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Abstract In this paper, we present a new method for

multi-view 3D reconstruction based on the use of a

binocular stereo vision system constituted of two

unattached cameras to initialize the reconstruction

process. Afterwards, the second camera of stereo

vision system (characterized by varying parameters)

moves to capture more images at different times

which are used to obtain an almost complete 3D

reconstruction. The first two projection matrices are

estimated by using a 3D pattern with known proper-

ties. After that, 3D scene points are recovered by

triangulation of the matched interest points between

these two images. The proposed approach is incre-

mental. At each insertion of a new image, the camera

projection matrix is estimated using the 3D informa-

tion already calculated and new 3D points are

recovered by triangulation from the result of the

matching of interest points between the inserted

image and the previous image. For the refinement of

the new projection matrix and the new 3D points, a

local bundle adjustment is performed. At first, all

projection matrices are estimated, the matches be-

tween consecutive images are detected and Euclidean

sparse 3D reconstruction is obtained. So, to increase

the number of matches and have a more dense

reconstruction, the Match propagation algorithm,

more suitable for interesting movement of the camera,

was applied on the pairs of consecutive images. The

experimental results show the power and robustness

of the proposed approach.

Keywords Multi-view 3D reconstruction �
Incremental approach � Local bundle adjustment �
Sparse 3D reconstruction � Dense 3D reconstruction

1 Introduction

3D reconstruction from images is important and

widely studied in computer vision field, it has many

applications: robotics, monitoring, measurement,

quality control, virtual reality and others.
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Several approaches provide a solution to this

problem. They can be divided into two major

categories: active approaches [26, 27] and passive

approaches [4–11]. Active approaches use the laser or

a structured light to find the three-dimensional coor-

dinates. On the other side, passive approaches use only

the 2D images taken by one or more cameras for three-

dimensional reconstruction of the captured scene.

In this work, we are interested in the passive

approaches that make 3D reconstruction from a set of

images taken from different viewpoints. But, to recover

the depth and render the scene in 3D. The intrinsic and

extrinsic camera parameters must be recovered, either

by a known pattern (calibration) [1] or from images

without any a priori recognition about the scene (self-

calibration) [2]. After camera parameters estimation, the

three-dimensional geometry of the object (or scene) can

be recovered by solving the matching problem between

the images [4–7, 11] which is to find projections of the

same 3D scene points in images. From these matches

and camera parameters, the 3D coordinates of the scene

points are estimated by triangulation. Currently, there

are approaches based on the stereo vision that allow,

from a sequence of calibrated stereo images, to obtain

dense 3D models with high accuracy [23]. Also, there

are other approaches called volumetric [9] which are

based on a discretization of space into basic elements

called voxels. Starting from a volume containing the

initial object (or the scene) discretized into voxels. The

treatment is to remove the voxels not complying with

certain criteria, to finally find a volume representation of

the object or scene (remaining voxels). The structure

from motion approach [13, 14, 21, 22] allows you to

automatically recover, both the 3D scene structure and

the camera positions. It is based on the detection and

matching of interest points between different images.

In this paper, we proposed an incremental approach

for multi-view 3D reconstruction based on the use of a

binocular stereo vision system, consisting of two

unattached cameras, for reliable initialization of the

reconstruction process. Afterwards, to have an almost

complete 3D reconstruction, the second camera of

stereo vision system moves around the object or scene to

capture more images (Fig. 1). The first two projection

matrices are well estimated using a 3D pattern with

known properties. The matching of interest points,

detected by Harris [12], is made by the NCC correlation

[28] and the coordinates of 3D points are recovered by

triangulation from the obtained matches and projection

matrices. At each insertion of a new image, the camera

projection matrix is estimated by the use of the 3D

information recovered previously. The camera projec-

tion matrix Pk for the image Ik (k C 3) is estimated from

N points (N C 6) of 3D points already recovered (by

triangulation of interest points matched between Ik-2

and Ik-1) and their projections localized in the image Ik.

After that, the new 3D points are recovered from interest

points detected and matched between the current image

Ik and the previous image Ik-1. For the refinement of the

estimated projection matrix and the new 3D points, a

local bundle adjustment is performed. After insertion of

the last image, we have all projection matrices and a

sparse 3D reconstruction of the all interest points

matched between consecutive images.

The estimation of a limited number of 3D coordi-

nates of the points is insufficient to define the shape of

the object (or scene). So, to increase the number of

reconstructed points and have a more dense 3D

reconstruction, the Match Propagation algorithm

is used [3]. Starting from the points already matched

(seeds) between consecutive images and searching in

the vicinity of the new matches.

The proposed method has many advantages: the use

of a binocular stereo vision system consisting of two

unattached cameras offers more flexibility to proper-

ly choose the distance between the two cameras

(baseline), a fact that offers more robustness for 3D

reconstruction of objects or scenes of different sizes

(small, medium and large). The effective initialization

of the reconstruction system by the use of a binocular

stereo vision system and the local bundle adjustment

after the insertion of a new image allowed an

Fig. 1 Multi-view 3D reconstruction system used. The first two

images {I1, I2} are taken by a system of binocular stereovision

(two unattached cameras). After, the second camera moves to

capture the other images
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automatic and reliable estimation of the camera

projection matrices for the other images and to have

an Euclidean 3D reconstruction without passing by a

projective 3D reconstruction as in the 3D reconstruc-

tion methods from uncalibrated images based on

structure from motion approach. In addition, it

allowed to have satisfying results (3D models) by

avoiding a bad initialization of the reconstruction

process. The estimation of the camera projection

matrix for each inserted image is made by a linear

system resolution. The obtained solution can be

refined by minimizing a nonlinear criterion. As

opposed to other methods based on the self-calibration

that require the formulation of nonlinear equations that

require more time to be solved.

This paper is organized as follows. The Sect. 2

presents related works. The Sect. 3 describes the

notations used. In the Sect. 4, the presentation and

description of the proposed method. Experimentation

and comparison of the proposed method with other

methods is presented in Sect. 5. Finally, the conclusion

is presented in the Sect. 6.

2 Related Work

The methods of 3D reconstruction from images taken

from different viewpoints by one or many cameras can

be classified as follows: methods that use calibrated

images and other methods that start from uncalibrated

images to automatically find the camera parameters and

make the 3D reconstruction of the scene at the same time.

The methods based on the stereo vision take in

input stereo calibrated images and allow a dense

reconstruction of the object or the scene. Da and Sui

[15] have proposed a method based on binocular

stereo vision (using only two images) for dense 3D

reconstruction of face. First, they began with the

calibration and rectification of two images. Then, the

matching is performed in two steps: the sparse

matching of interest points detected by Harris [12]

and dense matching by using piecewise dynamic

programming. Finally, the 3D information is recov-

ered by triangulation. However, to increase the

reconstructed area and have complete 3D models,

the reconstruction process needs more than two

images, this is called multi-view stereo. Furukawa

and Ponce [6] have proposed a new method for multi-

view stereo. It’s based on the reconstruction of a set of

oriented points (patches) covering the surface of the

object or the scene. So, they began with the matching

based on the epipolar constraint between key points

detected by the DoG and Harris operators. After that,

for each pair of matched points they constructed a

patch candidate defined by the center, the normal and

the reference image. For the elimination of false

matches, they used the visibility constraints. They also

proposed simple methods to transform the resulting

patch model into a polygonal mesh which can finally

be refined by application of the photometric consis-

tency and regularization constraints. Other methods

are based on the depth map estimation. Goesele et al.

[10] proposed an algorithm to solve the problem of

multi-view stereo, it consists in a first step to

reconstruct a depth map for each input view by the

use of window-matching with a small number of

neighboring views which allows to have good match-

es. The second step is to merge the resulting depth

maps into a mesh model using a volumetric approach.

Yuan and Lu [25] presented an incremental method to

solve the problem of multi-view stereo using Bayesian

learning. First, they reconstructed an initial 3D model,

from uniformly distributed key images on a view

sphere. Then, when a new calibrated image is inserted,

the initial 3D model is updated automatically by the

use of Bayesian learning with the photometric consis-

tency and geometric constraints. Mouragnon et al. [21]

presented a real-time method for estimating the

motion of a calibrated camera and the 3D structure

from video, it is applied both for the perspective

camera model and the generic camera model. The

proposed method is based on local bundle adjustment

to refine the positions of the camera and the 3D points.

Other methods called volumetric start from an initial

volume, containing the object, discretized into basic

elements called voxels and uses the 2D information to

restore the shape of the object. The treatment is to keep

only the voxels representing the object and eliminate

other. The voxel coloring method [17], generalized

voxel coloring [18] and space carving [19] are

volumetric methods, which depart from a bounding

volume discretized into voxels and use the photo-

consistency test and visibility constraint for volumet-

ric 3D reconstruction. Slabaugh et al. [16] presented

improvements to calculate the visibility and photo-

consistency for volumetric 3D reconstruction from

calibrated images taken by multiple cameras placed at

arbitrary viewpoints. Mulayim et al. [20] presented a
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complete system of 3D reconstruction of real objects

in a controlled environment (turn-table). It is based on

the multi-image calibration, the use of silhouettes

image, photo-consistency and visibility of voxels to

finally have the textured 3D models.

All methods already cited are based on the calibra-

tion or the use of already calibrated images. Some-

times it is necessary to completely automate the 3D

reconstruction process. In this case, there is a need to

cameras’ self-calibration.

Pollefeys et al. [13] presented a complete system of

3D reconstruction from uncalibrated image taken with

a hand-held camera. It is based on the structure from

motion approach. First, they started by the detection

and matching of interest points between images to

calculate the relationship between the different views

and recover the projective structure of the scene and

camera motion. After, to have an affine structure, they

have passed through a phase of the camera self-

calibration. Finally, a multi-view stereo matching

algorithm is used to obtain a dense 3D reconstruction.

In [14], they presented a method based on perspective

factorization and self-calibration for recovering the

Euclidean 3D structure and camera motion from video

sequence. They proposed to initialize the projective

depths via a projective structure reconstructed from

two views with large camera movement, which is very

useful during the optimization phase (the solution

converges rapidly). To recover the Euclidean struc-

ture, they proposed a self-calibration method based on

Kruppa constraint. Lhuillier and Quan [5] proposed a

method of quasi-dense reconstruction from uncalibrat-

ed images, this approach is based on the use of match

propagation [3] to have the quasi-dense matching and

then the robust and accurate geometry estimation and

have a more adequate surface representation.

Each method cited above has its advantages and

disadvantages. First, we begin with the first class of

methods. Methods of reconstruction based on bino-

cular stereo vision [15] used to obtain reliable results

because of a priori knowledge of the stereo camera

pair configuration which facilitates the calibration and

matching between images. But from two images only,

one cannot have a complete reconstruction. Currently,

there are so-called stereo multi-view methods (MVS)

[6, 10, 25] that allow to have accurate results from a set

of calibrated stereo images. The volumetric methods

[16–20] require knowledge of a ‘bounding box’.

Incremental 3D reconstruction methods [21, 25] are

fast and allow to have satisfactory results after the

refinement of result of initial 3D reconstruction.

However, this class of methods requires the use of

calibrated stereo images. The second class of methods

[5, 13, 14] start from uncalibrated images for find both

the projective 3D structure and the camera motion and

requires a self-calibration phase to recover 3D affine

structure. But, this class of methods allows to have 3D

reconstruction results up to a scale factor and self-

calibration problem often requires to impose con-

straints on the camera parameters.

3 Notation and Background

In this work, the pinhole camera model is used. A

scene point Mj ¼ ðXj; Yj; Zj; 1ÞT is projected onto the

image plane at a point mij ¼ ðuij; vij; 1ÞT . This projec-

tion is represented by the following formula:

kijmij ¼ PiMj

With: kij is a nonzero scale factor and Pi is the

perspective projection matrix.

The following notations are used:

Ik is the kth image.

Pk ¼ ðpk
xyÞ

y¼1::4
x¼1::3 is the camera projection matrix

corresponding to the image Ik.

Ai;j ¼ fðmik;mjkÞ=k ¼ 1; . . .; ni;jg is the set of pairs

of interest points matched between the images Ii and Ij,

with ni,j is the number of matches.

A
j
i ¼ fmik ¼ ðuik; vikÞ=k ¼ 1; . . .; ni;jg is the set of

interest points in the image Ii matched with interest

points in the image Ij.

Sk;kþ1 is the set of 3D points obtained by triangu-

lation from the set of matches Ak;kþ1 and the projection

matrices Pk and Pk?1.

4 Proposed Method

The proposed method is based on the reliable initializa-

tion of 3D reconstruction process by using a binocular

stereo vision system (two unattached cameras properly

installed) that allows to avoid any bad initialization so as

not to affect the 3D reconstruction result as in the case of

the 3D reconstruction system from uncalibrated images

based on structure from motion approach [13] and allows

also to offer more flexibility to the 3D reconstruction of
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objects or scenes of various sizes by the suitable choice

of the distance between the two cameras (baseline). The

major drawback of the binocular stereo vision is that the

reconstructed area is limited because of the use of two

images only. To avoid it, new images are captured

around the object or scene by the second camera

(characterized by varying parameters) at different mo-

ments and gradually inserted to get an almost complete

3D reconstruction (it is easier to move a single camera

than the displacement of binocular stereo vision system

because the two cameras are unattached).

Our approach for 3D reconstruction is performed in

four essential steps outlined below:

1. The use of a binocular stereo vision system for

reliable initialization of the 3D reconstruction

process (the reliable estimation of the coordinates

of 3D points that correspond to interest points

matched between the first two stereo images).

2. Automatic estimation of the camera projection

matrix Pk (k C 3) after the insertion of the image Ik

and 3D reconstruction of interest points matched

between the images Ik-1 and Ik (the set Sk�1;k).

3. Refinement of the camera projection matrix Pk

and coordinates of new reconstructed 3D points

(the set Sk�1;k).

4. Matching and dense 3D reconstruction by fusion

of results obtained (after the application of the

match propagation algorithm [3]) between con-

secutive images pairs.

The step 2 and the step 3 are repeated for each new

inserted image Ik (3� k� n, n is the total number of

images).

The diagram presented in the Fig. 2 describes the

enchainment of our approach.

In this work, interest points are detected by Harris

algorithm [12]. The normalized cross-correlation

(NCC) [28] was used for the matching of these points

between consecutive images.

For an interest point of the image Ik, its corre-

spondent in the image Ik?1 (if it exists) is the interest

point of maximum NCC value and greater than a

threshold. The matches obtained are not all correct,

RANSAC algorithm [24] was used to eliminate false

matches.

4.1 Initialization

Our 3D reconstruction approach requires an essential

initialization phase which can be realized by the

following five steps:

1. Installation and calibration of our binocular stereo

vision system using a 3D pattern with known

properties (Fig. 3).

Let P1 and P2 be the projection matrices of the

two cameras.

2. Acquisition of two images, I1 and I2.

3. Detection of interest points with Harris algorithm

[12] and matching of these points by the NCC [28]

and epipolar constraint [11]. Let A1;2 be the set of

obtained matches, A1;2 can be decomposed as

follows:

A1;2 ¼ A2
1 � A1

2 ð1Þ

4. Sparse 3D reconstruction by triangulation from

the obtained matches and the projection matrices.

Let S1;2 ¼ fMj ¼ ðXj; Yj; ZjÞT=j ¼ 1; . . .; n1;2g be

the set of 3D points obtained by triangulation from

pairs of matched points ðm1j;m2jÞ 2 A1;2 (n1;2 is

the number of matches).

The coordinates of the 3D point Mj are calculated

by the following system of equations:

~m1j�P1
~Mj

~m2j�P2
~Mj

�
ð2Þ

In developing these equations, we obtain a system

form:

A ~Mj ¼ 0 ð3Þ

With:

A ¼

p1
11�p1

31u1j p1
12�p1

32u1j

p1
21�p1

31v1j p1
22�p1

32v1j

p1
13�p1

33u1j

p1
23�p1

33v1j

p1
14�p1

34u1j

p1
24�p1

34v1j

p2
11�p2

31u2j p2
12�p2

32u2j p2
13�p2

33u2j p2
14�p2

34u2j

p2
21�p2

31v2j p2
22�p2

32v2j p2
23�p2

33v2j p2
24�p2

34v2j

0
BB@

1
CCA ð4Þ
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The coordinates (Xj, Yj, Zj) of the point Mj are

obtained by a singular value decomposition

(SVD) of the matrix A.

5. Refinement of the coordinates of 3D points by

minimizing the criterion (5) by the Levenberg–

Marquard algorithm [29]:

CðfMjgn1;2

j¼1Þ ¼
X2

i¼1

Xn1;2

j¼1

mij � uðPi;MjÞ
�� ��2 ð5Þ

n1;2 is the number of matches (this is also the

number of reconstructed 3D points).

Fig. 2 Descriptive Scheme

of the proposed approach
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uðPi;MjÞ is the projection of the point Mj in the

image Ii.

4.2 Insertion of a New Image

The second camera of the stereo vision system,

characterized by varying parameters, moves around

the object or scene to capture more images fIkg3� k� n

at different times. For each new inserted image Ik, the

estimation of the camera projection matrix and the

new 3D points is performed by the following steps:

1. Detection of interest points of the inserted image

Ik (k C 3).

2. Matching of interest points between the inserted

image Ik and the previous image Ik-1 (already

inserted). Let Ak�1;k be the set of obtained

matches. Ak�1;k can be decomposed as follows:

Ak�1;k ¼ Ak
k�1 � Ak�1

k : ð6Þ

3. Localization of the projections of 3D points Mj 2
Sk�2;k�1 in the image Ik (use of matches between

the images Ik-1 and Ik) (see Figs. 4, 5).

Let Bk�1 denote the set of interest points of the

image Ik-1 matched with the interest points of the

image Ik-2 as well as with the interest points of the

image Ik. This set can be expressed by the

following formula:

Bk�1 ¼ Ak�2
k�1\Ak

k�1 ¼ fbk�1
1 ;bk�1

2 ; . . .;bk�1
mk�1
g ð7Þ

Such as: dimðBk�1Þ¼mk�1�minðnk�2;k�1; nk�1;kÞ.
And denote by:

S
0

k�2;k�1 ¼ fNk�1
i ¼ ðXk�1

i ; Yk�1
i ; Zk�1

i ÞT=i

¼ 1; . . .;mk�1g ð8Þ

The set of 3D points, with bk�1
i 2 Bk�1 is the

projection of Nk�1
i in the image Ik-1

(S
0
k�2;k�1CSk�2;k�1).

And:

Ek ¼ fek
1; e

k
2; . . .; ek

mk�1
gCAk�1

k ð9Þ

The set of the points in the image Ik that

corresponds to the set of points Bk-1.

Then, the points ek
i 2 Ek are projections of points

Nk�1
i 2 S

0
k�2;k�1 in the image Ik, with:

dimðEkÞ ¼ dimðBk�1Þ ¼ dimðS0k�2;k�1Þ ¼ mk�1

4. Estimation of the camera projection matrix Pk

ðk� 3Þ.
The initial projection matrix will be estimated

from N points ðN� 6Þ selected from the set of

points Ek (the choice is based on the correlation

score NCC and the distribution of points in the

image) and their corresponding 3D points of the

set S
0
k�2;k�1.

For an image point ek
j 2 Ek and their correspond-

ing 3D point Nk�1
j 2 S0k�2;k�1. The formula of

perspective projection is represented by:

l~ek
j ¼ Pk

~Nk�1
j ð10Þ

With: ~ek
j ¼ ðuj; vj; 1ÞT and ~Nk�1

j ¼ ðXj; Yj; Zj; 1ÞT .

l is a nonzero scale factor.

By developing the Eq. (10) and by replacing the

nonzero scale factor, we find:

Fig. 3 3D pattern used for the calibration of our binocular

stereo vision system

Fig. 4 Localization of the projections of 3D points Mj 2
Sk�2;k�1 in the image Ik (mk1 is the projection of M1 localized in

Ik by matching between Ik-1 and Ik. On the other hand, M2 has

not been located)
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Then, to determine the coefficients of the projec-

tion matrix. The linear system (11) needs to be

solved.

AQk ¼ 0 ð11Þ

With: Qk ¼ ðpk
11; . . .; pk

34Þ
T

and.

N is the number of points used for the initial

estimation of the projection matrix (N� 6).

The coefficients of the matrix Pk are obtained by a

SVD of the matrix A.

5. Estimation of new 3D points (Sk�1;k) by triangu-

lation of the matched points between Ik-1 and Ik

(Ak�1;k).

4.3 Local Bundle Adjustment

At each insertion of a new image Ik, the elements of the

projection matrix Pk and new reconstructed 3D points

(Mj 2 Sk�1;k) are refined. The refinement is performed

by a local bundle adjustment, faster approach than the

global bundle adjustment, the last three images Ik-2,

Ik-1 and Ik were used (the 3D points reconstructed

from the images Ik-2 and Ik-1 and the projection

matrices Pk-2 and Pk-1 are already estimated and

refined, and they will be used in this step to refine the

estimated entities). Then the criterion (12) can be

minimized by the Levenberg-Marquard algorithm

[29]:

CðPk;fMjgnk�1;k

j¼1 Þ ¼
Xk

i¼k�2

Xnk�1;k

j¼1

mij�uðPi;MjÞ
�� ��2 ð12Þ

With: Mj 2 Sk�1;k, nk�1;k = dim (Sk�1;k) = dim

(Ak�1;k),

mij is the jth point in the image Ii.

uðPi;MjÞ is the projection of the point Mj in the

image Ii.

4.4 Matching and Quasi-Dense 3D

Reconstruction

The result of the sparse 3D reconstruction of all interest

points matched between consecutive images Ik-1 and

Ik (S ¼ [n
k¼2Sk�1;k) is insufficient to define the shape of

the object or the scene. To increase the number of

matches and then the number of reconstructed 3D

points, we used the match propagation method [3] that

is more suitable for interesting movement of the

camera and also more practical for unrectified images.

This method takes as input, for two consecutive

images Ik-1 and Ik, the set of initial matches Ak�1;k

(seeds). The treatment consists to seek in each time a

new matches in the vicinity of the others.

5 Experiments

In all these experiments, the two first images of the

sequence are taken by a pair of unattached stereo

cameras. The other images are taken by the second

camera of the stereo vision system, characterized by

varying parameters that make displacements around

the object or scene, of angles between ten and twenty

degrees, in order to have an almost complete tridi-

mensional reconstruction.

Xjp
k
11 þ Yjp

k
12 þ Zjp

k
13 þ pk

14 � ujXjp
k
31 � ujYjp

k
32 � ujZjp

k
33 ¼ ujp

k
34

Xjp
k
21 þ Yjp

k
22 þ Zjp

k
23 þ pk

24 � vjXjp
k
31 � vjYjp

k
32 � vjZjp

k
33 ¼ vjp

k
34

�

A ¼

X1 Y1 Z1 1 0 0 0 0 �u1X1 �u1Y1 �u1Z1 �u1

0 0 0 0 X1 Y1 Z1 1 �v1X1 �v1Y1 �v1Z1 �v1

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
.

XN YN ZN 1 0 0 0 0 �uNXN �uNYN �uNZN �uN

0 0 0 0 XN YN ZN 1 �vNXN �vNYN �vNZN �vN

0
BBBBB@

1
CCCCCA
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The different algorithms have been implemented in

Java under Eclipse. JAMA Library has been used for

matrix computations and Java 3D API for 3D

visualization.

5.1 Simulations

A sequence of fourteen images (our approach is

operational for n� 2 images, when n = 2 we talk

about a binocular stereo vision system) of a 3D box

(Fig. 6) of dimension 34 9 34 9 44 cm with 57

squares (every square is of dimension 6 9 6 cm) that

is to say 57 9 4 = 228 corners, have been taken from

different viewpoints.

The real 3D coordinates of corners in a well-chosen

landmarks (Fig. 6) are stocked in a text file.

The proposed method has been used for 3D

reconstruction of all corners matched between the

consecutive images in the same landmarks. We began

with the 3D reconstruction of the matched corners

(detected by Harris algorithm [12] ) between the first

two stereo image (for the calibration, a classic method

[11] based on knowledge of 3D points and their

projection in the image was used). Then, each

Fig. 5 Steps of the localization of the projections of 3D points

Mj 2 Sk�2;k�1 in the image Ik : a Matching between the images

Ik-2 and Ik-1. b Set of 3D points Sk�2;k�1 estimated by

triangulation from the obtained matches between the images Ik-2

and Ik-1. c Matching between the imagess Ik-1 and Ik. d
projection of points of Sk�2;k�1 localized in the image Ik. e The

Set of 3D points obtained Sk�1;k (in blue color) after the

estimation of the projection matrix Pk. (Color figure online)
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insertion of a new image, the projection matrix is

initially estimated by the use of the 3D information

already calculated and new 3D points are recovered by

triangulation from the result of the matching of interest

points (corners) between the inserted image and the

previous image. The refinement of the new projection

matrix and the new 3D points is performed by a local

bundle adjustment [21, 22]. The obtained results are

compared with those obtained by the approach of

Pollefeys [13] and Fitzgibbon [30], which are methods

that allow to recover the 3D structure from a sequence

of uncalibrated images.

The Fig. 7 presents 3D root mean square (RMS)

error defined by the formula (13) as a function the

number of images. The value of the error�RMS	 is

small and almost stable even if with the increase of the

image number a fact that shows the precision of the 3D

structure estimation by our incremental 3D recon-

struction method. The obtained results indicate also

the power of the proposed method compared with the

two other methods. The reliability of the obtained

results is justified by the good initialization of the 3D

reconstruction process based on the use of a binocular

stereo vision system and the refinement of new entities

estimated by the local bundle adjustment during the

insertion of a new image to avoid as much as possible,

the error accumulation.

The 3D RMS error is defined by:

RMS3D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1
Mi �Mc

ik k2

r
ð13Þ

n is the number of reconstructed 3D points.

Mi ¼ ðXi; Yi; ZiÞ is the 3D point of known

coordinates.

Mc
i ¼ ðXc

i ; Y
c
i ; Z

c
i Þ is the reconstructed 3D point.

Figure 8 shows the rapidity of the proposed ap-

proach compared with the methods of Pollefeys [13]

and Fitzgibbon [30]. Our method is based on a series of

local bundle adjustment. On the other hand, the two

other methods are based on a global bundle adjustment,

which requires the optimization of a large number of

parameters, particularly with the increased number of

images used, and then requires more computing time.

To test the accuracy and the robustness of the

proposed method in presence of noise. A Gaussian

noise has been added to all images pixels. The Fig. 9

shows the quality of 3D reconstruction, presented by

the 3D RMS error defined by the formula (13), in terms

of the Gaussian noise value that varies between 0 and

3. The 3D error value increases with increasing of

Gaussian noise. However, for our method the error

remains weak if compared to other methods, a fact that

shows the robustness of the proposed approach,

because of the reliable initialization by the binocular

stereo vision system that offers more reliability,

especially during the matching step. In addition, at

each insertion of a new image, the local bundle

adjustment reduces the noise’s influence. On the otherFig. 7 3D RMS error corresponding to the number of images

Fig. 8 Execution time corresponding to the number of images

Fig. 6 3D box used to test the performance of the proposed

method
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side, the two other methods are more sensitive to noise

(they use uncalibrated images taken by a moving

camera and global bundle adjustment).

5.2 Real Data

To test and validate the robustness of our approach,

four real image sequences of chosen objects of differ-

ent natures are used. The first, a sequence of eighteen

images of resolution 640 9 480 of an object of

complex shape. The second, a sequence of ten images

of resolution 800 9 600 of face. The third is a

sequence of eight images of resolution 960 9 1280

of a traditional door and the last is a sequence of seven

images of resolution 960 9 1280 of a house.

Table 1 shows the result of sparse 3D reconstruc-

tion of the different image sequences. The small value

of the reprojection error defined by the formula (14)

shows the accuracy of the proposed approach. Which

confirms the results of the simulation.

Table 2 and Fig. 11 show the progression of the

sparse 3D reconstruction of the different sequences of

images. The number of reconstructed 3D points

increases with increasing of the images (at each

insertion of a new image, new 3D points are recon-

structed). The value of the reprojection error also

increases but it remains low because of the use of the

local bundle adjustment between the last triplets of

images, after each insertion of a new image, to

maintain the reliability of the system.

The reprojection error is defined by:

e ¼ 1

mn

Xm

i¼1

Xn

j¼1

eijkmij � uðPi;MjÞk2 ð14Þ

With:

eij is a binary visibility factor.

m is the number of images.

n is the number of 3D points.

Pi is the camera projection matrix for the image Ii.

Mj is the jth reconstructed 3D point.

mij is the jth point in the image Ii.

uðPi;MjÞ: the projection of the 3D point Mj in

image Ii.

Table 1 Results of sparse 3D reconstruction of different im-

age sequence

Number of

reconstructed

points

Reprojection

error

Sequence 1 1013 0.097

Sequence 2 415 0.087

Sequence 3 1087 0.085

Sequence 4 805 0.095

Table 2 Progression of the sparse 3D reconstruction of the

different sequences of images

Number of

images

Number of

reconstructed

points

Reprojection

error

Sequence 1

4 351 0.05

8 587 0.07

12 823 0.08

18 1013 0.097

Sequence 2

3 89 0.054

6 221 0.067

8 332 0.079

10 415 0.087

Sequence 3

2 412 0.056

4 689 0.068

6 913 0.076

8 1087 0.085

Sequence 4

2 245 0.053

4 493 0.073

6 710 0.091

7 805 0.095

Fig. 9 3D RMS error corresponding to Gaussian noises
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5.2.1 Real Sequence 1

In this first experiment we used a sequence of

eighteen images of an object of complex shape, the

two first are taken by the binocular stereo vision

system and the others are captured by the second

camera which undergoes displacements of about

twenty degrees to capture every time a new image

and finally make a complete turn around the object,

in order to obtain an almost complete 3D recon-

struction. Three images of the sequence are pre-

sented in Fig. 10. The matching of points of interest

(detected by Harris) by NCC correlation measure is

presented in the Fig. 10b (the elimination of false

matches is made by the RANSAC algorithm [24]).

The result of sparse 3D reconstruction of interest

points matched between consecutive images

(S ¼ [n
k¼2 Sk�1;k) is presented in Fig. 10c.

After the estimation of all projection matrices and

the recovery of the matching results of interest points

between consecutive images. The match propagation

method [3] was applied to increase the density of

matches. The result of the execution of this algorithm

for a couple of consecutive images is presented in

Fig. 10d. From 139 initial matches (seeds) 144,822

matches are detected.

Fig. 10 a Four images of the sequence. b Interest points matching. c Sparse 3D reconstruction result.d Matching result after the

application of the match propagation method. e Four views of the obtained 3D model
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The complete 3D model is obtained by the fusion of

3D reconstruction results between the consecutive

images. The Fig. 10e presents four views of the 3D

model obtained.

Visually, the result of the reconstruction presented in

Fig. 10e shows the quality and high-density of the

reconstructed 3D points, a fact that shows the power of

the proposed approach for 3D reconstruction of objects

from a small number of images taken from suitable

viewpoints. The use of match propagation algorithm for

all couples of consecutive images (calibrated images),

allowed us to increase the density of matches (to avoid

the false matches, epipolar constraint was used). The

fusion of 3D reconstruction results between pairs of

consecutive images allowed us to have dense 3D models.

The Fig. 12 shows the progression of dense 3D

reconstruction of the different image sequences.

Table 3 presents the result of dense 3D reconstruction

of the different image sequences. The small value of

the reconstruction error shows the quality of obtained

reconstruction by the proposed approach (the match

propagation algorithm is applied to reliable initial

matches and the use of epipolar geometry). The big

number of reconstructed points indicates the high

density of obtained 3D models (because of the use of

match propagation algorithm and the fusion of results

between pairs of consecutive images).

5.2.2 Real Sequence 2

In this second experiment, the power of our approach

is tested for 3D face reconstruction. A problem that

attracts a lot of interest in itself.

A sequence of ten images taken from suitable

viewpoints was used. Four images of the sequence are

presented in Fig. 13a. The matching of interest points

(detected by Harris) by NCC correlation measure is

presented in Fig. 13b. For the elimination of false

matches, RANSAC algorithm [24] is used. The result

of sparse 3D reconstruction of interest points matched

between consecutive images is presented in Fig. 13c.

The quasi-dense matching result obtained by Match

propagation method is presented in Fig. 13d.

Figure 13e presents four views of the 3D reconstruc-

tion result.

To make the 3D reconstruction and/or the 3D face

recognition, many works are based on the use of a

binocular stereo vision system [15, 31]. However, as it

is indicated in the Fig. 14, the 3D reconstruction result

from two stereo images presents multiple areas not

reconstructed (the presence of a lot of holes) because

of occlusions. The proposed method doesn’t use a

binocular stereo vision system unless to initialize the

Fig. 11 Progression of sparse 3D reconstruction depending on

the number of images for the four sequences

Table 3 Results of dense 3D reconstruction of different se-

quence after the application of the match propagation method

and the fusion between different results

Resolution Number of

reconstructed

points

Reprojection

error

Sequence 1

640 9 480 512,087 0.41

Sequence 2

800 9 600 426,123 0.63

Sequence 3

960 9 1280 1,172,822 0.57

Sequence 4

960 9 1280 755,468 0.73

Fig. 12 Progression of dense 3D reconstruction depending on

the number of images for the four sequences
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3D reconstruction process and gradually reconstruct

new areas from other images captured from suitable

viewpoints in order to obtain an almost complete 3D

reconstruction results. The Fig. 13e shows the ob-

tained reconstruction result by our approach.

5.2.3 Real Sequence 3

In this third experiment, we would like to make the

reconstruction of all the captured part of a medium-

sized scene. A sequence of eight images of a

traditional door taken from suitable viewpoints has

been used. Four images of this sequence are

presented in the Fig. 15a. The matching of interest

points (detected by Harris) by NCC correlation

measure is presented in the Fig. 15b (the elimination

of false matches is made by RANSAC algorithm).

The sparse reconstruction result is presented in the

Fig. 15c. To get a dense 3D reconstruction, the

match propagation method is applied to the con-

secutive image pairs, an example is presented in the

Fig. 15d. In the Fig. 15e, three views of obtained

3D model after the fusion of the obtained results

between consecutive images.

5.2.4 Real Sequence 4

In this forth experiment, we would like to make the

reconstruction of large-sized scene. A sequence of

seven images of a house taken from suitable view-

points has been used. Four images of this sequence are

presented in the Fig. 16a. The sparse matching of

interest points is presented in the Fig. 16b. The sparse

3D reconstruction result is presented in the Fig. 16c.

The quasi-dense matching result obtained after apply-

ing the match propagation method is presented in the

Fig. 16d. In the Fig. 16e, three views of obtained 3D

Fig. 13 a Four images of the sequence. b Example of interest points matching. c Result of sparse 3D reconstruction. d Matching result

after applying the match propagation method. e Three views of the obtained 3D model

Fig. 14 Two views of the results of the 3D reconstruction by

using a binocular stereovision system
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Fig. 15 a Four images of the sequence. b Example of interest points matching. c Result of sparse 3D reconstruction. d Matching result

after applying the match propagation method. e Three views of the obtained 3D model
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model after the fusion of the obtained results between

consecutive images.

6 Conclusion

In this paper, we presented an incremental method for

3D reconstruction from multiple images taken from

suitable viewpoints. First, we proposed the initializa-

tion of the reconstruction process by a binocular stereo

vision system constituted of two unattached cameras

in order to avoid the initialization errors that can affect

the globality of the reconstruction system. Afterwards,

for an almost complete 3D reconstruction and to

release all the constraints, the second camera of the

Fig. 16 a Four images of the sequence. b Example of interest points matching. c Result of sparse 3D reconstruction. d Matching result

after applying the match propagation method. e Three views of the obtained 3D model
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binocular stereo vision system (characterized by

varying parameters) makes displacements around the

object or scene to capture new images which are

gradually inserted into our system. For each inserted

image, the projection matrix is estimated from the 3D

structure already calculated and new 3D points are

recuperated. For the refinement of new estimated

entities, a local bundle adjustment is performed so as

to maintain the reliability and ensure the system

rapidity. Finally, to obtain a dense 3D reconstruction,

match propagation algorithm has been applied to

consecutive images pairs and the final 3D model is

obtained by fusion. The experimentation results show

the power the robustness and the rapidity of the

proposed approach.
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