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Abstract
Backgrounds and Objectives In silico methods which can generate high-quality physiologically based pharmacokinetic 
(PBPK) models for arbitrary drug candidates are greatly needed to select developable drug candidates that escape drug 
attrition because of the poor pharmacokinetic profile. The purpose of this study is to develop a novel protocol to preliminar-
ily predict the concentration profile of a target drug based on the PBPK model of a structurally similar template drug by 
combining two software platforms for PBPK modeling, the SimCYP simulator and ADMET Predictor.
Methods The method was evaluated by utilizing 13 drug pairs from 18 drugs in the built-in database of the SimCYP soft-
ware. All drug pairs have  Tanimoto scores (TS) no less than 0.5. As each drug in a drug pair can serve as both target and 
template, 26 sets were studied in this work. Three versions (V1, V2 and V3) of models for the target drug were constructed 
by replacing the corresponding parameters of the template drug step by step with those predicted by ADMET Predictor for 
the target drug. V1 represents the replacement of molecular weight (MW), V2 includes the replacement of parameter MW, 
fraction unbound in plasma (fu), blood-to-plasma partition ratio (B/P),  logarithm of the octanol-buffer partition coefficient 
(log Po:w) and acid dissociation constant  (pKa). In V3, all above-mentioned parameters as well as human jejunum effective 
permeability (Peff), Vd and cytochrome P450 (CYP) metabolism parameters (Km, Vmax or  CLint) are modified. Normalized 
root mean square error (NRMSE) was used for the evaluation of the model performance.
Results We found that the performance of the three versions of the models depends on structural similarity of the drug pairs. 
For Group I drug pairs (TS ≤ 0.7), V2 and V3 performed better than V1 in terms of NRMSE; for Group II drug pairs (0.7 < 
TS ≤ 0.9), 8 out of 10 V3 models had NRMSE < 0.2, the cutoff we applied to judge whether the simulated concentration-
time (C–T) curve was satisfactory or not. V3 outperformed the V1 and V2 versions. For the two drug pairs belonging to 
Group III (TS > 0.9), V2 outperformed V1 and V3, suggesting more unnecessary replacement can lower the performance 
of PBPK models. We also investigated how the prediction accuracy of ADMET Predictor as well as its collaboration with 
SimCYP influences the quality of PBPK models constructed using SimCYP.
Conclusion In conclusion, we generated practical guidance on applying two mainstream software packages, ADMET Predic-
tor and SimCYP, to construct PBPK models for drugs or drug candidates that lack ADME parameters in model construction.
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1 Introduction

Pharmacokinetics is the study of the time courses of a drug 
administered to the body, which includes the processes of 
absorption, distribution, metabolism and excretion (ADME) 
[1]. Usually, it is essential to quantitatively measure the con-
centration of the drug in plasma at different time points in a 

pharmacokinetic study for the analysis of drug behavior and 
dose adjustment. In addition to clinical trials, which always 
involve time, cost and ethical considerations, the prediction 
of concentration profiles under various administration condi-
tions can also be achieved by the implementation of physi-
ologically based pharmacokinetic (PBPK) [2–4] modeling. 
Computational tools for both PBPK modeling and pharma-
cokinetic parameter prediction have been developed, further 
reducing the experimental expense. By virtue of such tools, 
quick and convenient in silico prediction of drug behavior in 
the human body can be easily performed without investing 
many resources in the experiments, informing further stud-
ies in drug toxicity, dosing strategy and potential drug-drug 
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Key Points 

We developed an effective computational protocol for 
the generation of valid physiologically-based pharma-
cokinetics (PBPK) models for arbitrary molecules, an 
important task in preclinical drug discovery.

This method utilizes ADME Predictor to calculate phar-
macokinetic parameters as inputs for PBPK modeling 
and simulation using Simcyp simulator.

More than 60% of compounds have satisfactory perfor-
mance utilizing this method.

similar drug that serves as the template. We utilized the Sim-
CYP simulator (V19, Release 1; Shefeld, UK) [10] soft-
ware to construct PBPK models for a target drug by only 
substituting the predicted ADME parameters of the target 
drug for those from the PBPK model of the corresponding 
template drug. We applied ADMET Predictor (V9.5, Simu-
lation Plus) [11, 12], a software developed by Simulation-
Plus Inc. to predict the ADME properties of target drugs, 
which include physiochemical parameters such as fraction 
unbound in plasma (fu) and blood-to-plasma partition ratio 
(B/P) and ADME input parameters such as volume of dis-
tribution (Vd), Michaelis-Menten constant (Km) and maxi-
mal metabolism rate (Vmax) of common enzymes. To better 
validate our constructed PBPK models as well as evaluate 
the performance of the two software tools, we selected 18 
drugs from the SimCYP compound library (including sub-
strates and inhibitors) as the template drugs. In total, 13 
drug pairs were formed based on their structural similarity. 
For each pair of drugs, one serves as the template and the 
other serves as the target drug. For the target drug in a drug 
pair, we pretended that no PBPK model was available, and 
new PBPK models were constructed based on the PBPK 
model of the template drug. We tested three protocols by 
introducing ADMET Predictor predicted ADME properties 
into the template PBPK model and evaluated the model per-
formance using the observed pharmacokinetic profile of the 
target drug. The corresponding PBPK models constructed 
using the three protocols were called V1, V2 and V3 models.

2.1  Drug Preparation

Drugs selected for the construction of in silico PBPK mod-
els come from the built-in drug database of the SimCYP 
software. Simplified Molecular-Input Line-Entry System 
(SMILES) [13] strings of all drugs from the SimCYP built-
in library, including substrates and inhibitors, were collected 
from the DrugBank database [14]. The SMILES strings of 
drugs were used not only for their structural similarity cal-
culation on a web platform, but also as inputs for the genera-
tion of their properties using the ADMET Predictor.

2.2  Structure Similarity Calculation

Tanimoto scoring is a commonly used method to compute 
the fingerprint-based similarity between two compounds 
[15]. In this study, we applied the maximum common sub-
structure based (MCS) Tanimoto algorithm for the similar-
ity calculation. The Tanimoto score (TS) is defined by the 
function below (Eq. 1) [16]:

(1)TS(X, Y) =
N
Z

N
X
+ N

Y
− N

Z

interactions. As such, this PBPK modeling can be particu-
larly useful in the preclinical phase and can serve as a tool 
to help select drug candidates that are more likely to have 
desirable pharmacokinetic profiles.

In the literature, one study predicted the bioavailability 
(Fa%) of a structurally diverse group of drugs using theoreti-
cal descriptors and neural network modeling [5]. Another 
study applied a genetic algorithm to optimize the prediction 
model for drug Fa%, plasma protein binding and urinary 
excretion [6]. There are also studies predicting the Fa% of 
a chemical series with GastroPlus [7, 8]. Evaluation of the 
Fa% prediction performances from different software plat-
forms, SimCYP and GastroPlus, has also been conducted 
focusing on low-solubility drugs [9]. Collectively, these 
studies focused on the value of Fa% and area under the curve 
(AUC) as the most important parameters for drugs after 
administration, but these parameters cannot fully explain the 
shape of the drug concentration-time (C–T) profile. There-
fore, how a drug is absorbed, distributed, metabolized and 
excreted in the course of time still lacks systematic predic-
tion guidance.

This research aims to develop a pure in silico method 
to predict the pharmacokinetic profile of a compound effi-
ciently, taking advantage of the available high-quality PBPK 
models in the Simcyp compound library and public domain. 
This method has potential application in selecting drug can-
didates with favorable pharmacokinetic profiles to enter the 
next stage of drug development.

2  Methods

In this study, we developed a novel method to predict the 
plasma concentration profile of a target compound based on 
PBPK models constructed using the model of a structurally 
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where NX and NY are the numbers of bits in fragment bit 
strings of the two compounds and NZ is the intersection set, 
i.e., the number of common substructures shared by these 
two compounds. TS (X, Y) ranges from 0 to 1, measuring 
the structural similarity between two compounds from the 
lowest to highest (when the two molecules are identical). TS 
scores were calculated using ChemMine for all combinations 
of drugs in the SimCYP compound database [17].

2.3  Validation of PBPK Models for Drug Templates

We first validated the PBPK models of all 18 selected drugs 
by utilizing their observed data from the literature. In detail, 
we utilized the original built-in models of those drugs in 
SimCYP to run the simulation. In terms of the trial design, 
the dose regimens, simulation time as well as population 
information including age, weight and health condition were 
the same as those reported in the clinical study of pharma-
cokinetics measurement. Meanwhile, the parameters of the 
built-in PBPK model, such as the drug’s ADME proper-
ties, remained the same for all the drugs except fluoxetine. 
As a racemate, we adjusted some of its ADME and phar-
macokinetic parameters according to the literature to make 
the predicted curve fit the experimental data much better 
[18–20]. The key ADME parameters predicted by ADMET 
Predictor for the 18 drugs are all listed in Table S1, includ-
ing the details of the adjusted parameters of fluoxetine. The 
observed drug concentration data of each template drug 
were extracted from published concentration-time (C-T) 
curves using WebPlotDigitizer [21]. The C–T curves from 
simulations were then overlaid to the observed drug con-
centrations. The predicted pharmacokinetic profiles of each 
template drug, including the maximal concentration (CMax), 
time at which CMax was observed (TMax) and area under the 
curve (AUC), were compared to the observed ones.

2.4  Evaluation of Inherent Differences Among 
Software Platforms

The quality of models constructed for target drugs is not 
only affected by the structural similarity between the tem-
plate drug and the target drug but also relies on the predic-
tion quality of ADMET Predictor and how good the collabo-
ration is between the software. There may be some inherent 
differences among different software platforms, including 
but not limited to the training set data and algorithms for 
constructing models. More importantly, the prediction accu-
racy of ADMET Predictor for an individual ADME param-
eter is unknown. Thus, we utilized parameters predicted by 
ADMET Predictor for the 18 drugs to simulate their phar-
macokinetic profiles using SimCYP and then compared 
them to those predicted using SimCYP built-in parameters. 
Since the calculation of molecular weight (MW) must be 

very accurate, the reliability of this parameter from ADMET 
Predictor for each drug will not be evaluated (Category I). 
The following ADME parameters predicted by ADMET 
Predictor belong to Category II: B/P, Fu, the logarithm of 
octanol-buffer partition coefficient (log Po:w) and acid dis-
sociation constant  (pKa); ADME parameters in Category III 
include human jejunum effective permeability (Peff), Vd and 
cytochrome P450 (CYP) metabolism parameters (Km, Vmax 
or  CLint). The prediction accuracy decreases from Category 
I to Category II and then to Category III. The values of these 
ADME parameters for 18 drugs are listed in Table S1. To 
investigate the different qualities of the calculated param-
eters, we modified the template step by step by introducing 
more and more ADME predicted parameters. Specifically, 
in substitution protocol Version 2 (V2), we replaced log 
Po:w,  pKa, B/P and Fu values in the SimCYP drug template 
with the calculated results from ADMET Predictor. In sub-
stitution protocol Version 3 (V3), all the above-mentioned 
ADME parameters, which not only include the parameters 
mentioned by V2 but also Peff in absorption, Vd in distribu-
tion and CYP metabolism parameters of template drug, were 
replaced by predicted values of ADMET Predictor.

2.5  Model Construction for Target Drugs

The parameter substitution plan is the same as that for 
ADME Predictor software evaluation in Sect. 2.4. In total, 
three versions of PBPK models for a target drug were built 
by modifying the models of the template drug: (1) in Version 
1 (V1), only the MW of template drug was changed to that 
of the target one; (2) in Version 2 (V2), in addition to the 
MW, other parameters of template drug, which are the same 
as in the above-mentioned Version 2, were replaced by those 
predicted for the target drug; (3) in Version 3 (V3), in addi-
tion to MW and physiochemical properties, Peff, Vd and CYP 
of templates were also replaced with the calculated ones for 
the target drug, in accordance with above-mentioned Ver-
sion 3. All the ADME properties of the target drugs are 
predicted by ADMET Predictor, a software tool that can 
predict > 140 properties based on its built-in quantitative 
structure-activity relationship (QSPR) models [22]. Infor-
mation about the experimental subjects and trial design of 
each target drug during simulations was derived from the 
corresponding clinical reports.

2.6  Evaluation of Models for Target Drugs

To evaluate the performance of PBPK models with input 
parameters from ADMET Predictor, the experimental data 
of target drugs were overlaid by the simulated C–T curves. 
To quantitively evaluate how well the experimental and 
simulated curves overlaid each other, we calculated the 
root mean square error (RMSE) [23] of the observed and 
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predicted concentrations at different time points. The for-
mula for the RMSE calculation is as follows (Eq. 2):

where Coi and Cpi represent the observed and predicted drug 
concentration at time point i. N is the number of time points 
(N > 1) from the extracted observed data. Specifically, in 
this study, to facilitate the comparison between models for 
different drugs with various concentration scales, we intro-
duced normalized root mean square error (NRMSE) to eval-
uate the performance of PBPK models, which is calculated 
using the following formula (Eq. 3):

where Cmax and Cmin are the maximum and minimum values 
among the observed and predicted concentrations using all 
three versions of models.

The flowchart of the experiment protocol is shown in 
Fig. 1.

3  Results

3.1  Drug Pair Selection and Validation of PBPK 
Models for Drug Templates

Thirteen pairs out of 18 drugs, which have calculated TS ≥ 
0.5, were selected for in silico PBPK modeling. Drug pairs 

(2)RMSE =

[

N
∑

i=1

(

Cpi − Coi

)2
/

N

]

1

2

(3)NRMSE =
RMSE

Cmax − Cmin

with TS < 0.5 were not considered to be structurally similar 
and were excluded in this study. The calculated TS for 13 
selected pairs (Groups A–M) is listed in Table 1. Since both 
drugs in a pair will in turn serve as the template and target 
drug for cross validation, we used X-1 and X-2 to label two 
drugs in the pair, respectively, where X can be A to M.

The predicted mean plasma concentration-time profiles 
overlaid with observed data of all 18 template drugs are 
shown in Fig. 2. Accordingly, Table 2 [20, 24–39] exhib-
its the predicted pharmacokinetic parameters (CMax, TMax, 
AUC) versus observed values. From Table 2, excluding the 
drugs with unavailable observed pharmacokinetic param-
eters (dextromethorphan, mephenytoin and fluoxetine), 
the predicted pharmacokinetic parameters of most drugs 
are within the standard deviation ranges of their observed 
values. The predicted values of CMax, TMax and AUC for 
theophylline are all slightly beyond the margin of error but 
still within the range of two-fold standard deviation. Over-
all, as shown in Fig. 2, the observed C–T profiles are within 
the 95% confidence interval (CI) ranges (upper and lower 
gray dashed curves) of the simulated C–T curves. Therefore, 
the PBPK models for the template drugs have been well 
validated.

3.2  Evaluation of Inherent Differences Among 
Software Platforms

The predicted pharmacokinetic parameters of the 18 modi-
fied drug templates by replacing the ADME parameters with 
those predicted by ADMET predictor are listed in Table 2. 
The C–T profiles of those 18 drugs are shown in Fig. 3 (V2) 

Fig. 1  Flowchart of experiment protocol. pKa acid dissociation con-
stant, log Po:w  logarithm of octanol-buffer partition coefficient, B/P 
blood-to-plasma partition ratio, Fu fraction unbound in plasma, Vss 

volume of distribution at steady state, Peff human jejunum effective 
permeability, Km Michaelis-Menten constant, Vmax maximal metabo-
lism rate, V1 version 1, V2 version 2, V3 version 3
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and Fig. 4 (V3). In V2, most drugs exhibit satisfying predic-
tion results. As Fig. 3 shows, in 14 of 18 drugs most of the 
experimental data points lay within the predicted confidence 
interval. Only  in triazolam, atomoxetine, simvastatin and 
pravastatin do nearly or more than half of the data points 
exceed the confidence interval, showing poor prediction 
performance. V3 shows that bupropion, caffeine and phe-
nobarbital have a very good overlay between the clinical 
report and predicted result from the modified drug template, 
with the observed data lying within the confidence interval 
of predicted curve. For fluoxetine, alprazolam, quinidine and 
triazolam, although the predicted results do not show an 
excellent overlay with the experimental data, most of the 
clinical data points lay within the confidence interval of the 
prediction profiles. For lorazepam, although the observed 
data were all at or around the upper confidence interval of 
the predicted profile, the shape of the predicted curve is 
very similar to that of the observed pharmacokinetic profile. 
Unfortunately, the other drugs do not show very satisfying 
prediction results, using clinical data points as reference.

To quantitatively measure the deviation of predicted con-
centration profiles from the experimental data, the differ-
ence between observed and predicted values was evaluated 
by NRMSE (Table 3). The lower the NRMSE value is, the 
smaller the difference between the predicted and experimen-
tal concentration profile, i.e., the better the performance of 
the created drug model. The average NRMSE of V2 is 0.26 
compared with the average value of 0.43 for V3, showing 
that V2 can introduce less prediction error when combining 
the two software platforms for prediction. Especially for V2, 
although dextromethorphan has an NRMSE value as large 
as 0.45, this should be caused by the deviation of the curve 
from the first data point. All the remaining data points are 
very close to the predicted curve. Fourteen of 18 drugs have 
NRMSE values < 0.4, and 7 of them are < 0.2, showing 

the satisfying prediction and collaboration quality of the 
two software tools. For V3, the top three drugs, caffeine, 
phenobarbital and bupropion, all have very small NRMSE 
values, which is consistent with the fact that the simulated 
C–T curves are well overlain with the experimental data 
points as shown in Fig. 4. Interestingly, the NRMSE values 
of fluoxetine (0.41), alprazolam (0.28), quinidine (0.53) and 
triazolam (0.29) are quite different, even though the simu-
lated C–T curves of the four drugs are relatively satisfactory. 
Taken together, both the overlay of simulated C–T curves 
with the measured C–T data points and NRMSE should be 
used to evaluate the quality of the predicted ADME parame-
ters by the ADMET predictor. Overall, the predicted ADME 
parameters according to ADMET Predictor can produce sat-
isfactory C–T curves using SimCYP simulator for about half 
of the tested drugs.

As illustrated in Figs. 3 and 4, more V2 version models 
(Fig. 3) have better performance than V3 version models 
(Fig. 4), suggesting log Po:w,  pKa, B/P and Fu are more accu-
rately predicted by ADMET Predictor than Peff, Vd and CYP 
parameters. Regarding a specific parameter, the prediction 
performance varies from one compound to another. Thus, we 
recommend adopting a different version of parameter substi-
tution mainly based on the structural similarity between the 
template and target drugs. When the structural similarity is 
very high (TS > 0.9), fewer parameter substitutions are pref-
ered, while when the structural similarity is not very high, 
more parameter substitutions are desirable, as the predic-
tion errors are smaller than the differences of the parameters 
between the target and the template.

3.3  Predicted Concentration Profiles for the in Silico 
PBPK Models

The C–T profiles predicted by all three versions (Versions 1, 
2, and 3) of PBPK models are shown in Fig. 5. The NRMSE 
value is also calculated to measure the differences between 
observed and predicted values of three versions, respec-
tively, which are summarized in Table 4. The table cell is 
marked with “*” if the NRMSE value of V1, V2 or V3 is 
< 0.2. In the following, we grouped all 13 drug pairs/26 
drug pair sets into three groups according to their Tanimoto 
scores for the sake of discussion.

Group I (TS ≤ 0.7). Six drug pairs, A–F, belong to this 
group. According to Table 4, the performance of the three 
protocols does not show an obvious pattern for Group I. 
V1, V2 and V3 have two (A-1 and D-1), five (A-1, A-2, 
D-1, D-2 and F-1) and three (B-2, C-2 and D-2) pair sets 
in “*” table cells, respectively. Most of those pair sets also 
exhibit a good overlay between experimental data points 
and prediction curves as shown in Fig. 5, indicating the col-
laboration between SimCYP and ADMET Predictor is good. 
For the other groups from A-1 to F-2, all three protocols 

Table 1  Calculated Tanimoto coefficient between each pair of drugs

Group Drug 1 Drug 2 Tanimoto score

A Bupropion Dextromethorphan 0.50
B Bufuralol Bupropion 0.52
C Dextromethorphan Quinidine 0.57
D Lorazepam Midazolam 0.63
E Alprazolam Lorazepam 0.65
F Lorazepam Triazolam 0.69
G Mephenytoin Phenobarbital 0.74
H Atomoxetine Fluoxetine 0.78
I Simvastatin Pravastatin 0.82
J Triazolam Midazolam 0.84
K Midazolam Alprazolam 0.88
L Theophylline Caffeine 0.93
M Imipramine Desipramine 0.95
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have NRMSE values > 0.2, and the simulated C-T curves 
do not overlay the experimental data points well. Interest-
ingly, for the D-2 drug pair set, although the NRMSE of 
the V2 model is the lowest, the predicted C-T curve by the 
V3 model has a better shape fitting of the observed data as 
shown in Fig. 5. This phenomenon is caused by the devia-
tion of the first data point from the predicted curve of V3, 
which caused its NRMSE to be larger than that of V2. When 
this outlier is eliminated and the NRMSE value is recalcu-
lated, V3 becomes the best for this pair set (NRMSEs are 

now 0.57, 0.16 and 0.06 for the V1, V2 and V3 protocols, 
respectively).

Group II (0.7 < TS ≤ 0.9). This group contains five drug 
pairs, G–K. As shown in Table 4, most drug pair sets have at 
least one version with NRMSE value < 0.2, except H-1 and 
I-2. Notably, the NRMSE value of I-2 is only 0.21, and the 
predicted C–T curve exhibits good consistency with experi-
mental data (Fig. 5). The failure of the H-1 model is likely 
caused by using problematic ADME parameters predicted by 
ADMET Predictor for the target drug. The “collaboration” 
between the two software tools should not be a problem for 

Fig. 2  Predicted concentration 
profiles and observed data of all 
drugs. Prediction results for all 
drugs except fluoxetine are from 
the original SimCYP template. 
The result for fluoxetine is from 
the adjusted fluoxetine template. 
Upper and lower dashed gray 
curves represent 95% confiden-
tial interval
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Table 2  Comparison between 
predicted and observed 
pharmacokinetic profiles of all 
drugs

Drug name Dosage Pred/obs TMax (h) CMax (ng/ml) AUC (ng/ml·h)

Bupropion 150 mg Pred 2.16 61.62 721.88
Pred_V2 1.93 50.04 467.20
Pred_V3 1.86 71.84 614.66
Obs (1.30, 5.10) (34.00, 118.00) (486.00, 1518.00)

Dextromethorphan 60 mg Pred 1.56 13.13 195.70
Pred_V2 1.57 16.31 253.83
Pred_V3 2.69 162.33 3594.67
Obs NA NA NA

Bufuralol 15 mg Pred 1.49 55.62 386.06
Pred_V2 1.24 41.98 221.18
Pred_V3 1.75 18.66 151.83
Obs (1.84, 2.74) (56.00, 72.00) (270.00, 430.00)

Quinidine 400 mg Pred 1.16 1904.52 11632.95
Pred_V2 1.15 1554.16 9525.60
Pred_V3 1.66 2183.40 18988.42
Obs (0.36, 2.54) (1330.00, 2070.00) (3800.00, 14860.00)

Lorazepam 2 mg Pred 1.92 18.24 240.28
Pred_V2 1.92 21.86 314.64
Pred_V3 2.08 32.98 531.29
Obs (0.50, 6.00) (15.80, 25.60) (197.20, 268.80)

Midazolam 7.5 mg Pred 0.60 39.97 99.77
Pred_V2 0.52 25.45 56.18
Pred_V3 0.87 39.58 383.67
Obs (0.22, 1.21) (25.90, 80.20) (64.00, 163.70)

Alprazolam 0.8 mg Pred 1.23 12.22 193.14
Pred_V2 1.44 12.92 323.18
Pred_V3 2.16 7.74 327.10
Obs (0.70, 2.30) (8.20, 14.40) (173.20, 291.60)

Triazolam 0.25 mg Pred 0.72 2.34 13.94
Pred_V2 0.49 1.26 11.88
Pred_V3 1.47 1.80 24.95
Obs (0.35, 2.15) (1.70, 4.30) NA

Mephenytoin 100 mg Pred 0.61 265.55 2576.76
Pred_V2 0.61 324.97 3089.24
Pred_V3 0.36 299.34 584.59
Obs NA NA NA

Phenobarbital 216 mg Pred 2.07 5235.78 660577.85
Pred_V2 4.02 5658.75 691539.10
Pred_V3 4.03 4977.22 930922.01
Obs 2.00 5100.00 NA

Fluoxetine 20 mg Pred 4.36 6.50 186.21
Pred_V2 5.32 6.04 192.74
Pred_V3 2.68 13.89 291.07
Obs NA NA NA

Atomoxetine 20 mg Pred 1.25 169.56 1390.42
Pred_V2 0.74 61.41 192.74
Pred_V3 1.84 35.78 486.50
Obs (0.50, 1.55) (106.16, 178.16) NA
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this drug pair since the NRMSE values of H-2 are very low 
for both the V2 and V3 models, which are 0.08 and 0.02 
for the two models correspondingly. As shown in Table 4, 
the V3 version models apparently outperform the V1 and 
V2 models for most drug pair sets, as seven out of ten V3 
models have NRMSE values < 0.2, while none of the V1 
models and 2 V2 models have NRMSE values < 0.2. Inter-
estingly, for drug pair set J-2, the V2 and V3 models have 
highly similar performances with good prediction results as 
shown in Fig. 5; however, for K-2, all three model versions 
do not exhibit satisfying prediction (Fig. 5), even though 
the NRMSE values of the V1 and V2 models are equal to or 
lower than the cutoff.

Group III (TS > 0.9). This group contains two drug pairs, 
L and M. As shown in Table 4, most models have satisfac-
tory NRMSE values. For L-1 and L-2 drug pair sets, the 

predicted profiles of the V2 and V3 models are very close to 
the clinical data points. Interestingly, for M-1 and M-2 drug 
pair sets, the performance of the V3 models is very poor. 
Drug pair M has structural similarity with the TS of 0.95; 
interestingly, the V3 models perform poorly while the V1 
and V2 models have not only satisfactory NRMSE values 
but also very well-overlain C-T curves with measured data 
points. This phenomenon may be explained by the prediction 
error by ADMET Predictor, and error caused by the inherent 
difference between the two software platforms can be com-
pensated by the small difference in the ADME parameters 
between the template and target drugs. Indeed, the NRMSE 
values of the two drugs in drug pair M, 0.51 and 0.70, are 
very large (Table 4).

As shown in Fig. 5, the performance of three parameter 
substitution versions varied from one drug pair to another 

Table 2  (continued) Drug name Dosage Pred/obs TMax (h) CMax (ng/ml) AUC (ng/ml·h)

Simvastatin 10 mg Pred 1.20 2.11 7.03

Pred_V2 1.20 0.52 1.69

Pred_V3 1.20 24.03 78.42

Obs (1.00, 1.40) (2.60, 4.60) (7.40, 14.78)
Pravastatin 20 mg Pred 0.96 40.60 130.36

Pred_V2 1.08 206.61 578.24
Pred_V3 1.56 130.85 489.70
Obs (1.00, 1.20) (30.80, 42.20) (92.00, 126.80)

Theophylline 100 mg Pred 0.75 2589.22 29614.81
Pred_V2 0.62 2372.22 19458.59
Pred_V3 0.62 1897.37 10003.06
Obs (1.38, 1.82) (1727.91, 2036.31) (21499.55, 24439.65)

Caffeine 100 mg Pred 1.18 2540.84 13709.29
Pred_V2 1.25 1952.50 10269.04
Pred_V3 1.50 2114.02 12859.90
Obs (0.33, 2.00) (1598.00, 2280.00) (10700.00, 24438.00)

Imipramine 50 mg Pred 3.03 25.37 250.72
Pred_V2 3.13 28.18 300.21
Pred_V3 3.64 83.87 1082.01
Obs (2.80, 3.80) (20.90, 36.90) NA

Desipramine 50 mg Pred 5.42 13.56 264.97
Pred_V2 6.26 17.10 353.36
Pred_V3 6.25 50.66 1042.14
Obs (2.00, 10.00) (12.1, 20.1) (211.60, 413.20)

Pred predicted drug pharmacokinetic parameters from the unchanged SimCYP drug template (except 
fluoxetine; for fluoxetine especially, the SimCYP drug template is modified to enable the predicted profile 
fit of the clinically reported curve), Pred_V2 predicted drug pharmacokinetic parameters using SimCYP 
with input parameters (log Po:w,  pKa, B/P and Fu) from ADMET Predictor, Pred_V3 predicted drug phar-
macokinetic parameters using SimCYP with input parameters (log Po:w,  pKa, B/P, Fu, Peff, Vd and CYP 
parameters) from ADMET Predictor, Obs drug pharmacokinetic parameter reported by clinical research, 
CMax maximal concentration, TMax the time at which CMax is observed, AUC  area under the curve, pKa acid 
dissociation constant, log Po:w logarithm of octanol-buffer partition coefficient, B/P blood-to-plasma parti-
tion ratio, Fu fraction unbound in plasma, Vss volume of distribution at steady state, Peff human jejunum 
effective permeability, Km Michaelis-Menten constant, Vmax maximal metabolism rate
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mainly depending on the net effect of eliminating two 
sources of errors, the prediction errors of ADMET Predictor 
and the errors of applying the template model to describe the 
target. For the first source of errors, more and more predic-
tion errors are introduced from V1 to V2 and then to V3. 
The second source of errors is big for dissimilar drug pairs 
(Group I) and small for highly similar drug pairs (Group III). 

For a structurally dissimilar drug pair, V2 or V3 are neces-
sary to overcome the large second source errors, even though 
more first source errors are introduced. On the other hand, 
for a structurally similar drug pair, V1 or V2 is preferrable as 
the errors from both sources are small. More discussion on 
choosing proper versions of a parameter substitution scheme 
is provided below.

Fig. 3  Predicted concentration 
profiles using SimCYP drug 
template with input parameters 
from ADMET Predictor (log 
Po:w,  pKa, B/P and Fu) and 
observed data of all drugs. 
Upper and lower dashed gray 
curves represent 95% confi-
dential interval. Po:w logarithm 
of octanol-buffer partition 
coefficient, B/P blood-to-plasma 
partition ratio, Fu fraction 
unbound in plasma, pKa acid 
dissociation constant
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4  Discussion

In this study, we developed a novel approach to construct 
in silico PBPK models for target drugs lacking experimen-
tal ADME and other pharmacokinetic parameters using an 
established PBPK model of a structurally similar drug as 
the model template. We used 18 drugs, which formed 13 
drug pairs (A-M) and 26 drug pair sets (each drug in a pair 
serves the template and target roles alternatively) to evalu-
ate three ADME parameter substitution protocols, which 
are corresponding to three versions of PBPK models. The 
performance of the in silico PBPK models was critically 
evaluated using experimental pharmacokinetic profiles and 
parameters.

4.1  Practical Guidance on Selecting a Suitable Drug 
Template

We attempted to obtain guidance on selecting a suitable 
template drug for a given target drug. We focused on using 
structural similarity to select the template drugs. It was 
found that drug pairs with Tanimoto score > 0.70 (Groups II 
and III) tended to show better prediction performance among 
the three versions compared with drug pairs with Taminoto 
score < 0.70 (Group I). It is obvious that the higher struc-
tural similarity of two drugs within a drug pair should con-
tribute to the higher possibility of good prediction results. 
After comparing the model performance of all three versions 
of models, we developed the following guidance: for Group 
I drug pairs, V2 or V3 is recommended; for Group II drug 
pairs, V3 is recommended; for Group III drug pairs, V2 is 
recommended. Following this practical guidance, 16 out of 
26 drug pair sets have NRMSE values < 0.2, the threshold to 
recognize a good PBPK model. Nevertheless, the prediction 
accuracy of ADMET Predictor and the extent of inherent 
difference between it and SimCYP are also  crucial factors 
that affect the model performance. From the evaluation of 
the error caused by combining the two software tools, the 
prediction accuracies of each modified drug template varied 
from each other, which shows the influence of the introduced 
error can be very different for different drugs.

Additional criteria other than structural similarity 
between the template and target drugs may be introduced 
to further improve the computational protocol since the 
prediction performance of drug pairs with the similar/same 
TS may have different prediction accuracies as indicated by 
Fig. 5. This phenomenon is more obvious for drug pair sets 
with low TS. For example, for drug pair set D (lorazepam/
midazolam), the prediction for midazolam by V3 version 
of parameter substitution is much more accurate than that 

for lorazepam. This discrepancy may come from the failure 
of parameter prediction by ADMET Predictor and/or the 
imperfect collaboration between the two software platforms. 
Fortunately, this inconsistency problem becomes less severe 
when the drug pairs share higher structural similarities as for 
drug pair sets from G to M.

4.2  Another Possible Method to Evaluate 
the Prediction Results of the Three Versions

There is also another method to evaluate the prediction 
results of V1, V2 and V3, which is the fold error in the AUC 
of the three prediction versions compared to the clinical 
data. However, the fold error in the AUC can only show the 
difference between the total area under the prediction curve 
and the literature-reported pharmacokinetic curve without 
delineating the concrete shapes of curves. Contrarily, the 
shape of the predicted drug C-T curve can be reflected by the 
difference between predicted and observed drug concentra-
tions at each time point when using RMSE as an evaluation 
method. Furthermore, the variation of the dosages can con-
tribute to large RMSE discrepancy among drugs. Therefore, 
we normalized RMSE to eliminate the influence of dosages 
on RMSE values. The utilization of NRMSE can help to 
reduce the false-positive rate.

Table 3  Calculated normalized root mean square error (NRMSE) 
between predicted results by modified drug template and experimen-
tal concentration profiles of drugs

Name NRMSE V2 NRMSE V3

Alprazolam 0.26 0.28
Atomoxetine 0.35 0.40
Bufuralol 0.17 0.36
Bupropion 0.18 0.26
Caffeine 0.13 0.13
Desipramine 0.35 0.70
Dextromethorphan 0.45 0.93
Fluoxetine 0.10 0.41
Imipramine 0.21 0.51
Lorazepam 0.25 0.53
Mephenytoin 0.24 0.48
Midazolam 0.27 0.29
Phenobarbital 0.14 0.22
Pravastatin 0.42 0.53
Quinidine 0.08 0.53
Simvastatin 0.56 0.52
Theophylline 0.12 0.29
Triazolam 0.41 0.29



413In Silico Prediction of Pharmacokinetic Profile

4.3  Perspective of Applying in Silico PBPK Modeling 
for Compounds Lack Experimental ADME 
and Pharmacokinetic Properties

SimCYP simulator is an advanced software with well-con-
structed drug pharmacokinetic models in its built-in drug 

library, with each drug template containing comprehensive 
drug parameters. It can intuitively show simulated drug C–T 
curves contributed by these parameters under different trial 
designs. On the other hand, ADMET Predictor can predict 
many pharmacokinetic parameters of an input compound 
based on its structural information without giving additional 

Fig. 4  Predicted concentration 
profiles using SimCYP drug 
template with input param-
eters from ADMET Predictor 
(log Po:w,  pKa, B/P, Fu, Peff, 
Vd and CYP parameters) and 
observed data of all drugs. 
Upper and lower dashed gray 
curves represent 95% confiden-
tial interval. Po:w logarithm of 
octanol-buffer partition coeffi-
cient, B/P blood-to-plasma par-
tition ratio, Fu fraction unbound 
in plasma, pKa acid dissociation 
constant, Peff human jejunumef-
fective permeability, Vd volume 
of distribution, CYP cytochrome 
P450
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information. However, constructing a drug pharmacokinet-
ics model needs full-scale pharmacokinetic parameters, and 
some of them cannot be predicted reasonably. Considering 
this, we can partially rely on the pharmacokinetic parameters 
of another compound which shares high structural similarity 
with the unknown target compound. In this study, we put 

forward a novel approach to build PBPK models for a target 
drug with a lack of measured ADME and other pharma-
cokinetic parameters using the PBPK model of a template 
drug which is structurally similar to the target drug. Also, 
we proposed overall guidance on selecting a suitable tem-
plate drug and using its PBPK model as the model template. 

Fig. 5  Predicted concentration profiles of three versions and observed data of all predicted drugs
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The success of this computational approach depends on two 
important factors, the availability of a high-quality PBPK 
model for the template compound and accuracy and consist-
ency of the ADME and pharmacokinetic parameters pre-
dicted by ADMET Predictor software for the target drug. 
Thus, the performance of two software tools can greatly 
contribute to the experimental results of our study. As a 
calculator of ADMET properties for compounds, the pre-
diction results of drug properties may not be close enough 
to the real state, leading to errors when constructing drug 
models. Additionally, not all the ADME/pharmacokinetic 
properties can be calculated with the current version of 
ADMET Predictor. For example, the prediction of metabo-
lism in ADMET Predictor is limited to only five commonly 
used enzymes (CYP1A2, CYP2D6, CYP2C9, CYP2C19 
and CYP3A4), and the prediction results of the transporters 
related to the drug can only be reported qualitatively rather 
than quantitively. On the other hand, there are currently 70 
established compounds in SimCYP’s drug libraries (includ-
ing both the substrate and inhibitor libraries), and the librar-
ies are still under development. We tested 18 compounds 
that shared structural similarity, and this study will be filled 
out as more clinically validated PBPK models and related 
parameters for in-use drugs become available.

At the current stage, application of this proposed method 
to construct a PBPK model for a candidate compound may 
encounter some difficulties, such as failing to identify a tem-
plate drug in the SimCYP library that shares high structural 
similarity with the target compound or several template 
drugs being identified in SimCYP library that have similar 
structural similarity with the target compound. For the first 
problem, a practical solution is to greatly expand the library 
of PBPK models, and we are now constructing high-quality 
PBPK models for the top-selling drugs. For the second prob-
lem, we can add additional criteria to further prioritize the 
templates; those criteria include but are not limited to key 
ADME properties (such as aqueous solubility, permeability 
and metabolism profile) and drug targets.

Nevertheless, we have proposed a practical approach 
to generate PBPK models for a compound lacking experi-
mental ADME/pharmacokinetic properties. This model can 
serve as the initial version of the PBPK models for the tar-
get compound, and its performance can be improved using 
the measured pharmacokinetic profiles and properties in the 
future. The computational protocol introduced in this work 
can have important applications in selecting drugs to enter 
the drug optimization phase or drug candidates to enter pre-
clinical studies.

5  Conclusions

In this work, we have introduced and tested a novel com-
putational protocol to develop an in silico PBPK model for 
a compound lacking measured ADME/pharmacokinetic 
properties and pharmacokinetic profiles. The general idea 
is to choose a proper PBPK model as the template when the 

Table 4  Calculated normalized root mean square error (NRMSE) 
between predicted (three versions) and experimental concentration 
profiles of drugs in each drug pair set

The normalized root mean square errors (NRMSEs) of the target and 
template drugs, which are adopted from Table 3, measure the quality 
of the ADME prediction using ADMET Predictor and/or the inherent 
difference between the two software platforms. The Tanimoto scores 
in the last column come from Table 1
Obs, the drug pharmacokinetic parameter reported by clinical 
research; V1, version 1; V2, version 2; V3, version 3

Drug group Drug pair set NRMSE (different 
versions vs. obs)

Tanimoto score

V1 V2 V3

Group I A-1 0.14* 0.13* 0.49 0.50
A-2 0.26 0.19* 0.50 0.50
B-1 0.44 0.49 0.49 0.52
B-2 0.67 0.49 0.07* 0.52
C-1 0.64 0.34 0.31 0.57
C-2 0.68 0.67 0.13* 0.57
D-1 0.14* 0.16* 0.48 0.63
D-2 0.61 0.16* 0.19* 0.63
E-1 0.22 0.32 0.35 0.65
E-2 0.43 0.56 0.35 0.65
F-1 0.24 0.19* 0.33 0.69
F-2 0.88 0.28 0.27 0.69

Group II G-1 0.94 0.94 0.04* 0.74
G-2 0.58 0.56 0.14* 0.74
H-1 0.56 0.56 0.52 0.78
H-2 0.44 0.08 0.02* 0.78
I-1 0.49 0.36 0.04* 0.82
I-2 0.34 0.38 0.21 0.82
J-1 0.43 0.57 0.14* 0.84
J-2 0.45 0.13* 0.12* 0.84
K-1 0.69 0.67 0.06* 0.88
K-2 0.20 0.15* 0.38 0.88

Group III L-1 0.34 0.06* 0.12* 0.93
L-2 0.22 0.19* 0.17* 0.93
M-1 0.08* 0.10* 0.66 0.95
M-2 0.13* 0.15* 0.40 0.95
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corresponding compound, the template drug, is structurally 
similar to the target drug. For the target drug, we calculated 
the ADME properties using ADMET Predictor of Simula-
tionPlus Inc. We have developed an overall guidance using 
this method to build PBPK models for an arbitrary drug. 
First, the structural similarity between the template and tar-
get drug is very important; thus, template drugs that have 
the highest structural similarity to the target drug should be 
considered first; second, once the target drug is selected, the 
ADME parameter substitution protocol is selected based on 
the Tanimoto score between the target and template drugs. 
If TS is ≤ 0.7, V2 or V3 protocol is recommended; if TS is 
> 0.7 but ≤ 0.9, V3 protocol is suggested. If TS is > 0.9, V2 
is recommended. Following this guidance, > 60% (16 out of 
26) of the PBPK models have satisfactory performance. It is 
emphasized that this method relies greatly on the collabo-
ration between SimCYP and ADMET Predictor as well as 
the prediction accuracy of ADMET Predictor. The NRMSE 
values of the template and target drugs can guide us to select 
proper substitution protocols. If the NRMSE values are 
small, one can select a protocol with many ADME param-
eters being substituted, such as V3; however, if the NRMSE 
values are large, adopting V2 or V1 protocols can minimize 
the error due to the poor “collaboration” between the two 
software platforms. Unfortunately, the NRMSE value of the 
target drug is unknown in practice. A tool which can predict 
this NRMSE parameter is thus needed to further improve 
this method. While future experimental work is definitely 
needed to further improve the model performance, our novel 
approach proposed in this work can help identify drug can-
didates with favorable pharmacokinetic profiles, reducing 
experimental cost and providing insight into drug discovery 
and development.
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