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Abstract In this paper, we introduce a new hybrid

system consisting of a permutation-substitution net-

work based on two different encryption techniques:

chaotic systems and the Latin square. This homogene-

ity between the two systems allows us to provide the

good properties of confusion and diffusion, robustness

to the integration of noise in decryption. The security

analysis shows that the system is secure enough to

resist brute-force attack, differential attack, chosen-

plaintext attack, known-plaintext attack and statistical

attack. Therefore, this robustness is proven and

justified.
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Abbreviation List

DC Cyclicshift

Dcr Decryption

Ecr Encryption

GCL Latin Square Generator

GS Sequence Generator

PCCL Column Latin Square Permutation

PCL Latin Square Permutation

PLCL Row Latin Square Permutation

SCCL Column Latin Square Substitution

SLCL Row Latin Square Substitution

1 Introduction

The development of the IT field especially laptops,

media supports and the Internet facilitated the diffu-

sion and exchange of information. Many applications

such as military databases, confidential video confer-

encing, medical imaging system, cable TVs, personal

photo album online, etc., require reliable, fast and

robust systems for secure transmission. The image

encryption is different from text because of some

intrinsic features of images, such as data redundancy

and the strong correlation between adjacent pixels.

Therefore, the traditional systems such as DES [1],

AES [2], and Blowfish [3] are not suitable for images

and videos encryption. To overcome this problem,

many fast systems specially designed for digital

images have been proposed in recent years, and their

main purposes is to reduce the redundancy in image, to

strengthen security and particularly to minimize the

encryption time.

Among those existing approaches, Chaos-based

scheme, with the desirable properties of pseudo

randomness, ergodicity, high sensitivity to initial

conditions and parameters, is recognized as great

potential for multimedia encryption because such

features are considered analogous to those of an ideal

cryptosystem. The sequences generated by the chaotic

maps are often pseudo-random sequences, and their

structures are very complex and difficult to analyze

[4–8]. YueWu et al. [9] proposed an image encryption

using the two-dimensional logistic chaotic map, which

has well-known weaknesses such as the key length

which is insufficient, low security, and encryption

time which is quite high. It completely loses its chaotic

nature and becomes periodic when it is discretized

[10] and the initial values can be estimated by a

number of existing tools and methods [11, 12]. To

overcome these drawbacks, we suggest a hybrid

algorithmwhich consists of a substitution-permutation

network of eight rounds based on the two-dimensional

logistic map to take advantage of chaotic systems and

Latin square [13], which would ensure a good

diffusion, strengthen more safety and improve the

encryption time considerably. With this homogeneity

between the two systems, we can obtain a reliable,

robust, and fast encryption algorithm.

The proposed algorithm is designed for medical

imagery, because currently, most of Hospital Data

Management Systems (HDMSs) and medical equip-

ment’s are working in a computer network environ-

ment. Medical images are produced and stored in a

digital form; moreover, they are exchanged through a

computer network. These images are the most impor-

tant entity in the healthcare diagnostic procedures

because they are used to view features of patients such

as anatomical cross-sections of internal organs and

tissues, in addition they are used for physicians to

evaluate the patient’s diagnosis and monitor the

effects of the treatment. Therefore, protecting medical

images from an unauthorized use is an essential

requirement.

This article is organized as follows: In the second

part, we give an overview of previous works, the third

part presents a detailed description of the proposed

algorithm, the fourth part contains the software

implementation and experimental results (sensitivity

towards the secret key, histogram analysis, correlation

between adjacent pixels…), and ends with a general

conclusion.

2 Previous Works

Due to the high sensitivity of chaotic systems to

parameters and initial conditions as well as the

availability of many circuit realizations [14, 15],

chaos based algorithms are developed and studied as

the core of encryption algorithms. Recently, many

Chaos-based schemes are proposed: Telem ANK et al.
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[16] proposed A robust gray image encryption

scheme using chaotic logistic map and artificial neural

network (ANN), In the proposed method, an external

secret key is used to derive the initial conditions for the

logistic chaotic maps which are employed to generate

weights and biases matrices of the multilayer percep-

tron (MLP). During the learning process with the back

propagation algorithm, ANN determines the weight

matrix of the connections. The plain image is divided

into four sub images which are used for the first

diffusion stage. The sub images obtained previously

are divided into the square sub image blocks. In the

next stage, different initial conditions are employed to

generate a key stream which will be used for

permutation and diffusion of the sub image blocks.

Hegui Zhu et al. [17] proposed A novel image

encryption–compression scheme using hyper-chaos

and Chinese remainder theorem, Specifically, firstly

they use 2D hyper-chaos discrete non linear dynamic

system to shuffle the plain image, and then they apply

Chinese remainder theorem (well known in number

theory) to diffuse and compress the shuffled image.

Hraoui et al. [18] proposed a mix of a compression

technique called SPIHT (Set Partitioning in Hierar-

chical Trees) and chaotic encryption in order to

elaborate a crypto-compressing scheme based on

encrypting quantization by a modified logistic map.

Kanso et al. [19] introduced a novel image encryption

algorithm based on a 3D chaotic map, the proposed

algorithm based on three phases: In phase I, the image

pixels are shuffled according to a search rule based on

the 3D chaotic map. In phases II and III, 3D chaotic

maps are used to scramble shuffled pixels through

mixing and masking rules.

On the other hand, non-chaotic methods have

proved their existence and importance in implement-

ing the confusion and diffusion stages. Such methods

usually increase the algorithm complexity to protect

against cryptanalysis: Yue Wu et al. [13] introduced a

symmetric-key Latin square image cipher (LSIC) for

grayscale and color image encryption.

Pareek et al. [20] divided the image into non-

overlapping blocks and each blockwas scrambled using

a zigzag-like algorithm. Furthermore, Al-Husainy [21]

divided the image into a set of k-bit vectors, each of

these vectors was substituted by XORing it with the

previous vector and then permuted by circularly right

rotating its bits. Pareek et al. [22] divided the image into

non-overlapping blocks and for each encryption round

the size of the block changed according to the round

key. Within the same block, permutation was per-

formed using a zigzag like algorithm.

The combination of both chaotic and non-chaotic

algorithms showed some advantages in many cryp-

tosystems. For example, Li et al. [23] used the 3D

Arnold map and a Laplace-like equation to perform

permutations and substitutions, respectively. Wang

and Yang [24] used the water drop motion and a

dynamic lookup table with the help of the logistic map

to perform the diffusion and confusion processes.

Furthermore, Fouda et al. [25] used a piecewise linear

chaotic map to generate pseudo random numbers and

these numbers were used in generating the coefficients

of the Linear Diophantine Equation (LDE). By sorting

the solutions of LDE, large permutations were created

and used in scrambling the image pixels. Whereas

Zhang et al. [26] used compressive sensing along with

Arnold’s map in order to encrypt color images into

grey images, Zhang et al. [27] used a coupled logistic

map, self adaptive permutation, substitution boxes and

combined global diffusion to perform the encryption.

Finally, AbdEl Haleem et al. [28] used a chess-based

algorithm to perform the permutation process and the

Lorenz system to perform the substitution process. In

summary, permutations and substitutions can be

performed using chaotic systems, non-chaotic algo-

rithms or a combination of both.

3 Proposed Method

The proposed algorithm uses two different encryption

systems: the two-dimensional logistic map and the

Latin square. This complementarity fatherly enhances

the security and allows us to benefit from the

advantages of each system.

3.1 Two-dimensional Logistic Map

The two-dimensional logistic map is known for its

complex behavior of the evolution of basins and

attractors [29]. It is more complex than the one-

dimensional chaotic behavior.

The logistic map is defined by the system of

Eqs. (1) below:

Xiþ1 ¼ r 3Yi þ 1ð ÞXið1� XiÞ
Yiþ1 ¼ r 3Xiþ1 þ 1ð ÞYið1� YiÞ

�
ð1Þ
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where ‘r’ is the parameter of the system (with r [ [1.1,
1.19] it is the interval where the system is chaotic) and

(Xi, Yi) is the point at the ith iteration. This card also

depends on the initial conditions (x0, y0) to determine

its trajectory.

3.2 Latin Square

A Latin square L of N order is a table of N 9 N

elements filled with N distinct symbols, with each

symbol appears exactly once in each row and each

column. The name of the Latin square was introduced

by the mathematician Leonhard Euler, who used Latin

characters as symbols.

Mathematically, we can define a Latin Square of N

order via the function FL (l, c, i) according to Eq. (2):

FL l; c; ið Þ ¼ l si L l; c; ið Þ ¼ Si
0 Otherwise

�
ð2Þ

With l denotes the index of a line of an element of

L; l 2 N ¼ 0; 1; . . .;N� 1, c denotes the index of a

column of an element of L c [N, i denotes the index of

a symbol element in L and Si is ith symbol in the whole

= {S0, S1,…, SN-1}. This implies that each symbol

appears exactly once in each row and each column of

L. Figure 1 shows examples of Latin squares of

different orders with different symbol sets.

3.3 Detailed Algorithm

The proposed algorithm is of an SPN structure

(substitution-permutation network) with eight rounds

and an encryption key of 256 bits as shown in Fig. 2. It

uses the two-dimensional logistic map and the Latin

square. It consists of the integration of the probabilis-

tic sound encryption LSB (least significant bit-plane)

[30], and the SPN stage with five primitives of

encryption: cyclic shift, Latin square substitution,

Latin square permutation, permutation 2D and substi-

tution 2D. The different steps will be defined in the

following sections.

3.3.1 K. Key Generator

The encryption K. key is 256-bits long, and it is used in

two different ways:

• Directly in the 2D permutation and 2D substitu-

tion, this is called: logistic map key.

• Transformed into Latin square when it is added to

the cyclic shift, permutation and Latin square

substitution. It will be named Latin square key.

3.3.1.1 Logistic Map Key We cut the encrypting K.

key into five parameters namely x0, y0, r, T and A0���A8

as shown in Fig. 3, with (x0, y0) and r as initial values

of the two-dimensional logistic map expressed in

Eq. 1. A and T are parameters of the generator of a

linear congruence (see the detailed function in [31]).

3.3.1.2 Latin Square Key We transform the K.

encryption key into eight Latin squares key which

are 256 bits long, as follows:

• we divide the K. encryption key by using the

SubKeyDiv function into eight subkeys of 32 bits:

K = {K0, K1,…, K7}

• We generate pairs of pseudo-random sequences:

(Q0
1;Q0

2Þ; ðQ1
1;Q1

2Þ; . . .; ðQ8
1;Q8

2Þ, each pair is

Fig. 1 Examples of Latin squares
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Fig. 2 Encryption images by the proposed algorithm
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made of 2 9 256 elements by using PRNGs

function (Pseudorandom number generator).

These two steps are described in Algorithm 1.

-----------------------------------------------------------
Algorithm 1. Sequence generator (Q1, Q2) = GS (Key, M) 

-----------------------------------------------------------
Require: K a 256-bit key 
Require:n is a nonnegative integer
Ensure: Q1= { 1

0, …, 1 } et : Q2= { 2
0, …, 2 are n-element

 set of random sequences, each of a length 256.
K0=K
Forn = 0: M do

[k0, k1, …, k7] = SubKeyDiv(Kn) 
for i = 0: 8 do

Qi(0) = PRNG(Ki) 
Forj = 1: 63 

Qi(j) = PRNG(qi(j-1)))
end for

end for
1 = [q0(0 :31), q1(0 :31), …., q7(0 :31)]
2 = [q0(32 :63), q1(32 :63), …., q7(32 :63)]

Kn+1 = [q0(63), q1(63), …., q7(63)]
end for

--------------------------------------------------------

Finally, we obtain Latin Square keys of 256 bits: L0,

L1,…, L8 of the 256 bits order by supplying these

pseudo-random sequences in Algorithm 2: n {0, 1,…,

8}we have a Ln = GCL (Qn
1;Qn

2Þ.

Q1 and Q2 are two sequences produced by a

pseudo-random number generator (PRNG), for

example the generator of a linear congruence [32].

SortMap (Q) is a function that finds the cartographic

index between a Q sequence and its filtered version

Q* in the ascending order, and RowShift (Q, v)

makes a cyclic shift of the Q sequence with v

elements to the left [13].

3.3.2 Cyclic Shift

In the conventional SPN encryption by blocks [33,

34], the step of shifting normally mixes a clear

P message with a key, for example, operation

XOR.

We define the cyclic shift as an encryption by

transposition [35] on the finite space GF(28) for the

image data, as shown in the following equation:

y ¼ ½xþ l�28 ð3Þ

where ‘x’ is a byte in the plain image, ‘l’ is the

corresponding byte to the Latin key, and ‘y’ is the

result of cyclic shift. [.]28 denotes the computations

over GF(28). The shift Process above may easily be

reversed by applying:

x ¼ ½yþ l�28 ð4Þ

In the image encryption, the plaintext of x byte is a

pixel. It is located at the intersection of rth row and cth

column hence x = P (r, c). Now, l = L (r, c) is a

component located in the corresponding position of

the Latin key square L and ‘y’ byte of cryptogram with

y = C (r, c), then the equation is obtained at the pixel

level (5):

Cðr; cÞ ¼ ½SRðPðr; cÞ;DÞ � Lðr; cÞ�28
Pðr; cÞ ¼ SRð½Cðr; cÞ � Lðr; cÞ�28 ;DÞ

�
ð5Þ

D is the rotation parameter (D = L (0,0) mod 3),

and SR denotes the function of spatial rotation (X, d)

which retains an x image according to different values

of the direction D as it is defined in the Eq. (6).

-----------------------------------------------------------
Algorithm 2.Latin square generator L = GCL (Q1, Q2) 

--------------------------------------------------------
Require: Q1 and Q2 are two length-N sequences

Ensure: L is a Latin square of order N

Qseed = SortMap(Q1)
Qshift = SortMap(Q2)
for r = 0 to N-1

L(r, : )= RowShift(Qseed, Qshift(r))

end 

-----------------------------------------------------------

Fig. 3 Logistic map Key
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X; if d ¼ 0

Flip X up ! down; if d ¼ 1

Flip X left ! right; si d ¼ 2

8<
: ð6Þ

Equation 5 is applied to all pixels to obtain the

cyclic shift denoted by:

DC ¼ C ¼ EcrDCðL; P;DÞ
P ¼ DcrDCðL;C;DÞ

�
ð7Þ

3.3.3 Latin Square Substitution

An S-Box in Cryptography is a basic element to

perform the substitution. The existence of the bijection

FRM/MRI (Forward row mapping, inverse row map-

ping) and FCM/ICM (Forward column mapping,

Inverse column mapping) [13] in a Latin square, we

are able to perform the byte substitution in an

encrypting image using bijections of rows and

columns in a Latin square. The substitution according

to a row in a Latin square is denoted by SLCL:

SLCL ¼ C ¼ Ecrlignes ðL; PÞ
P ¼ Dcrlignes ðL;CÞ

�
ð8Þ

The functionsEcrs
ligne and Dcrs

ligne are obtained

from Eqs. (9) and (10) below:

Ecrlignes ¼ C r; cð Þ ¼
FRM L;C r� 1; cð Þ; P r; cð Þð Þ; if r 6¼ 0

FRM L; 0; P r; cð Þð Þ; if r ¼ 0

�

ð9Þ

Dcrlignes ¼ P r; cð Þ ¼
IRM L;C r� 1; cð Þ;C r; cð Þð Þ; if r 6¼ 0

IRM L; 0;C r; cð Þð Þ; if r ¼ 0

�

ð10Þ

Similarly, we use bijections of columns in a Latin

square to make substitutions of bytes SCCL.

SCCL ¼ C ¼ Ecrcolonnes ðL; PÞ
P ¼ Dcrcolonnes ðL;CÞ

�
ð11Þ

Ecrcolonnes ¼ C r;cð Þ

¼ FCM L;P r;cð Þ;C r;c� 1ð Þð Þ; if r 6¼ 0

FCM L;P r;cð Þ;0ð Þ; if r ¼ 0

�

ð12Þ

Dcrcolonnes ¼ P r;cð Þ

¼ ICM L;C r;cð Þ;C r;c� 1ð Þð Þ; if r 6¼ 0

ICM L;C r;cð Þ;0ð Þ; if r¼ 0

�

ð13Þ

3.3.4 Latin Square Permutation

Unlike the byte substitution S-Box, the P-Box (permu-

tation) performs a patch or a byte interference. Each

P-Box can also be defined as a bijection [35]. If we

consider both the input and output x and y in FRM and

IRM as indices, an FRM then defines a mapping {0, 1,

2,…, 255} to {0, 1, 2,…, 255} and also an IRM defines

the corresponding inverse mapping. We are therefore

able to define the Latin square P-box row (PLCL) as

follows:

PLCL ¼ C r; cy

� �
¼ Pðr; FRMðL; r; cxÞ

P r; cxð Þ ¼ Cðr; IRMðL; r; cyÞ

�
ð14Þ

In which cx and cy denotes column indices before

and after the mapping. Similarly, we can also build the

P-column Latin square box (PCCL) by the following

equations:

PCCL ¼ C ry; c
� �

¼ Pðr; FCM L; rx; cð Þ; cÞ
P rx; cð Þ ¼ CðICM L; ry; c

� �
; cÞ

�
ð15Þ

In which rx and ry denote the row indices before and

after the mapping.

To have the best performances, we build our Latin

square permutation by cascading the row permutations

PLCLs and the column permutations PCCL as

follows:

Cðr; cÞ ¼ C�ðFCMðL; r; cÞ; cÞ
C�ðr; cÞ ¼ Pðr; FRMðL; r; cÞÞ

�
ð16Þ

In general, we write the function of the Latin square

permutation as follows:

PCL ¼ C ¼ EcrpðL; PÞ
P ¼ DcrpðL;PÞ

�
ð17Þ

3.3.5 2D Logistic Permutation

If we suppose that the size of the clear image P is

M 9 N, then, the total number of pixels by P is

M 9 N. If we Consider the initial value used in a

round is (x0, y0), then a sequence of x and y of M 9 N

length (excluding the initial value) can be generated

by the 2D logistic map using Eq. (1). We notice that

Xseq and Yseq, the sequences of x and y coordinates

of the 2D logistic map sequences as the following

Eq. (18) shows:

36 Page 8 of 18 3D Res (2015) 6:36
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Xseq ¼ x1; x2; . . .; xMNf g
Yseq ¼ y1; y2; . . .; yMNf g

�
ð18Þ

We rearrange the items of Xseq and Yseq whose

number is M 9 N as matrices X and Y, then each row

‘r’ of X is sorted to build matrix Xsorted. There is a

bijection between the matrix X and its sorted Version

Xsorted which is named epx
[35] as shown in Eq. (19).

Similarly, there is also a bijection epy
between the

matrix Y and its sorted version according to the

columns Y noted as Ysorted.

Xsorted
r;i ¼ Xr;epx ðiÞ

Ysorted
i;c ¼ Yepy ið Þ;c

(
ð19Þ

Therefore, the matrix row of permutation Ux and

the matrix column of permutation Uy can be obtained

by the Eq. (20).

Ux ¼ ½er¼1
px ; er¼2

px ; . . .; er¼M
px �T

Uy ¼ ½ec¼1
py ; ec¼2

py ; . . .; ec¼N
py �

(
ð20Þ

Finally, the 2D logistic permutation is obtained by

Algorithm 3 using row and column permutations of

the Eq. (20).

We write the 2D permutation logistic function as

follows:

P2D ¼ C ¼ EcrP2DðPÞ
P ¼ DcrP2DðL; PÞ

�
ð21Þ

3.3.6 2D Logistic Substitution

In this phase, we change the pixels values while

maintaining the reference matrix ‘I’ which depends on

the sequences of the 2D logistic map and which will be

calculated as follows:

X and Y are versions of Xseq and Yseq matrices,

Z = X ? Y, Each B block of 4 9 4 elements of Zwill

be converted with the following matrix:

I ¼ f Bð Þ

¼

gN B1;1

� �
gR B1;2

� �
gS B1;3

� �
gD B1;4

� �
gR B2;1

� �
gS B2;2

� �
gD B2;3

� �
gN B2;4

� �
gS B3;1

� �
gD B3;2

� �
gN B3;3

� �
gR B3;4

� �
gD B4;1

� �
gN B4;2

� �
gR B4;3

� �
gS B4;4

� �

0
BB@

1
CCA

ð22Þ

With gN(d) = T (d) mod F, gR(d) = T(
ffiffiffi
d

p
) mod F,

gS(d) = T (d2) mod F andgD(d) = T (2d) mod F,The

function T (d)truncates a decimal d from the 9th digit

to 16th digit to form an integer. For example,

if b = 0.1234567890123456789 then T (b) =

90,123,456. Finally the encrypted image is defined

by the equation:

C ¼ Pþ Ið Þ mod F ð23Þ

where F is the number of allowed intensity scales of

the plaintext image. For example, F = 256 for an 8-bit

gray scale image.

We write the 2D logistic substitution function as

follows:

S2D ¼ C ¼ EcrS2DðPÞ
P ¼ DcrS2DðL; PÞ

�
ð24Þ

-----------------------------------------------------------

Algorithm 3.2D Logistic permutation 

-----------------------------------------------------------
Require: 2D plaintext image P, row permutation matrix Ux 

and column permutation matrix Uy
Ensure:Ciphertext image C

for r = 1: M 
for c = 1: N 
Qr,c= , ,

\\ (Pixel permutation along x)
end 

end 
for r = 1: M 

for c = 1: N 
Cr,c= 

, ,
\\ (Pixel permutation along y)

end 
end 

-----------------------------------------------------------
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4 Simulation Results and Security Analysis

Our simulation is performed in a Windows 7 environ-

ment, Core2, processor 2.6 and 2 GB of RAM. The

images used can be downloaded from the database of

the USC-SIPI (http://sipi.usc.edu/database 21/09/

2013).

4.1 Key Space Analysis

The size of the key space characterizes the capability

of resisting brute-force attack. A short key means that

the best encryption algorithm can be broken by

exhaustive search (also known as brute-force attack)

in a reasonable amount of time, while the reverse is not

true. In the proposed algorithm, the initial secret keys

set K = 256 bit. Therefore, the key space is

2256 = 1.17 9 1077, so the key space is large enough

to resist all kinds of brute-force attacks.

4.2 Statistical Analysis

4.2.1 Histogram Analysis

An image histogram illustrates that how pixels in an

image are distributed by plotting the number of pixels

at each gray scale level. The distribution of cipher-text

is of much importance. More specifically, it should

hide the redundancy of plain-text and should not leak

any information about the plain-text or the relationship

between plain-text and cipher-text. Table 1 shows the

histograms of plain-images and its ciphered images

generated by the proposed scheme respectively. It’s

clear from that the histograms of the cipher-images are

fairly uniform and significantly different from that of

the plain image and hence do not provide any clue to

employ statistical attack.

4.2.2 Information Entropy Analysis

In information theory, entropy is the most significant

feature of disorder, or more precisely unpredictability.

To calculate the entropy H(X) of a source x, we have:

H Xð Þ ¼
Xn

i¼1

PrðxiÞ log2
1

PrðxiÞ
ð25Þ

where X denotes the test image, xi denotes the ith

possible value in X, and Pr xið Þ is the probability of

X = xi, that is, the probability of pulling a random

pixel in X and its value is xi. For a truly random source

emitting 2 N symbols, the entropy is H(X) = N.

therefore, for a ciphered image with 256 gray levels,

the entropy should ideally be H(X) = 8. If the output

of a cipher emits symbols with entropy less than 8,

there exists certain degree of predictability, which

threatens its security. The entropies for plain image

and ciphered images using various images are calcu-

lated in Table 2. Apparently, the proposed algorithm

is much closer to the ideal situation. This means that

information leakage in the encryption process is

negligible and the cryptosystem is secure against

entropy attack.

Table 3 shows the comparison of proposed algo-

rithm with existing algorithm. As compared to entropy

of encrypted images in Ref. [13, 36–39] resultant

-----------------------------------------------------------

Algorithm4.Encryption Algorithm C = Enc (P, K) 
-----------------------------------------------------------
Require: K a 256-bit key
Require: P is a 256x256 image block
Ensure: C is a 256x256 image block

(Q1 , Q2) = ( , 8 )

for n = 0: 1: 7 
if n == 0 

CLSP = LSBNoiseEmbedding = (P) 
Ln = GCL( 1 , 2 )
Dn = Ln(0 , 0)
CDC = EcrDC (Ln , CLSp, Dn)
Ifmod(n , 2) ≠ 0

CSCL = 8 ( , )

if not 
CSCL = 8 ( , )

CPCL = Ecrp (Ln , CSCL)
2

=
2
( )

2
=

2
(

2
)

end 
L8 = GCL( 1

8 , 2
8)

D8 = L8 (0 , 0)
C = EcrDC(L8 , 

2
, Dn)

LSBNoiseEmbedding could be any function introducing 
a random noise at the level of the least significant bit 
(LSB).
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Table 1 Resultant Encrypted Images and its histogram of proposed method

Input image Histogram Encrypted image Histogram

1. 2. 3. 4.

5. 6. 7. 8.

9. 10. 11. 12.

13. 14. 15. 16.

17. 18. 19. 20.

21. 22. 23. 24.
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entropy of our proposed method is more nearer to

entropy of random image.

4.2.3 Analysis of Correlation of Adjacent Pixels

There exists a high correlation between pixels of an

image which is called intrinsic feature. Thus, a secure

encryption scheme should remove it to improve

resistance against statistical analysis. To test the

correlation between two-adjacent pixels in plain-

image and cipher image, we randomly select 1000

pairs of two-adjacent pixels (in vertical, horizontal,

and diagonal direction) from plain-image and cipher-

image, and calculate the coefficient of each pair by

Eq. (26):

rxy ¼
covðx; yÞffiffiffiffiffiffiffiffiffiffi
DðxÞ

p ffiffiffiffiffiffiffiffiffiffi
DðyÞ

p ð26Þ

where

cov x; yð Þ ¼ 1

N

XN

i¼1

xi � E xð Þð Þ yi � E yð Þð Þ ð27Þ

D xð Þ ¼ 1

N

XN

i¼1

xi � E xð Þð Þ2 ð28Þ

E xð Þ ¼ 1

N

XN

i¼1

xi ð29Þ

where x and y are gray-scale values of two-adjacent

pixels in the image.

Table 4 shows the correlation coefficients of two

horizontally adjacent pixels, two vertically adjacent

pixels and two diagonally adjacent pixels in the plain

and the cipher-image. It is clear that the strong

correlation between adjacent pixels in plain image is

greatly reduced in the cipher image produced by the

proposed scheme, which is a private high-level

security.

Table 2 Entropy Input image Size Plain image

entropy

Encrypted image

entropy

Lena 512 9 512 7.445 7.9993

Peppers 512 9 512 7.593 7.9992

Plane 256 9 256 6.955 7.9993

Babon 512 9 512 7.358 7.9993

Elaine 512 9 512 7.506 7.9993

Table 3 Encrypted image entropy of proposed algorithm with existing algorithms

Image Proposed [36] [37] [38] [13] [39]

Lena 7.9993 7.9993 7.9990 7.9974 7.9971 7.9970

Babon 7.9993 7.9992 7.989 7.9993 7.9997 7.9969

Table 4 Correlation

coefficients of two adjacent

pixels in plain-image and

ciphered-images of

proposed method

Image Plain image Encrypted image

Horizontal Vertical Diagonal Horizontal Vertical Diagonal

Lena 0.971926 0.985028 0.959328 -0.000169 0.001153 -0.000989

Peppers 0.976772 0.979206 0.963936 0.001754 0.000818 0.002377

Plain 0.966316 0.964127 0.937024 0.000540 -0.000361 0.001619

Babon 0.866542 0.758734 0.726188 0.002181 0.001928 0.002138

Elaine 0.975653 0.973016 0.969246 0.000720 0.002119 0.000457
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Additionally, the correlation distribution of ‘‘Lena’’

and its ciphered image in each direction are plotted as

shown in Fig. 4. Figure 4a–c shows the correlation

distributions of the plain image, while Fig. 4d–f shows

the correlation distributions of the ciphered image. The

strong correlation between adjacent pixels of the plain

image is evident as all the dots are congregated along

the diagonal in Fig. 4a–c. However, in Fig. 4d–f, the

dots are scattered over the entire plane, which indicates

that the correlation is greatly reduced in the ciphered

Fig. 4 Correlations of two adjacent pixels for Lena image of

size 512 9 512 a horizontal direction of the plain image,

b horizontal direction of the cipher image, c vertical direction of

the plain image, d vertical direction of the cipher image,

e diagonal direction of the plain image, and f diagonal direction
of the cipher image
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image. Table 5 shows the comparisonwith the schemes

in Refs. [13, 36, 37, 39], the proposed scheme has

smaller values in horizontal and diagonal directions.

4.3 Sensitivity Analysis

A well-designed encryption algorithm should be

highly sensitive to plain-image and keys, so a slight

change in plain-image or keys will make the cipher-

image quite different. If an encryption scheme contains

no confusion or diffusion stage, it would easily be

destroyed by differential attacks. In order to confirm

whether the proposed encryption algorithm is sensitive

to plain image and keys, this paper brings out two

tests: Number of pixels change rate (NPCR) and

Unified average changing intensity (UACI) [40]. The

equation to calculate NPCR is Eq. (30):

NPCR ¼
P

i;j Dði; jÞ
M � N

� 100% ð30Þ

where, M stands for images width, N stands for images

height, C1(i, j) means the gray-scale value of cipher-

image in position (i, j), and C2(i, j) means the gray-

scale value of the new cipher-image which is the

encryption result of modified plain image that has just

one different pixel to the original plain-image and

where D(i, j) defined as follows:

D i; jð Þ ¼ 1 if C1ði; jÞ 6¼ C2ði; jÞ
0 if C1 i; jð Þ ¼ C2ði; jÞ

�
ð31Þ

UACI can be calculated by the equation Eq. (32):

UACI ¼ 1

M � N

X
i;j

C1 i; jð Þ � C2ði; jÞj j
255

� 100%

ð32Þ

When one bit of a pixels gray-scale value in the

plain image is changed, then a new plain image is

generated from the original one. Encrypt the two

images with the same secret keys, and then take cipher

images into Eqs. (30) and (32) and results are shown in

Table 6. From this results we can find that our

algorithm is very sensitive to tiny changes in the plain

image, even if there is only one bit difference between

two plain images, the decrypted images will be

completely different. Table 7 gives the comparison

of performance of UACI and NPCR when encrypting

the image of Lena with Ref. [13, 37–39].

4.3.1 Key Sensitivity Analysis

An ideal image encryption procedure should be

sensitive to the secret key in both encryption and

decryption processes. It means that a change in a

single bit of the secret key should produce a

completely different encrypted image. Simulation

results with respect to encryption and decryption

stages are shown in Figs. 5 and 6. The encryption keys

in our simulations are listed below in the HEX format:

Table 5 Comparison of the

correlation coefficients of

Lena

Horizontal Vertical Diagonal

Lena Original 0.9355 0.9592 0.9087

Encrypted image [36] 0.002016 -0.000916 0.001650

[37] 0.02046 0.01748 0.02317

[13] 0.005336 -0.0027616 0.0016621

[39] 0.0020 -0.0007 -0.0014

Proposed method -0.000169 0.001153 -0.000989

Table 6 NPCR and UACI

of proposed method
Image NPCR UACI

Lena 0.9979 0.3339

Peppers 0.9981 0.3332

Babon 0.9980 0.3337

Elaine 0.9979 0.3336

Table 7 Comparison results of the NPCR and UACI scores of

the Lena image

Image Methods NPCR (%) UACI (%)

Lena [37] 99.61 33.48

[38] 99.60 33.41

[13] 99.60 99.66

[39] 99.65 33.48

Proposed algorithm 99.79 33.39
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K1 = D9218FA02ED9AD9E1ED4FA1288EB2D

D3FFDCFDDB01D8F21FA2E4A79F2FE2E0F5

K2 = D9218FA12ED9AD9E1ED4FA1288EB2D

D3FFDCFDDB01D8F21FA2E4A79F2FE2E0F5

K3 = D9218FA02ED9AD9E1ED4FA1288EB2D

D3FFDCFDDB01D8F21FA2E4A79FAFE2E0F5

As can be seen, K1 differs K2 only for one bit,

K2 differs K3 only for one bit, and K1 differs K3

Fig. 5 Key sensitivity analysis at the encryption stage. a plaintext Lena, b Encrypted image by K1, c Encrypted image by K2,

d Encrypted image by K3, e Ciphertext difference (C1–C2) and f ciphertext difference (C1–C3)

Fig. 6 Key sensitivity analysis at the decryption stage. aDecrypted image by K1, bDecrypted image by K2, cDecrypted image by K3
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only for two bits. Although the hamming distances

between K1, K2 and K3 are very small, i.e. they are

very similar to each other, their corresponding

cipher text images C1, C2 and C3 have significant

differences. These can be verified by the fact that

their differences, i.e. |C1–C2|, |C1–C3|, are random-

like images as shown in Fig. 5. The example shows

the proposed algorithm is sensitive to the encryption

keys in the encryption stage.

Similar results can also be obtained in the decryp-

tion stage as shown in Fig. 6. We decrypt the same

cipher text image C1 using the encryption keys K1, K2

and K3, respectively. As can be seen, using the correct

encryption key K1, decrypted image D1 perfectly

reconstructs the original plaintext image. However,

decrypted images D2 and D3 using key K2 and K3 are

random-like ones which do not contain any informa-

tion related to the original plaintext image.

4.3.2 Noise Robustness Analysis

A good cipher should also be able to tolerate a certain

amount of noise, e.g. noise in a channel or decoding

errors. The proposed Latin square image cipher adopts

an asymmetric structure for encryption and decryp-

tion, and one noisy pixel in cipher image will only

propagate in a factor of two in each round. As shown in

Fig. 7 shows the integration of noise in the encrypted image with a different degree. a Encrypted image with noise n1 and its decrypted

image, b Encrypted image with noise n2 and its decrypted image
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Fig. 7 we find that in both cases, the decrypted image

is still visible.

5 Conclusion

An appropriate image encryption system must be able

to withstand all types of known attacks and cryptanal-

ysis, and its performancemust be independent whether

from the encryption key or from the encrypted image

itself. In addition, this system must have good

properties of confusion and diffusion. Our system

meets all of these criteria with the various stages

that constitute it and has distinctive characteristics.

The proposed algorithm is purely defined in inte-

gers, and thus it can be easily implemented in

software and hardware without causing finite precision

or discretization problems, the proposed algorithm

constructs all encryption primitives based on one key

generator, including cyclic shift, substitution and

permutation, and thus the proposed method attains

high sensitivities to any key change. The proposed

algorithm arranges all encryption primitives in the

framework of substitution–permutation network, and

thus it attains good confusion and diffusion properties.

The proposed method also integrates probabilistic

encryption allowing to encrypt one plaintext image

into different ciphertext images with one encryption

key and the decryption stage is robust against a certain

level of errors.

Security analysis including statistical attack analy-

sis and differential attack analysis are performed

numerically and visually. All the experimental results

show that the proposed encryption scheme is secure

thanks to its large key space, its high sensitivity to the

cipher keys and plain-images. The results show that the

proposed scheme leads to a higher security level in

terms of NPCR, UACI and entropy of the cipher-

images.
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