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Abstract
Quercetin, a naturally occurring flavonoid, has been credited with a wide spectrum of therapeutic properties. However, the oral 
use of quercetin is limited due to its poor water solubility, low bioavailability, rapid metabolism, and rapid plasma clearance. 
Quercetin has been studied extensively when used with various nanodelivery systems for enhancing quercetin bioavailability. 
To enhance its oral bioavailability and efficacy, various quercetin-loaded nanosystems such as nanosuspensions, polymer nano-
particles, metal nanoparticles, emulsions, liposomes or phytosomes, micelles, solid lipid nanoparticles, and other lipid-based 
nanoparticles have been investigated in in-vitro cells, in-vivo animal models, and humans. Among the aforementioned nanosys-
tems, quercetin phytosomes are attracting more interest and are available on the market. The present review covers insights into 
the possibilities of harnessing quercetin for several therapeutic applications and a special focus on anticancer applications and 
the clinical benefits of nanoquercetin formulations.

Key Points 

Quercetin is a plant flavonoid used mainly as an antican-
cer agent due to its antioxidant properties, but also as an 
anti-microbial agent, anti-osteoporotic agent, anti-fungal 
agent, anti-psoriatic agent, anti-neurodegenerative agent, 
anti-inflammatory agent, and in the treatment of cardio-
vascular diseases.

The bioavailability and therapeutic efficacy of quercetin 
are limited by its low water solubility, limited permeabil-
ity, high enzymatic degradation, and the lack of bioen-
hanced formulations on the market.

Among various approaches, the nanodrug delivery strat-
egy provides significant improvements in the solubiliza-
tion and bioenhancement of quercetin, with the added 
advantage of targeted delivery whenever desired.

Marketed quercetin nanoformulations and quercetin phy-
tosomes have attracted huge attention around the world.

1  Introduction

Quercetin is a plant flavonoid obtained from vegetables, 
grains, and fruits. It has attained immense importance in 
the past few years due to its multifarious therapeutic applica-
tions [1, 2]; for example, it can be used as an anti-microbial 
agent, anti-osteoporotic agent, anticancer agent, anti-fungal, 
anti-psoriatic, and anti-neurodegenerative, and anti-inflam-
matory agent, as well as in the treatment of cardiovascular 
diseases [3]. The potential use of quercetin in the treatment 
of viral infections such as COVID-19 has also proposed [3, 
4]. The various mechanisms of action and possible applica-
tions of quercetin are depicted in Fig. 1 [5].

2 � Challenges Associated 
with the Conventional Administration 
of Quercetin

The structure of quercetin is shown in Fig. 2. Quercetin is 
classified as a BCS class IV drug based on its poor solubil-
ity (0.00215 g/L at 25 °C) in aqueous media and limited 
permeability through the gastrointestinal epithelium [6]. 
Quercetin is unstable in the presence of heat and oxygen 
and also undergoes photolytic degradation [7, 8]. Another 
challenge to delivering quercetin is its rapid metabolization 
into glucuronide and sulfate conjugates, which limits sys-
temic circulation and therapeutic efficacy [9]. Studies were 
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carried out by administering quercetin either via intraperi-
toneal injection or orally (via the gavage method or drinking 
water) and the intravenous injection route at various doses 
ranging from 100 µg to 200 mg/kg/day for between 10 and 
90 days [10]. The suggested reviews [11–14] provide addi-
tional details on routes of administration of quercetin. Gas-
trointestinal factors are reported to influence the delivery 
of quercetin. Oral bioavailability is influenced significantly 
by food and in particular fat intake, as well as the gastro-
intestinal tract pH [15]. Collectively, factors including its 
low water solubility, high metabolic rate, inactive meta-
bolic products, and rapid clearance from plasma [16–18] 
limit the bioavailability and therapeutic efficacy of quercetin, 
implying the need to develop nanoformulation strategies to 
improve quercetin's bioavailability and efficacy.

3 � Bioenhancement Strategies for Quercetin

Various approaches have been evaluated for quercetin 
bioenhancement [12]: for instance, coadministration with 
piperine [19] or chemical modification (e.g., esterification) 
or the design of prodrugs [20]. Nevertheless, an important 
focus has been the development of solid dispersions using 

various carriers. An amorphous solid dispersion (ASD) 
generally comprises emulsifying components with drug 
particles less than 1000 nm in size [21]. Using an ASD is an 
exciting approach for improving enhancement due to its rapid 
dissolution and simplicity of preparation [22–24]. An ASD 
of quercetin in a 1:1 weight ratio with combination carriers 
of Pluronic F-127 and polyvinylpyrrolidone K30 (5:95) 

Fig. 1   Various uses and mechanisms of action of quercetin. BAX Bcl-
2-associated X protein, TLR toll-like receptor, DAF abnormal Dauer 
formation, PI3K phosphoinositide 3-kinase, Akt protein kinase B, 
ROS reactive oxygen species, NF-κB nuclear factor kappa B, TNF-α 

tumor necrosis factor α, IL interleukins, GSH glutathione, SOD super-
oxide dismutase, iNOS inducible nitric oxide synthase, AChE acetyl-
cholinesterase, AMPK adenosine monophosphate-activated protein 
kinase, PPAR-γ PPAR peroxisome proliferator-activated receptor

Fig. 2   Chemical structure of quercetin
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significantly improved quercetin solubility with its enhanced 
dissolution performance [25]. Chitosan oligosaccharide 
(amorphous) was reported as a promising hydrophilic matrix 
for a quercetin ASD. The ASD formulation showed enhanced 
in vitro dissolution performance and oral bioavailability 
compared to pure quercetin [26]. Further, a quercetin solid 
dispersion with hydrophilic carriers of hydroxypropyl 
methylcellulose along with poloxamer 188 as a surfactant 
exhibited an enhanced dissolution rate with a 61-fold higher 
oral bioavailability than the pure drug [27]. Other polymers 
explored for the design of quercetin solid dispersions with 
rapid dissolution and/or enhanced bioavailability include 
polyvinylpyrrolidone [28], cellulose esters [29], polyethylene 
glycol 1000 [30], hydroxypropyl methylcellulose [31], 
polyvinylpyrrolidone K30 [32], poloxamer 188 [33], and 
combination of polyvinylpyrrolidone or hydroxypropyl 
methylcellulose with Pluronic F-127 [34, 35].

4 � Nanoformulation Approaches for Oral 
Bioenhancement

Nanoparticles (NPs) are small particles 1–1000 nm in size 
[36] which exhibit significantly enhanced dissolution rates 
due to their large surface area and also the bioavailability 
of water-insoluble drugs [37]. These nanosystems can be 
prepared from many materials, including lipids, polymers, 
metals, proteins [38, 39], and combinations [11, 40]. All of 
these materials display good chemical stability, enhanced 
drug loading, controlled drug release, enhanced bioavail-
ability, and excellent biocompatibility [41]. Figure 3 shows 

nanodrug delivery strategies for oral bioenhanced quercetin 
formulations. These NPs can encapsulate drug molecules 
and carry them to various target sites in the body, as their 
nanosize permits them to cross biological barriers and target 
specific cells and tissues [42]. Another strategy that could 
particularly target the lung and breast is lymph-mediated oral 
uptake [43, 44]. Moreover, NPs can protect drugs from deg-
radation and metabolism, thereby improving their bioavail-
ability [45]. Among various approaches, nano approaches 
present significant advantages in solubilization and bioen-
hancement, with the added advantage of targeted delivery 
whenever desired. This review focuses on various nano 
approaches for quercetin bioenhancement, which could also 
have targeting applications. Table 1 summarizes the physico-
chemical properties and other outcomes of quercetin nano-
formulations, whereas Table 2 represents a summary of oral 
pharmacokinetic parameters of quercetin nanoformulations.

4.1 � Nanosuspensions

Nanosuspensions are dispersions of active hydrophobic 
substances that are nanometrically dispersed in water using 
stabilizers (surfactants) and produced by various methods 
[70]. Generally, nanosuspensions are prepared by either 
the top-down or the bottom-up process [71]. In the bottom-
up process, the active moiety with or without carrier(s) is 
solubilized in an organic solvent. It is then precipitated by 
addition to an aqueous phase acting as an anti-solvent along 
with a stabilizer to enable precipitation at a nanosize [72]. 
This is followed by the elimination of organic solvents. This 
process is simple, cost-effective, and requires a low energy 

Fig. 3   Schematic representation of oral bioenhanced quercetin nano drug delivery systems
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input [73]. The top-down process involves breaking down 
the bulk material into NPs in the presence of a high-energy 
input such as high-pressure homogenization [74].

Improved solubility of quercetin nanosuspensions—
nine times higher than that of quercetin—is reported. This 
improved solubility is attributed to the reduced particle 
size and enhanced surface area available for dissolution 
[75]. Quercetin nanosuspensions prepared by evaporative 
precipitation in an aqueous solution (EPAS, a bottom-up 
technique) and by high-pressure homogenization (HPH, a 
top-down process) were compared. The nanosuspension pro-
duced by the EPAS process displayed an improved solubility 
and dissolution rate when compared with the HPH process. 
These observations were related to the unchanged crystalline 
state of quercetin during the top-down manufacturing pro-
cess, whereas a crystalline to amorphous phase change was 
induced during the bottom-up process, implying the role of 
the preparation method in the properties of the nanosuspen-
sion [76, 77]. Nanosuspensions of quercetin prepared by wet 
milling combined with lyophilization displayed a 26-fold 
improvement in dissolution as well as a 3.35-fold enhance-
ment in quercetin permeability [78]. Quercetin nanosus-
pensions prepared by a solvent displacement method were 
studied for efficacy against A. aegypti larvae. A high and 
concentration-dependent larvae mortality was reported for 
nanosuspensions of quercetin at 100 ppm (44%) and 500 
ppm (100%) at 48 h. Pure quercetin showed a maximum 
mortality of ~ 50% irrespective of concentration [79]. A 
quercetin nanosuspension formulation revealed a 70-fold 
solubility enhancement, a 7-fold reduction in clearance 
rate, and a > 10-fold increase in AUC​0–∞ compared with a 
control suspension in a rat model [80]. In another study, the 
enhanced cellular uptake of a quercetin nanosuspension was 
attributed to the small particle size, which facilitated high 
cellular uptake and bioavailability [81]. Further, quercetin 
nanosuspensions have shown significantly higher anticancer 
activity against human breast cancer cells [82, 83].

4.2 � Liposomes

Liposomes are phospholipid-based vesicular systems [84]. 
Phospholipids, which have hydrophobic and hydrophilic 
portions, align as lamellar structures, which form liposomes 
[85]. These can protect active pharmaceutical ingredients 
from their external surroundings, increase water solubility, 
and facilitate targeted delivery due to their morphology, 
which resembles cellular membranes [86]. Liposomes are 
classified based on size, preparation method, and lamellarity 
[87]. The manufacturing method dictates the formation of 
unilamellar, multilamellar, or multivesicular vesicles [88]. 
The lipid film hydration and ether/ethanol injection, solvent 
dispersion, mechanical dispersion, and detergent removal 
methods are the most common techniques used to load both 

hydrophilic and hydrophobic drugs into liposomes. Exten-
sive details are provided in the reviews [89–92]. Due to their 
safety and efficacy, liposomes are the most commonly used 
nanoformulations [93].

Liposomal quercetin prepared by the ethanol injection 
method displayed extended drug release and suppressed the 
levels of reactive oxygen species induced by UVB irradia-
tion [94]. Lecithin, cholesterol, and PEG containing flexible 
liposomes generated by a simple solid dispersion method 
induced apoptosis by arresting the cell cycle in A2780s 
and A2780cp cells [47]. Liposomal quercetin formulations 
prepared by thin-film hydration revealed effective accu-
mulation in tumor tissues, suppression of tumor growth, 
and prolonged survival time in tumor-bearing mice. This 
demonstrated the application of quercetin liposomes for 
tumor-targeted drug delivery in vivo [95]. Poloxamer 188, 
tween 80, cholesterol, soy lecithin, and glyceryl behenate 
(ATO)-containing liposomes generated by low-temperature 
emulsification evaporation exhibited a prolonged in vivo 
circulation time [65].

Quercetin is loaded into peptide-functionalized liposomes 
by the thin-film hydration method. These targeted formu-
lations showed a threefold increase in cell toxicity, higher 
apoptosis, and S-phase cell-cycle arrest in A549 cell lines. 
When targeted to the lungs by pulmonary administration, 
they exhibited significantly increased anticancer activity in 
orthotopic lung tumor-bearing mice as well as an increase in 
the lifespan of mice [96]. Quercetin liposomes of phosphati-
dylcholine and cholesterol also exhibited oral hepatoprotec-
tive activity in rats and 50 times more antioxidant activ-
ity compared to plain quercetin [48]. Further, the superior 
therapeutic effect of quercetin PEGylated liposomes seen in 
streptozotocin-induced diabetic nephropathy was attributed 
to the higher quercetin concentrations in plasma compared 
to quercetin [97]. In another study, quercetin liposomes of 
phosphatidylcholine and cholesterol demonstrated cogni-
tion-enhancing and anxiolytic effects [98].

4.3 � Solid Lipid Nanoparticles (SLNs) 
and Nanostructured Lipid Carriers (NLCs)

SLNs are an example of a colloidal lipid carrier delivery sys-
tem; they are prepared using biodegradable, physiological, 
and biocompatible solid lipids [99]. SLNs display good chem-
ical stability, enhanced drug loading, controlled drug release, 
enhanced bioavailability, and excellent biocompatibility [41]. 
The reviews [100–102] detail the various techniques utiliz-
ing SLN formulations. However, a major concern with SLNs 
is the expulsion of encapsulated drugs from the carrier over 
time; this challenge led to the development of NLCs [103].

NLCs are made of solid lipids combined with liquid 
lipids acting as the matrix [104]. The combination of solid 
and liquid lipids gives imperfections that can entrap more 



499Oral Quercetin Nanoformulations

Table 1   Physico-chemical properties and other outcomes of quercetin nanoformulations

Nanosystem Physico-chemical properties and outcomes Reference

Liposomes Particle size: 130  ±  20 nm
Effectively accumulate in tumor tissues
Lengthen circulation time of quercetin in vivo
Effectively inhibit multiple kinds of tumor growth and prolong the survival time of tumor-bearing mice
Inhibition of tumor angiogenesis and induction of tumor cell apoptosis

[46]

Particle size: 163  ±  10 nm
Induced apoptosis by arresting the cell cycle in A2780s and A2780cp cells
Suppressed tumor growth in ovarian xenografted nude mice models

[47]

Particle size: 271  ±  32.34 nm
Drug loading: 81.82  ±  1.30%
Oral hepatoprotective activity in rats
50-fold enhancement in antioxidant activity compared to plain quercetin

[48]

NLCs Drug loading: 11%
Enhanced solubility and stability
Enhanced apoptosis in MDA-MB-231and MCF-7 cells

[49]

Particle size: 200 nm
Entrapment efficiency: 80–90%
Zeta potential: − 30 mV
Promoted neuroprotective effects an in vitro model of Alzheimer’s disease
Inhibited fibril formation

[50]

Microemulsions Reduced IL-4 and IL-5 levels
Reduced P-selectin expression and mucus secretion in the lung

[51]

Nanoemulsion Particle size: 219.7  ±  2.1 nm
Encapsulation efficiency: 98.12  ±  0.07%
Improved quercetin bioavailability (12.70 ± 0.12%)
Improved cell permeability (4.93 ± 0.01 × 10−6 cm/s)

[52]

Improved in vitro permeability and in vivo oral bioavailability
Artificial intestinal membrane: 188-fold
Caco-2 cell monolayer: 3.37-fold
In vivo oral bioavailability: 33.51-fold

[53]

Polymeric NPs Particle size: ~ 300 nm
Zeta potential: – 45 mV
Drug release followed zero-order kinetics
Relative oral bioavailability in rats: ~ 60%
Attenuated endotoxic symptoms induced by lipopolysaccharides

[54]

Particle size: 300–400 nm
Content: 110 ± 3 to 335 ± 4 mg/ml
Controlled release in simulated gastric fluid (80% after 3h)
Prevented quercetin degradation
Increased oral bioavailability
Strong antioxidant activity

[55]

Encapsulation efficiency: 87.9 ± 1.5 to 93.0 ± 2.6%
Slower in vitro gastro-intestinal release after 240 min

[56]

Particle size: 198.4 ± 7.8 nm
Drug loading: 8.1 ± 0.4%
Significant growth and metastasis inhibition in TNBC
Oral gavage in 4T1-bearing mice
Tumor inhibition: 67.88%
Fewer lung metastatic colonies

[57]

Particle size: < 200 nm
Encapsulation efficiency: 79.78%
In vitro drug release at pH 7.4: 67.28%
Significantly reduced IC50 value
Significant inhibition of tumor volume in A549
Reduced tumor inhibition in an MDA-MB-468 xenografted mice model

[58]

Particle size: 150 nm
Encapsulation efficiency: 70.52%
Significantly greater antiproliferative and cytotoxic effects
Apoptotic potential and cellular arrest of cancer cells

[59]
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molecules than SLNs, thus enabling a high entrapment effi-
ciency. NLCs overcome the challenge presented by drug 
expulsion from SLNs, thereby providing a major advantage 

[105]. Both SLNs and NLCs provide solubility enhance-
ment, improved bioavailability and permeability, a prolonged 

IL interleukins; IC inhibitory concentration, TNBC triple-negative breast cancer, SOD superoxide dismutases, AGS human gastric adenocarci-
noma cells, MIC  minimum inhibitory concentration

Table 1   (continued)

Nanosystem Physico-chemical properties and outcomes Reference

Micelles Drug loading: 8.75 ± 0.41%
Stable in aqueous media
Markedly improved solubility
Exhibited sustained release

[60]

Particle size: 31.18 nm
Drug loading: 11.2  ±  1.6%
Improved anticancer efficacy in HepG2 and H9c2 cell lines

[61]

Particle size: 36 nm
Drug loading: 6.9%
Inhibition of ovarian cancer by apoptosis

[60]

Particle size: 87.5 nm
Encapsulation efficiency: 63 − 77%
Exhibited significantly lower glucose levels
Higher SOD and higher catalase levels highlighted an enhanced anti-diabetic effect

[40]

Particle size: 31 ± 2 nm
Drug loading: 14.81 ± 0.07%
Zeta potential: − 0.21 ± 0.07 mV
In vitro release of 56.5 ± 7.8% in 7 days
Increased cellular uptake and apoptosis
Inhibitory effects on migration, the proliferation of 4T1 cells

[47]

Particle size: < 100 nm
Zeta potential: − 8.25 ± 1.26 mV
Higher intracellular uptake
Greater inhibitory effect against cell proliferation
Improved therapeutic efficacy in lung carcinoma

[34]

Particle size: 92.2 ± 0.35 nm
Drug loading: 4.72%
Orally relative bioavailability increased to 360%
Increased antitumor activity
Efficient growth inhibition in BALB/c mice

[59]

Dendrimers Improved solubility
Induced anti-inflammatory activity in RAW 264.7
Improved migration of AGS epithelial cells
Potential in treatment of gastric ulcers by wound healing

[32]

Particle size: 34.39–100.3 nm
In vitro release displayed a biphasic pattern with Korsmeyer–Peppas kinetics
Anti-inflammatory activity (45%) within 1 h

[62]

Particle size: 225.5 ± 16.31 nm
Encapsulation efficiency: 88 ± 1.52%
Zeta potential: − 28.9 ± 1.9 mV
Controlled and sustained drug release
MIC of encapsulated quercetin decreased to 136 mg/mL compared to quercetin (500 mg/mL)
Antibacterial efficacy against multidrug-resistant S. aureus; showed complete distortion of the cell surface mor-

phology

[63]

Particle size: > 100 nm
Encapsulation efficiency: 82%
Zeta potential: − 28.9 ± 1.9 mV
Improved drug release at pH 5.8 (80%) compared to pH 7.4 (65%) with Korsmeyer–Peppas and Higuchi release 

kinetics

[64]
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Table 2   Oral pharmacokinetic 
parameters of quercetin 
nanoformulations

Ke elimination rate constant, AUC​ area under the curve, Vd volume of distribution, CL serum drug con-
centration at a steady state, Cmax peak plasma concentration, t1/2 half-life, MRT mean residence time, Ka 
absorption rate constant, tmax peak plasma time, Vc volume of the central compartment

Nanoformulations Pharmacokinetic parameters Reference

Liposomes Ke (1/h): 0.3993
Half-life (h): 1.7355
AUC (mg·h/L): 77.72
Vd (l/kg): 0.0806
CL (l/h): 0.0322

[65]

Cmax (nmol/mL): 19.20
AUC (μmol·h/mL): 604.16
t1/2 (h): 14.20
CL (mL/h): 0.01
MRTlast (h): 9.22
Vd (mL/g): 0.08

[66]

SLNs AUC (μg·h/mL): 14.22  ±  2.15
Ke (1/h): 0.04  ±  0.01
Ka (1/h): 0.32  ±  0.11
Lag time (h): 0.02  ±  0.01
t1/2Ka (h): 2.16  ±  0.38
t1/2Ke (h): 17.96  ±  2.22
Tmax (h): 8.00  ±  1.38
Cmax (μg/mL): 12.22  ±  2.15
AUC​(0→4–8h) (μg·h/mL): 324.18  ±  41.35
CL (L/h): 0.04  ±  0.01
Vc (L): 1.04  ±  0.02
MRT (h): 27.48  ±  3.42

[67]

NLCs Cmax (μg/mL): 1.662
AUC (μg·h/g): 3.54
MRT (h): 18.7

[68]

Micelle Tmax (h): 0.25
Cmax (µg/ml): 1.52 ± 1.31
AUC​(0-inf) (µg·h/ml): 0.90 ± 0.26
Vd (l/kg): 19.76 ± 14.05

[59]

AUC​(0-24) (ng·h/mL): 1477.27  ±  25.57
Cmax (ng/mL): 182.85  ±  106.64
Tmax (h): 0.5  ±  0.02
t1/2 (h): 8.29  ±  0.49

[52]

Polymeric NPs Tmax (h): 5  ±  2.7
Cmax (μg/mL): 3.4  ±  0.59
t1/2 (h): 24.6  ±  8.41
AUC (μg·h/mL): 94.51  ±  18.71
Vd (mL): 837  ±  159
CL (mL/h): 24.4  ±  3.55
MRT (h): 25.4  ±  2.99

[54]

Solid dispersion Ke (1/h): 0.1124
Ka (1/h): 1.3592
Tmax (h): 0.63
Cmax (ng/ml): 419.02
AUC​(0–t) (ng·h/ml): 2841.63
MRT(0–t) (h): 4.6633
CL/F(s) (ng/h/(ng/ml)): 0.0038

[33]

Cmax (ng/mL): 2833.78  ±  537.64
Tmax (h): 0.61  ±  0.31
t1/2 (h): 8.68  ±  4.58
AUC​(0–24) (ng·h/mL): 23252.76  ±  2475.90
AUC​(0–∞) (ng·h/mL): 27569.59  ±  6112.24

[69]
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half-life, fewer adverse effects, and targeted tissue delivery 
[106].

Quercetin SLNs prepared by emulsification followed by 
low-temperature solidification with glyceryl monostearate as 
the solid lipid displayed increased quercetin gastrointestinal 
absorption in rats [67]. Quercetin SLNs prepared using an 
ultrasonication method with a combination of tripalmitin 
and lecithin as the lipid core coated with chitosan allowed 
a faster release than pure quercetin, with enhanced uptake 
in Caco-2 cells [107]. Quercetin NLCs prepared using soya 
lecithin, medium-chain triglyceride, and glyceryl monostea-
rate showed higher solubility, good stability, and enhanced 
apoptosis in MCF-7 and MDA-MB-231 cells [49]. NLCs 
of quercetin promoted neuroprotective effects in vitro in a 
model of Alzheimer’s disease by inhibiting fibril formation 
[50].

4.4 � Microemulsions (MEs), Nanoemulsions, 
and Self‑microemulsifying Drug Delivery 
Systems (SMEDDS)

Microemulsions are thermodynamic stable, optically iso-
tropic clear systems [108] comprising oil, a surfactant, a 
cosurfactant, and an aqueous phase [109, 110]. The ability 
of microemulsions to increase the solubility of water-insol-
uble BCS class II and IV drugs as well as enhance absorp-
tion facilitates bioavailability enhancement [111, 112]. ME 
can also be prepared by the phase-inversion temperature 
method [113, 114]. MEs provide manifold advantages like 
easy preparation, transparency, protection from degradation, 
low viscosity, and a high solubilization capacity.

Nanoemulsions—also known as ultrafine emulsions, 
submicron emulsions, and mini-emulsions—are kinetically 
stable nanodispersions of two immiscible liquids which 
are stabilized by surfactant(s) to form a single phase 
[115–118]. A nanoemulsion offers various merits such as 
improved dissolution and enhanced oral bioavailability 
[119]. Yet another very effective approach for enhancing 
the solubility and bioavailability of hydrophobic moieties 
utilizes SMEDDS [120]. These are microemulsions 
without an aqueous phase, which improves the stability 
of the formulation. SMEDDS are isotropic mixtures of 
surfactant, oil, and cosurfactant that spontaneously form 
microemulsions in GIT fluid/aqueous media with gastric 
motility/mixing [121, 122]. SMEDDSs can be added to 
finished dosage forms such as capsules or other solid dosage 
forms [123, 124].

The significantly increased solubility of another quercetin 
ME in comparison with plain quercetin in aqueous media 
with good ileum absorption was demonstrated [125]. 
Reduced IL-4 and IL-5 levels, reduced P-selectin expression, 
and decreased mucus secretion in the lung have also been 
demonstrated with a quercetin ME [51]. Nanoemulsions 

showed improved quercetin bioavailability and permeability 
[52]. A quercetin nanoemulsion prepared by aqueous-phase 
titration showed improved in vitro permeability through 
artificial intestinal membranes as well as enhanced oral 
bioavailability [53]. Co-delivery of pemetrexed and a 
quercetin-based nanoemulsion improved oral bioavailability 
and exhibited superior tumor growth inhibition in A549 
tumor-bearing mice models compared with controls [126]. 
Quercetin SMEDDS showed rapid in vitro release, with a 
ninefold increase in AUC compared to free quercetin [127]. 
They also provided significantly enhanced solubility and 
1-month stability at 25 °C along with enhanced transport 
across the Caco-2 cell monolayer [128].

4.5 � Polymeric NPs

Natural and synthetic polymers that are biodegradable are 
used to prepare polymeric NPs of size <1000 nm [129]. 
They are classified as either nanocapsules, wherein the drug 
is present in the core, or as nanospheres, where the drug is 
distributed uniformly in the polymeric matrix [130, 131]. 
Polymeric NPs may show increased reactivity, sensitivity, 
and stability compared to liposomes. Their enhanced mem-
brane permeability (attributed to their nanosize) and an abil-
ity to target a specific organ by attaching ligands to their 
surfaces make polymeric NPs attractive drug carriers [132].

Nanoprecipitation is considered the simplest approach 
for preparing drug-loaded NPs; in this, drug-loaded 
polymeric particles are precipitated out of organic solvents 
following addition to aqueous media. Other approaches 
for the fabrication of drug-loaded polymeric NPs include 
crosslinking, homogenization, solvent evaporation/
diffusion, and spray drying. Other green techniques based 
on microwaves and aqueous solvents are also reported 
[133, 134]. Various polymers used for quercetin polymeric 
NPs include polylactic acid [135], poly(lactic-co-glycolic 
acid) (PLGA), chitosan [58], fucoidan [55], zein [56], zein-
hydroxypropyl-β-cyclodextrin [54], and PEGylated PLGA 
conjugated with folic acid [136].

Quercetin-loaded polylactic acid NPs with high drug 
encapsulation efficiency exhibited controlled release, 
suggesting promise in terms of their utilization in newer 
therapies [137]. pH-sensitive NPs were synthesized that 
displayed high drug release in acidic media, leading to 
proposed applications in cancer therapy, considering the 
acidic environment of the tumor site [138]. Using cholate-
modified polymer-lipid hybrid NPs (cPLNs), a bile salt 
transport pathway was evaluated for the oral delivery 
of quercetin. Quercetin cPLNs exhibited a 375.12% 
bioenhancement compared to quercetin suspensions [139]. 
PLGA-TPGS (D-α-tocopheryl polyethylene glycol 1000 
succinate) quercetin NPs developed for oral delivery 
exhibited superior inhibition of triple-negative breast cancer 
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cells. Remarkable anti-tumor efficacy was observed in 
4T1-bearing mice, and fewer lung metastatic colonies were 
detected [57].

4.6 � Micelles

Micelles are drug delivery systems with a size range of 
5–100 nm wherein a surfactant or block copolymer forms 
self-assembled aggregates [140, 141]. They are aqueous 
dispersions in which the block copolymer concentration 
is greater than the critical micelle concentration [142]. 
Micelles can be prepared by dissolution, emulsion technique, 
dialysis, solvent evaporation, as well as lyophilization [143]. 
Micelles are small in size and can facilitate an increased cel-
lular uptake, improved therapeutic potential, and sustained 
drug release [144, 145].

Pluronic P123/TPGS mixed micelles enabled improved 
solubility and bioactivity of quercetin [146]. PEG-modified 
quercetin micelles demonstrated enhanced solubility and 
K562 (human erythromyelogenous leukemia) cells were 
arrested at the G2/M phase [147] Quercetin micelles of 
γ-benzyloxy-substituted poly(ε-caprolactone) have proven 
to have anticancer and antioxidative activity against HepG2 
and H9c2 [60, 61]. Quercetin-loaded mixed micelles showed 
high uptake inside the cells and exhibited sustained drug 
release. Results indicated that TPGS facilitated enhanced 
apoptosis, which resulted in an improvement in lung cancer 
treatment [34].

Quercetin-loaded sodium taurocholate-Pluronic 
P123 micelles demonstrated sustained release in both 
simulated gastric and intestinal fluids. This formulation 
displayed 1.8-fold and 1.6-fold higher Cmax and AUC​0–24 
values compared to the free quercetin, respectively [148]. 
Quercetin-loaded LipoMicel® (liquid micelle matrix) 
exhibited a ninefold enhancement in Cmax and an eightfold 
increase in AUC​0–24 compared to free quercetin [149]. In 
another pharmacokinetic study, orally administered lecithin-
stabilized polymeric micelles significantly increased the 
relative bioavailability by 360% and showed an absolute 
bioavailability of 5.13% compared to quercetin [59]. While 
most studies have evaluated the anticancer efficacy of 
quercetin, Brahmeshwar Mishra et al. developed quercetin-
loaded bio-enhanced and prolonged-release Soluplus® 
micelles for the management of diabetes and demonstrated 
an enhanced anti-diabetic effect [40].

4.7 � Dendrimers

Dendrimers are especially recognized for their monodis-
persity, hyperbranched nature, polyvalence, nanoscale size, 
biocompatibility, and stability [150]. Dendrimers comprise a 
hydrophobic cavity that acts as an initiator, surrounding inte-
rior generations of repeating units, and outermost exterior 

terminal functional groups [151]. Convergent and divergent 
methods are the two common approaches for dendrimer syn-
thesis [152]. Polyamidoamine (PAMAM) was the first family 
of dendrimers to be commercialized, and they are the most 
commonly exploited [153]. Due to their nanoscale size, den-
drimers can adapt paracellular or transcellular pathways to 
cross cell barriers, making them attractive carriers for nan-
odrug delivery [154]. Investigations proved that the solubil-
ity of quercetin improved when PAMAM was used as a car-
rier [155]. Quercetin magnetite/poly-aminoester dendrimer 
with poly(ε-caprolactone) improved the release of quercetin 
at pH 5.8 (80%) when compared with pH 7.4 (65%) [64]. 
Quercetin with linear PEG-PLGA polymer caused signifi-
cantly increased cancer cell death in 66 GB cell lines [156]. 
Dendrimeric quercetin formulations were also found effec-
tive in terms of anti-inflammatory [62], anti-bacterial [63], 
and neuroprotective [157] activity.

4.8 � Magnetic NPs

Due to their magnetic properties, magnetic NPs are readily 
targeted to the target sites with the help of an externally 
applied magnetic field [158]. Magnetic NPs are less than 
10–20 nm in size, exhibit the properties of a giant paramag-
netic atom, and exhibit a rapid response to external magnetic 
fields. They also exhibit only trace residual magnetism and 
coercivity [159]. This is crucial to prevent agglomeration 
[160].

A quercetin-loaded pH-sensitive superparamagnetic 
drug carrier (Fe3O4) surface coated with polyamidoamine-
b-PEG-folate (hyperbranched) demonstrated high aqueous 
solubility [161]. Iron oxide was functionalized with folic 
acid to target overexpressed folic acid receptors on brain 
adenocarcinoma cells (U87). Results of MTT assay and cell 
uptake studies confirmed that these magnetic NPs are useful 
for cancer therapy [162]. Similarly, quercetin-loaded PLGA-
MNPs demonstrated anticancer activity against viable A549 
cells and were safe after being injected into mice [163]. In 
another study, superparamagnetic quercetin Fe3O4 NPs were 
also found to be cytotoxic to MCF-7 breast cancer cell lines, 
which was confirmed by morphological changes observed 
under a fluorescence microscope [164].

4.9 � Gold NPs

Quercetin was effectively harnessed to prepare gold NPs of 
size 20–45 nm by reduction [165]. High anticancer activ-
ity was exhibited by the quercetin-functionalized gold NPs, 
with an anti-angiogenic effect demonstrated in a chorioallan-
toic membrane assay [166]. However, these NPs exhibited 
no cytotoxicity to human fibroblasts (L929 cells) [167]. An 
in-vivo reduction in tumor volume seen in the 4T1 tumor 
mouse model was attributed to altered expression of genes 
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related to apoptosis [168]. Furthermore, quercetin gold NPs 
demonstrated higher antioxidant activity compared to free 
quercetin [167]. Quercetin-conjugated gold NPs were also 
studied for their efficacy against leishmaniasis [169].

4.10 � Miscellaneous Quercetin Nanosystems

Silver nanocubes prepared using extract of the leaf of 
Peltophorum pterocarphum relied on quercetin-3-O-β-d-
galactopyranoside to act as the reducing agent. They showed 
promising antifungal activity compared to the commercial 
antifungal agent fluconazole [170]. Quercetin mesoporous 
silica NPs anchored with folic acid caused apoptosis due 
to cell cycle arrest in breast cancer cell lines [171, 172]. 
In melanoma cells, the activity of titanium dioxide nano-
tubes containing quercetin on melanoma cells was ascribed 
to enhanced cleaved caspase-3 levels and enhanced apop-
tosis compared to titanium dioxide nanotubes or quercetin 
alone [173]. Quercetin-poly(lactide-co-glycolide)-folic acid 
targeted nanocapsules showed selective uptake and cytotox-
icity towards cancer cells where folate was over-expressed. 
High accumulation at tumors and active targeting were con-
firmed following intravenous administration in IGROV-1 or 
HeLa tumor-bearing mice [136]. Treatment with quercetin 
was effective at overcoming the harmful effects of multi-
walled carbon nanotubes, which included inflammatory and 
oxidative as well as immunotoxic effects [174]. On the other 
hand, quercetin-loaded protein NPs based on natural proteins 
(albumin, gelatin, hemoglobin) are an attractive alternative 
to synthetic polymers in drug delivery applications due to 
their safety, biodegradability, biocompatibility, unique self-
assembly, and hydrophobic interaction properties [38, 39, 
175].

5 � Quercetin Clinical Trials

Clinical trials investigating the therapeutic effects of querce-
tin are on the rise. Inflammation is a major contributor to the 
progress of many chronic diseases, namely, cancer, diabetes, 
and heart disease [148]. Several clinical trials have inves-
tigated the anti-inflammatory properties of quercetin. One 
randomized controlled trial (RCT) involving 50 participants 
with rheumatoid arthritis found that supplementation with 
quercetin reduced inflammatory markers and improved joint 
mobility compared to a placebo (NCT05371340).

Quercetin has also been studied for its potential to 
improve cardiovascular health [176]. A meta-analysis of 
17 RCTs found that quercetin supplementation signifi-
cantly reduced blood pressure, especially in those with high 
blood pressure (NCT01839344). Another RCT involving 
obese individuals with type 2 diabetes found that quercetin 

supplementation improved blood lipid profiles compared to 
a placebo (NCT00065676).

Cancer is a key cause of mortality and morbidity world-
wide [177]. Quercetin nanoformulations have been exten-
sively evaluated for anticancer efficacy. Importantly, while 
free quercetin has demonstrated some activity against vari-
ous anticancer cell lines, quercetin nanoformulations have 
demonstrated superior activity. This application of quercetin 
nanoformulations for the treatment of a variety of cancers 
is evident from Table 3, which lists the cell lines evaluated 
for various cancers. Quercetin has been studied for its poten-
tial anticancer effects, given its ability to affect cancer cell 
death and inhibit the growth of tumors. Several clinical trials 
have investigated quercetin as an adjuvant therapy for cancer 
treatment (NCT03493997, NCT05456022, NCT03476330, 
NCT01538316, NCT05724329, NCT01912820). A pilot 
RCT involving patients with sarcoidosis and idiopathic 
pulmonary fibrosis found that quercetin supplementation 
improved quality of life and reduced inflammation mark-
ers compared to a placebo (NCT00512967). Another RCT 
involving 40 patients with prostate cancer found that querce-
tin supplementation improved oxidative stress markers and 
inflammation compared to a placebo (NCT03493997). 
Quercetin has also been studied for its potential to improve 
immune function. One RCT study with quercetin supple-
mentation showed increased natural killer cell activity and 
attenuated the incidence of COVID-19 infection compared 
to a placebo (NCT04853199).

In summary, quercetin has been studied for its possible 
therapeutic effects in a variety of health conditions. Clinical 
trials have provided evidence that quercetin supplementa-
tion may have anti-inflammatory, cardiovascular, anticancer, 
and immune-enhancing effects. However, further research 
is important to fully harness quercetin as a therapeutic and 
to arrive at optimal dosages of quercetin for different health 
conditions [257].

6 � Marketed Products of Quercetin 
Nanoformulations

Quercefit® is a lecithin-based water-soluble quercetin for-
mulation that produced a 20-fold-increase in plasma lev-
els of quercetin without any notable side effects after oral 
administration of the quercetin nanoformulation in human 
volunteers [258]. On the same note, each tablet of Quevir®, 
a dietary supplement, contains 500 mg of quercetin phyto-
some. Here, quercetin is in a food-grade delivery system 
with sunflower phospholipids, which increases its oral 
absorption up to 20-fold [259]. Other marketed formula-
tions are Thorne’s Quercetin Phytosome® [260], Codeage’s 
Quercetin Phytosome® [261], One Planet Nutrition’s Nano 
Quercetin® [262], and Quercetin LipoMicel® [149].
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Table 3   Summary of the half-
maximal effective dose (IC50) of 
quercetin for different cancer 
cell lines

Cancer type Cancer cell line IC50 References

Ovarian A2780s 30 μg/mL [178]
CAOV3 100 µM [179]
CRL11731 – [180]
CRL1978 – [180]
OV2008, OV2008, and its resistant variant C13 – [181, 182]
OVCAR-5 66 μM [183]
PA-1 75 μM [184]
SKOV-3 22 μM [185]

Breast 4T1 50 μM [186]
AU565 20 μM [187, 188]
BT-20 [187]
HCC1937 [189]
MCF-7 100 μM [187, 190–197]
MCF-7Ca/TAM-R 100 μM [198]
MDA-MB-231 125 μM [190, 198–201]
MDA-MB-453 – [199, 200, 202]
MDA-MB-468 7 µg/ml [203]

Cervical C-33A 8 mM [204]
Caski – [205]
CC cells 100 μM [206]
HeLa 100 μM [205, 207]
SiHa 13.3 μM [205, 207]

Gastric AGS cells 40 μM [208–211]
EBV(−) MKN74 150 μM [212]
GES-1 40 μM [213]
HCG-27 [214]
MGC-803 Cells 23.35 μM [215]
SNU719 60 μM [216]

Lung A-549 80 μM [217–224]
H1299 50 μM [225]
H460 100 μM [225]
HTB-182/R – [226]
Radiation-resistant GLC-82/R – [226]

Blood 232B4 CLL 20 μM [227]
DLBCL TMD8 50 μM [228] [229]
U 937 45 μM [228]
MVA-11 36.3 μM [228]
HL-60 12.5 μM [228, 230–232]
HSB2 25 μM [233]
Jurkat 75 μM [228]
K562 12.5 μM [228]
K562/ADR 100 μM [234]
KG‐1 cells 100 μM [235]
THP-1 40 μM [228]
MOLT4 50 μM [236]
Nalm6 25 μM [237]
PEL 30 μM [238–240]
T-ALL 10 μM [230]
CEM 50 μM [228]
U-937 50 μM [241]
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7 � Future Perspective and Conclusion

Clinical trials to date have employed free quercetin, which, 
despite serious solubility and bioavailability limitations, 
exhibits great promise. Nanoformulations of quercetin 
shown great promise for anticancer activity compared with 
free quercetin and combinations of drugs. Through their 
inherent targeting property, nanoformulations could pro-
vide a remarkable improvement in therapy, possibly even 
at lower doses. Considering the high dose of quercetin, 
the oral route appears to be the most practical. Among 
all the nanoformulations, quercetin phytosomes—which 
are available on the market—are attracting the most inter-
est because of the enhanced plasma concentration levels 
of quercetin (20-fold more bioavailable compared to free 
quercetin) after the oral administration of a single dose 
in humans. However, more clinical safety and efficacy 
studies are needed to study the safety and effectiveness of 
quercetin nanoformulations. Targeting organs like the lung 
and breast through lymph-mediated uptake increases the 
oral bioavailability. Quercetin-loaded nanosystems could 
be one more opportunity to harness the beneficial effects 
of quercetin nanoformulations for breast cancer as well 
as various lung afflictions. More research into quercetin 
nanoformulations is imperative to harness the various 
applications of this wonderful nutraceutical.
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