the performances

are significantly improved for all schemes, which

further demonstrate effectiveness of the proposed

feature extraction strategy and also the necessity of the

consideration of visual attention mechanism for visual

comfort assessment.

Table 2 Mean values of different VCA schemes on IVY

database measured over 2000 iterations

Schemes PLCC SRCC KRCC RMSE

Kim’s [9] 0.7715 0.7436 0.5537 0.5062

Choi’s [10] 0.7608 0.7322 0.5414 0.5146

Sohn’s [13] 0.8464 0.8178 0.6251 0.4285

Jung’s [15] 0.8088 0.7837 0.5934 0.4616

Proposed 0.8505 0.8208 0.6285 0.4247

Table 3 The PLCC, SRCC, KRCC and RMSE results over 2000 iterations by incorporating the proposed visual comfort-aware

features into the off-the-shelf VCA schemes (the values in parentheses are the achieved increments)

Schemes PLCC SRCC KRCC RMSE

Kim’s [9] 0.7562 (?0.0212) 0.6736 (?0.0064) 0.5132 (?0.0145) 0.5224 (-0.0139)

Choi’s [10] 0.7418 (?0.0372) 0.6702 (?0.0228) 0.4936 (?0.0104) 0.5392 (-0.0284)

Sohn’s [13] 0.7925 (?0.0057) 0.7729 (?0.0121) 0.5845 (?0.0064) 0.4735 (-0.0085)

Jung’s [15] 0.7934 (?0.0150) 0.7745 (?0.0098) 0.5881 (?0.0057) 0.4721 (-0.0314)

Fig. 4 Performance

comparison between the

previous schemes before

and after incorporating the

proposed 3D saliency-

weighted visual comfort-

aware features. It can be

observed that the

performances of all the

schemes are improved by

incorporating the proposed

features
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4.4.3 Impact of RF Hyperparameters

As stated, there are two most important hyperparam-

eters namely the number of trees ntree and the number

of variables to split on at each node mtry in the

implementation of RF algorithm. It is of great interest

to investigate how the performance of our proposed

approach is influenced by different parameter config-

urations. In the experiments, we propose to consider

the following parameters: ntree [ {250, 500, 750,

1000, 1500, 2000}, andmtry ={1, 2, 3, 4, 5}. It is worth

noting that the value ofmtry is always smaller than the

dimension of features. Figure 5 shows how the

performance on the NBU dataset in terms of SRCC

value varies with different settings of ntree andmtry. It

is clearly that almost all the criteria first sharply

increase and then gently ascend as the number of

constructed trees ntree becomes greater. This is

consistent with the generally recognized fact that

better prediction accuracy can be obtained as the tree

number increased. However, higher computational

complexity will be a major concern when a greater

number of trees are constructed. As can be observed

from the figure, the combination of ntree = 1000 and

mtry = 2 can provide a best tradeoff between the

prediction accuracy and computational efficiency.

5 Conclusions

In this paper, we have presented a novel objective

visual comfort assessment (VCA) approach for stereo-

scopic images by taking human visual attention

mechanism into account. The main contribution of

this work is threefold. First, we propose a 3D saliency

detection model that can adaptively fuse 2D saliency

and depth saliency based on the property of depth

structure. Second, visual comfort-aware features from

3D saliency-weighted disparity statistics are consid-

ered for VCA. Third, RF algorithm is applied to learn a

visual comfort predictor, providing the latent mapping

from high dimensional feature space to low dimen-

sional quality score space. Experimental results on

NBU and IVY databases confirm the superior perfor-

mance of the proposed approach. In the future work,

we plan to construct a more comprehensive 3D image

database that simultaneously accounts for various

perceptual modalities (e.g., image distortion, depth

perception, and visual comfort) to advance the eval-

uation of QoE.
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