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Abstract
Background and Objective Entrectinib is a selective inhibitor of ROS1/TRK/ALK kinases, recently approved for oncology 
indications. Entrectinib is predominantly cleared by cytochrome P450 (CYP) 3A4, and modulation of CYP3A enzyme activ-
ity profoundly alters the pharmacokinetics of both entrectinib and its active metabolite M5. We describe development of a 
combined physiologically based pharmacokinetic (PBPK) model for entrectinib and M5 to support dosing recommendations 
when entrectinib is co-administered with CYP3A4 inhibitors or inducers.
Methods A PBPK model was established in  Simcyp® Simulator. The initial model based on in vitro–in vivo extrapolation 
was refined using sensitivity analysis and non-linear mixed effects modeling to optimize parameter estimates and to improve 
model fit to data from a clinical drug–drug interaction study with the strong CYP3A4 inhibitor, itraconazole. The model was 
subsequently qualified against clinical data, and the final qualified model used to simulate the effects of moderate to strong 
CYP3A4 inhibitors and inducers on entrectinib and M5 pharmacokinetics.
Results The final model showed good predictive performance for entrectinib and M5, meeting commonly used predictive 
performance acceptance criteria in each case. The model predicted that co-administration of various moderate CYP3A4 
inhibitors (verapamil, erythromycin, clarithromycin, fluconazole, and diltiazem) would result in an average increase in 
entrectinib exposure between 2.2- and 3.1-fold, with corresponding average increases for M5 of approximately 2-fold. Co-
administration of moderate CYP3A4 inducers (efavirenz, carbamazepine, phenytoin) was predicted to result in an average 
decrease in entrectinib exposure between 45 and 79%, with corresponding average decreases for M5 of approximately 50%.
Conclusions The model simulations were used to derive dosing recommendations for co-administering entrectinib with 
CYP3A4 inhibitors or inducers. PBPK modeling has been used in lieu of clinical studies to enable regulatory decision-making.
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1 Introduction

The use of physiologically based pharmacokinetic (PBPK) 
modeling to predict drug concentrations in plasma and tis-
sue has demonstrated utility for accelerating pharmaceuti-
cal development, and is now an integral part of many drug 
development programs [1–8]. Advancement in the discipline 
has been followed by increasing acceptance by regulatory 

authorities [5, 7–13], and there are now numerous examples 
of drug approvals supported by PBPK modeling in lieu of 
in vivo clinical studies [14, 15, 17, 18]. One area where 
PBPK modeling is now particularly widely used is the pre-
diction of drug–drug interactions, in part because it allows 
quantitative predictions in complex scenarios, e.g., simulta-
neous induction and inhibition, multiple perpetrators, etc. 
[19–22]. Understanding the clinical consequences of such 
interactions has been further facilitated by the development 
of models which simultaneously predict effects on multiple 
pharmacologically-active species [23–28].

PBPK modeling has traditionally been regarded as a bot-
tom–up approach whereby in vitro–in vivo extrapolation 
(IVIVE) techniques are used within a mechanistic frame-
work to predict plasma and tissue concentrations from 
physicochemical and in vitro data. This contrasts with a 
top–down approach whereby empirical models are generated 
to describe observed in vivo data. However, both approaches 
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Key Points 

A PBPK model was developed, accurately predicting 
the in vivo pharmacokinetics of both entrectinib and its 
active metabolite M5.

Dosing recommendations for co-administering entrec-
tinib with CYP3A4 inhibitors derived from the model 
were 6-fold lower and 3-fold lower entrectinib doses 
when co-administered with a strong and a moderate 
CYP3A4 inhibitor, respectively, and the use of entrec-
tinib with moderate or strong CYP3A4 inducers should 
be avoided.

This PBPK modeling approach provided key support for 
the filing of entrectinib and dosing recommendations in 
the drug label.

Here, we describe the development of a PBPK model for 
entrectinib and M5 where two independent methods [sen-
sitivity analysis and nonlinear mixed effect (NLME) mod-
eling] were used to refine estimates for key entrectinib and 
M5 clearance parameters. The final model was then used to 
define appropriate entrectinib dosing strategies with various 
different CYP3A4 inhibitors and inducers in order to support 
regulatory decision-making.

2  Methods

The overall PBPK model development, qualification, and 
simulation strategy is depicted schematically in Fig. 1. The 
initial model building focused on entrectinib only; subse-
quently,, M5 was incorporated. The PBPK model based on 
IVIVE of physiochemical, in vitro, and in vivo metabolism 
data was refined using sensitivity analysis and NLME mod-
eling to optimize parameter estimates and improve model fit 
to data from a clinical drug–drug interaction study with the 
strong CYP3A4 inhibitor, itraconazole. The refined model 
was subsequently qualified by comparing simulated entrec-
tinib and M5 plasma concentrations with observed data from 
other clinical studies in which patients with solid tumors 
or healthy volunteers received entrectinib dosing, includ-
ing a clinical drug–drug interaction study with the strong 
CYP3A4 inducer, rifampin. Thereafter, the final qualified 
PBPK model was used to simulate the effects of several 
moderate-to-strong CYP3A4 inhibitors and inducers on 
entrectinib and M5 pharmacokinetics. The Simcyp input 
parameters for the final PBPK model are detailed in Table 1.

2.1  Model Development and Qualification

The PBPK model was established in  Simcyp® Simulator 
(v.17.1; Certara, Princeton, USA). The model integrated 
available physiochemical, in vitro, and in vivo metabolism 
data for entrectinib and M5 (Table 1). The retrograde mod-
eling tool was used to refine the intrinsic clearance  (CLint) 
values obtained via in vitro to in vivo extrapolation, and a 
full PBPK distribution model was used with the Rodgers 
and Rowland method to predict tissue to plasma partition 
coefficients [35]. Based on insights derived from independ-
ent modeling of entrectinib absorption using the GastroPlus 
software tool [36], an advanced distribution, absorption, and 
metabolism model [37] was used to describe the kinetics 
in the gastrointestinal tract using the “solution formulation 
without precipitation” option. A built-in virtual healthy vol-
unteer adult population was used for simulations. For simu-
lation of dosing in the fed state, the Simcyp default gastric 
emptying time (1 h) was increased to 2 h to better reflect the 
observed timing of peak entrectinib concentrations.

are recognized to have limitations, and use of a middle–out 
strategy combining elements of both represents an alterna-
tive [7, 29–32]. Such hybrid multilevel models combine 
prior information on the system and drug with analysis of 
observed data, for example, by using clinical data to opti-
mize IVIVE model parameters. Generation of a middle–out 
model offers potential advantages, but is not without chal-
lenges [30]. While there are now numerous examples where 
a middle–out modeling strategy has been used to support 
high-impact regulatory activities, (e.g., drug–drug interac-
tion dosing recommendations without the need for a corre-
sponding clinical study [12]), success of this approach ulti-
mately requires acceptance and endorsement by regulatory 
authorities.

Entrectinib is a potent and selective inhibitor of pan-TRK, 
ROS1, and ALK receptor tyrosine kinases. These kinases are 
overexpressed or dysregulated in many types of cancer, such 
that cancer cell growth is dependent on abnormal kinase 
activity [33]. Recently, entrectinib was approved for treat-
ment of adult and pediatric patients with tumors that harbor 
NTRK1/2/3 or ROS1 gene rearrangements.

Entrectinib is predominantly cleared by CYP3A4-medi-
ated metabolism to a pharmacologically-active metabolite 
(M5), and both parent and metabolite are believed to con-
tribute equally to the overall effect of entrectinib treatment 
[34]. Clinical drug–drug interaction studies with the potent 
CYP3A4 inhibitor, itraconazole, and CYP3A inducer, 
rifampicin, demonstrated that modulation of CYP3A 
enzyme activity profoundly alters the pharmacokinetics of 
both entrectinib and M5. However, the effects on entrectinib 
and M5 were quantitatively different, making it more diffi-
cult to extrapolate the observed itraconazole and rifampicin 
drug–drug interaction study data to other scenarios.
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2.1.1  Sensitivity Analyses

Sensitivity analyses were performed to optimize the frac-
tion of entrectinib unbound in gut  (fuGut), the fraction of 
entrectinib metabolized by CYP3A4 (entrectinib  fmCYP3A4), 
the fraction of entrectinib metabolized by CYP3A4 to M5 
(entrectinib  fmCYP3A4[M5]), the metabolic clearance of M5, 

the fraction of M5 metabolized (M5 fm), and the fraction of 
M5 metabolized by CYP3A4 (M5  fmCYP3A4).

A matrix of 20 different values of  fuGut and entrectinib 
 fmCYP3A4 parameters were initially assessed during par-
ent model development  (fuGut: 0.5–1; entrectinib  fmCYP3A4 
0.737–0.831, based on the estimated 0.72 from in vitro, rep-
resented by CYP3A4  CLint of 4–7 μL/min/pmol). Predicted 

Fig. 1  Schematic of PBPK model development, qualification, and simulation strategy. CYP cytochrome P450, DDI drug-drug interaction, NLME 
non-linear mixed effect, PBPK physiologically based pharmacokinetic  

Table 1  Simcyp input parameters for final PBPK model

HAS human albumin in serum, AGP alpha-glycoprotein, fuGut fraction unbound in the gut, NLME non-linear mixed effect modeling, Pcaco-2 
Caco-2 permeability, Peff, man, effective permeability in human, Kp partition coefficient, Fm fraction metabolized, HLM human liver microsomes, 
CYP cytochrome P450

Parameter Input values Comment

Entrectinib M5

Molecular weight 560.65 g/mol 546.6
Log P 4.336 3.73
Fraction unbound in plasma 0.005 0.005 Entrectinib and M5 bind to both HAS 

and AGP
Blood:plasma ratio 1.3 1
pKa pKa1 = 2.54 ± 0.09 (Base); pKa2 = 

7.54 ± 0.01 (Base)
pKa1 = 2.56 ± 0.01 (Base); 

pKa2 = 8.55 ± 0.01 (Base)
fuGut 1.0 NA Based on sensitivity analysis and 

NLME modeling
PCaco-2 3.72×10-6 cm/min NA
Peff, man 1.3410-4 cm/s NA Predicted using PCaco-2 and atenolol 

(0.19×10-6 cm/min)
Formulation Solution without precipitation NA [36]
Distribution PBPK model Full PBPK model Full PBPK model Rodgers and Rowland model
Kp scalar 0.33 (Resulting in predicted Vss of 

3.42 L/kg)
NA

Clint enzyme kinetics, recombinant 
CYPs

CYP3A4: 5.17 μL/min/pmol CYP3A4: 31.0 μL/min/pmol Correspond to entrectinib 
Fm[CYP3A4] = 78% and M5 
Fm[CYP3A4] = 99%

Additional clearance in liver 197 μL/min/mg of protein 42.9 μL/min/mg of protein
Additional renal or systemic clear-

ance
0.0375 L/h 0.440 L/h

Fraction unbound in HLM 0.072 for CYP3A4 (0.08 mg/mL) [34]
Induction slope for CYPs CYP3A4: 0.61; CYP2C9: 0.25 [34]
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entrectinib exposures from each pair of parameter values 
were visually compared against observed data from the 
clinical drug–drug interaction study with itraconazole 
[38] (Study RXDX-101-12). Based on this initial assess-
ment, it was determined to be most relevant to fix  fuGut at 
1, and a more intensive sensitivity analysis was conducted 
that focused on the entrectinib  fmCYP3A4 over a range of 
0.778–0.808  (CLint ranging between 5 and 6 μL/min/pmol).

Based on in vitro experiments [38], M5 was identified 
as the major metabolite, and that it was mainly formed via 
CYP3A4 (> 50%). In addition, CYP3A4 was the main iso-
form involved in M5 metabolism (70–99%). As such, dur-
ing M5 model development, sensitivity analyses were per-
formed that explored parameter value ranges for entrectinib 
 (fmCYP3A4[M5] and M5 fm of 50–99%, and 70–99% for M5 
fmCYP3A4). Metabolic clearance of M5 was explored over 
a 0.5- to 2-fold range relative to the metabolic clearance 
of entrectinib. In each case, the predicted M5 exposures 
from each parameter value were visually compared against 
observed data from a clinical drug–drug interaction study 
with itraconazole (Study RXDX-101-12). There was no hier-
archy among the sensitivity analyses.

2.1.2  NLME Modeling to Estimate Fg and fmCYP3A4

A novel data analysis approach was also used to estimate 
entrectinib fraction escaping intestinal metabolism (Fg) 
and  fmCYP3A4 parameters. A combination of NLME and 
PBPK modeling was used to analyze data from the clini-
cal drug–drug interaction study with itraconazole (Study 
RXDX-101-12). A description of the assumptions, method-
ology, results, and model verification is presented elsewhere 
[15].

2.2  Clinical Study Data

Model qualification employed plasma concentration data 
from three clinical studies in which patients or healthy 
volunteers received entrectinib dosing (Table 2). In each 
study, bioanalytical samples were collected according to 
an intensive sampling scheme; entrectinib and M5 plasma 
concentrations were measured using a validated LC-MS/
MS method for simultaneous determination of entrectinib 
and M5 (Ignyta, San Diego, CA, USA; data on file). Two 
different oral immediate release capsule formulations (F2A 
and F06) were employed, but were not differentiated dur-
ing model development because the two formulations were 
bioequivalent [16].

2.3  Simulations with CYP3A4 Inhibitors 
and Inducers

The final qualified PBPK model was used to simulate the 
effects of moderate to strong CYP3A4 inhibitors and induc-
ers on the pharmacokinetics of entrectinib and M5 in a vir-
tual population of adult healthy volunteers. The perpetrator 
drugs and their simulated dosing regimens are detailed in 
Table 3. Simulations employed compound files from Sim-
cyp (v.17.1). Simcyp parameter values for creating a virtual 
healthy volunteer population (e.g., physiological parame-
ters including liver volume and blood flows, enzyme abun-
dances) have been described previously [40]. While initial 
simulations employed a single 600-mg dose of entrectinib, 
subsequent simulations for selected perpetrators were gener-
ated using lower doses of entrectinib (100 mg and 200 mg) 
and dosing to steady state with a once-daily dosing regimen.

Table 2  Summary of clinical studies providing data for model qualifications

qd once daily, CYP cytochrome P450

Study Population n Study design Study treatments

RXDX-101-02 Adults with 
NTRK1/2/3+ or 
ROS1+ solid tumors

191 Non-randomized, open label, non-com-
parator, one treatment

600 mg entrectinib qd with food

RXDX-101-04 Healthy adult volunteers 24 Randomized, three-treatment, three-
period, two-sequence crossover

400 mg entrectinib single dose fasted
600 mg entrectinib single dose fasted
600 mg entrectinib single dose with food

RXDX-101-12 (part 1) Healthy adult volunteers 10 Non-randomized, open-label, two-
treatment, two-period, fixed-sequence 
crossover

100 mg entrectinib single dose fasted, then 
100 mg entrectinib single dose fasted 
plus itraconazole (strong CYP3A4 inhibi-
tor) 200 mg qd for 10 days

RXDX-101-12 (part 2) Healthy adult volunteers 10 Non-randomized, open label, two-
treatment, two-period, fixed-sequence 
crossover

600 mg entrectinib single dose fasted, then 
600 mg entrectinib single dose fasted 
plus rifampin (strong CYP3A4 inducer) 
600 mg qd for 16 days
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3  Results

3.1  Model Qualification

Input parameters for the final PBPK model are detailed in 
Table 1. Refinements to initial parameter estimates based on 
sensitivity analysis and NLME modeling are indicated. The 
two independent methods used to derive estimates for key 
entrectinib and M5 clearance parameters gave similar results. 
Based on sensitivity analyses, an entrectinib  fmCYP3A4 value 
of 0.78 (reflected by a CYP3A4  CLint of 5.17 μL/min/pmol) 
was selected. A  fuGut of 1 resulted in a mean estimated  Fg 
(i.e., fraction of entrectinib escaping intestinal metabolism) 
of 0.60 (geometric mean 0.58). Separately, the NLME esti-
mated an  fmCYP3A4 of 0.755 (95% CI 0.697–0.804), and  Fg of 
0.58 (95%CI 0.460–0.718) [15]. Overall, the model predicts 

that the majority of an absorbed entrectinib dose is cleared 
by CYP3A4-mediated metabolism to the M5 metabolite, 
while the M5 metabolite is itself almost exclusively cleared 
by CYP3A4-mediated metabolism (Fig. 2).

During model development, it was noted that the observed 
entrectinib and M5 exposures in the clinical drug–drug inter-
action study with the strong CYP3A4 inducer rifampin (Part 
2 of Study RXDX-101-12) were ~ 30% lower than other 
clinical studies employing the same entrectinib dose. As a 
consequence, the PBPK model initially over-estimated expo-
sure parameters for this specific study. To improve the PBPK 
model fit, a study-specific lower bioavailability was incorpo-
rated by reducing the effective permeability in human value 
for entrectinib  (Peff,man) from 1.34 ×  10−4 to 0.33 ×  10−4 
cm/s for this study.

The final PBPK model showed good predictive per-
formance for both entrectinib and M5. Predicted plasma 
exposures were similar to observed exposures when entrec-
tinib was administered alone, or with the strong CYP3A4 
inhibitor, itraconazole (Study RXDX-101-12 Part 1; Table 4; 
Fig.  3), or with the strong CYP3A inducer, rifampicin 
(Study RXDX-101-12 Part 2; Table 5 and Fig. 4). The 5th 
and 95th percentiles of the model-predicted concentrations 
encompassed most observed concentrations (Figs. 3, 4), 
while the magnitude of the drug–drug interaction effects 
predicted by the model were comparable with the observed 
results from NCA analyses. The ratios between predicted 
and observed changes in drug exposure  (Ratiopredicted/
Ratioobserved, see [11]) for co-administration of itraconazole 
were 1.14 (Cmax) and 0.76 (AUC) for entrectinib, and 0.33 
(Cmax) and 0.52 (AUC) for M5 (Table 4). Corresponding 
values for co-administration of rifampicin were 0.82 (Cmax) 
and 0.87 (AUC) for entrectinib, and 1.00 (Cmax) and 1.36 
(AUC) for M5 (Table 5). Predictive performance was also 

Table 3  Summary of simulated perpetrator dosing regimens

bid twice daily, qd once daily, tid three times daily

Drug Dosing regimen

Carbamazepine 400 mg bid for 8 days
Clarithromycin 250 mg bid for 11 days
Diltiazem 60 mg tid for 15 days
Efavirenz 600 mg qd for 16 days
Erythromycin 500 mg tid daily for 15 days
Fluconazole 200 mg qd for 20 days
Fluvoxamine 50 mg qd for 16 days
Itraconazole 200 mg qd for 10 days
Phenytoin 300 mg qd for 16 days
Rifampin 600 mg once daily for 16 days
Verapamil 80 mg tid for 15 days

Fig. 2  Schematic of entrectinib and M5 clearance pathways with key parameter values. CYP cytochrome P450, UGT  uridine 5'-diphospho-glu-
curonosyltransferase
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good when simulating exposures in healthy volunteers under 
fed and fasted conditions (Study RXDX-101-04; presented 
in Fig. 5), and in patients with solid tumors dosed to steady 
state (Study RXDX-101-02) (Figs. 6 and 7 for entrectinib 
and M5, respectively).      

3.2  Simulations with CYP3A4 Perpetrators

The final qualified PBPK model was used to simulate the 
effects of various moderate to strong CYP3A4 inhibitors and 
inducers on entrectinib and M5 pharmacokinetics in a virtual 
population of adult healthy volunteers. Ratios of simulated 

Table 4  Observed and 
simulated entrectinib and M5 
exposure with and without 
co-administration of the potent 
CYP3A inhibitor itraconazole

Geometric means for observed data. Parameters derived from simulated and observed plasma concentra-
tions following a single 100-mg dose of entrectinib alone or co-administered with itraconazole
AUC inf area under the concentration-time curve from time zero to infinity, Cmax maximum concentration, 
CYP cytochrome P450

100 mg entrectinib 
+ itraconazole

100 mg entrectinib 
alone

Interaction ratio of geometric 
means (90% CI)

Observed Pre-
dicted

Observed Pre-
dicted

Observed Predicted

Entrectinib  Cmax (nM) 615 643 358 326 1.73 (1.37, 2.18) 1.97 (1.90, 2.05)
 AUC inf 

(nM·h)
36080 38600 6195 8430 6.04 (4.54, 8.04) 4.58 (4.34, 4.83)

M5  Cmax (nM) 31.5 22.8 52.3 112 0.60 (0.45, 0.79) 0.20 (0.19, 0.23)
 AUC inf 

(nM·h)
4314 2620 1714 2000 2.54 (1.92, 3.35) 1.31 (1.20, 1.44)

Fig. 3  Simulated and observed entrectinib (a, b) and M5 (c, d) 
plasma concentrations following a single 100-mg dose of entrectinib 
alone (a, c) or co-administered with the CYP3A4 inhibitor, itracon-
azole (b, d). Black and gray lines median model-predicted concen-

trations with 5th and 95th percentiles; circles observed individual 
concentrations from Study RXDX-101-12 Part 1. Main panel linear 
Y-axis; inset log scale Y-axis. CYP cytochrome P450
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entrectinib AUC inf values in the presence and absence of 
the perpetrator, and corresponding 95% confidence inter-
vals, are summarized in Fig. 8. The model predicted that 
co-administration of various moderate CYP3A4 inhibitors 
(verapamil, erythromycin, clarithromycin, fluconazole, and 
diltiazem) would result in average increases in entrectinib 
exposure between 2.2- and 3.1-fold (Fig. 8a). Corresponding 
average increases for M5 were predicted to be approximately 

2-fold (Fig. 8b). The model predicted that co-administration 
of various moderate CYP3A4 inducers (efavirenz, carba-
mazepine, phenytoin) would result in average decrease in 
entrectinib exposure between 45 and 79% (Fig. 8a), while 
corresponding average decreases for M5 were predicted to 
be approximately 50% (Fig. 5b). Simulations of repeat dos-
ing with entrectinib produced predicted interactions of simi-
lar magnitudes. For example, median AUC interaction ratios 

Table 5  Observed and 
simulated entrectinib and M5 
exposure with and without 
co-administration of the potent 
CYP3A inhibitor rifampicin

Geometric means for observed data. Parameters derived from simulated and observed plasma concentra-
tions following a single 600 mg dose of entrectinib alone or co-administered with rifampicin
AUC inf area under the concentration-time curve from time zero to infinity, Cmax maximum concentration, 
CYP cytochrome P450

600 mg entrec-
tinib + rifampicin

600 mg entrectinib 
alone

Ratio of geometric means (90% 
CI)

Observed Pre-
dicted

Observed Pre-
dicted

Observed Predicted

Entrectinib  Cmax (nM) 807 662 1815 1830 0.44 (0.35, 0.56) 0.36 (0.34, 0.38)
 AUC inf 

(nM·h)
8443 9380 36270 47000 0.23 (0.18, 0.30) 0.20 (0.19, 0.21)

M5  Cmax (nM) 108 100 383 362 0.28 (0.20, 0.40) 0.28 (0.24, 0.32)
 AUC inf 

(nM·h)
1533 1899 11000 9350 0.14 (0.11, 0.18) 0.19 (0.17, 0.22)

Fig. 4  Simulated and observed Entrectinib (a, b) and M5 (c, d) 
plasma concentrations following a single 600-mg dose of entrectinib 
alone (a, c) or co-administered with the CYP3A inducer, ifampin (b, 
d). Black and gray lines median model-predicted concentrations with 

5th and 95th percentiles; circles observed individual concentrations 
from Study RXDX-101-12 Part 2. Main panel linear Y-axis; inset log 
scale Y-axis. CYP cytochrome P450
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after a single dose of entrectinib co-administered with itra-
conazole were 4.58 and 1.40 for entrectinib and M5, respec-
tively, while the corresponding values from repeat dosing 
to steady state were 5.06 and 1.86, respectively (data not 
shown).

Based on the magnitude of the simulated interactions, 
3-fold and 6-fold lower entrectinib doses (i.e., 200 mg and 
100 mg) are required to mitigate the effects of moderate 
and strong CYP3A4 inhibitors, respectively. To confirm 
the appropriateness of these dose adjustments, 100 mg and 
200 mg entrectinib co-administered with strong and moder-
ate CYP3A4 inhibitors, respectively, were also simulated 
(Table 6). These confirmed that simulated entrectinib and 
M5 exposures using the recommended dose adjustments 
were comparable to those from dosing with 600 mg entrec-
tinib alone.

4  Discussion

A PBPK model of entrectinib and its active metabolite M5 
was developed by integrating in vitro, non-clinical, and 
clinical data. The PBPK model based on IVIVE was refined 
using a sensitivity analysis and NLME modeling (described 
in detail elsewhere [15]) to optimize parameter estimates of 
the fraction metabolized by CYP3A4 and the fraction escap-
ing gut metabolism. The two separate approaches were used 
in parallel, and both gave very similar parameter estimates 
 (Fg: 0.6 vs. 0.58;  fmCYP3A4: 0.78 vs. 0.75). As well as demon-
strating the utility of a NLME modeling approach as a tool 
to refine key parameter estimates, concordance increased 
confidence in the two key determinant parameters of the 
pharmacokinetics and drug–drug interaction liability of 
entrectinib. Parameter estimates were further corroborated 
by independent data from a human ADME study in which 
entrectinib disposition in humans in vivo was investigated 

Fig. 5  Simulated and observed entrectinib plasma concentrations fol-
lowing administration of entrectinib under fasted 400 mg (a) and 600 
mg (b) or fed 600 mg (c) conditions. Black and gray lines median 

model-predicted concentrations with 5th and 95th percentiles; circles 
observed individual concentrations from Study RXDX-101-04. Main 
panel linear Y-axis; inset log scale Y-axis
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by the administration of a single dose of radiolabeled entrec-
tinib to healthy volunteers (unpublished data). Based on the 
radiolabel recovered in excreta, it was estimated that, on 
average, up to 73% of the administered entrectinib dose 
was cleared by metabolism to M5, while the correspond-
ing parameter in the final PBPK model was 70% (Fig. 2). 
The consistency with a completely independent clinical data 
source thereby provides additional confidence in the robust-
ness of the PBPK model.

The final PBPK model showed good predictive perfor-
mance for both entrectinib and M5, and met commonly-used 
predictive performance acceptance criteria when compared 
with observed clinical data [11, 12, 39]. Considering the 
drug–drug interactions with itraconazole and rifampicin, 
the ratios of predicted AUCs were all within 2-fold of the 
observed ratio (i.e. calculated  Ratiopredicted/Ratioobserved > 0.5 
and < 2.0), while, in many cases, the ratios of AUC and 
Cmax were within 25% of the observed ratio (i.e., calculated 
 Ratiopredicted/Ratioobserved > 0.8 and < 1.25). It is notable that 
predictions of the effect of itraconazole on M5 were less 
accurate, underpredicting the magnitude of the effect on 
AUC while overpredicting the effect on Cmax. While this 
suggests that there is still potential to improve this aspect of 

the model, it was not considered to compromise the value of 
the model for supporting dosing recommendations.

The PBPK model, which describes both entrectinib par-
ent and M5 metabolite pharmacokinetics, has particular 
utility since M5 is pharmacologically active, and conse-
quently both parent and metabolite are believed to contribute 
to the overall efficacy of entrectinib treatment. Therefore, 
the model provides a useful quantitative tool with which 
to evaluate alternative dosing strategies under circum-
stances where the pharmacokinetics of both entrectinib and 
M5 are altered. However, the dosing recommendations for 
co-administering entrectinib with CYP3A4 inhibitors or 
inducers focus principally on entrectinib exposure, primar-
ily because entrectinib is the principal circulating species 
in vivo (M5 plasma exposures are typically ≤½ those of 
entrectinib under normal dosing conditions). Consequently, 
as metabolite exposures are well below those of the parent, 
it is expected that M5 makes a smaller contribution than 
entrectinib to the pharmacological effects of entrectinib 
treatment. This is supported by analyses of the exposure 
versus response relationships, which showed that using 
parameters representing the sum of entrectinib and M5 
exposures together yielded no additional insight over use of 
entrectinib exposure alone [41]. Furthermore, the concurrent 

Fig. 6  Simulated and observed entrectinib plasma concentrations in 
adults with NTRK1/2/3+ or ROS1+ solid tumors after a single dose 
of entrectinib (a) and at steady state (b). Black and gray lines median 

model-predicted concentrations with 5th and 95th percentiles; circles 
observed individual concentrations from Study RXDX-101-03. Main 
panel linear Y-axis; inset log scale Y-axis
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use of CYP3A inhibitors and inducers with entrectinib both 
lead to a decrease in the metabolite:parent ratio. While itra-
conazole use increases both observed entrectinib and M5 
exposure, the proportional change is greater for entrectinib 
(approximately 5.8-fold) than M5 (approximately 2.6-fold), 
and the average metabolite:parent ratio decreases. Con-
versely, rifampicin use decreases both entrectinib and M5 
exposure, the proportional change is smaller for entrectinib 
(approximately 66%) than M5 (approximately 92%), and the 
average metabolite:parent ratio decreases. Therefore, in each 
scenario, the contribution of the M5 metabolite to the phar-
macological effect of treatment will be decreased rather than 
increased. As a consequence, it is appropriate to place most 
importance on entrectinib exposures when making dosing 
recommendations.

The final PBPK model has been used to derive dosing 
recommendations for co-administering entrectinib with 
CYP3A4 inhibitors or inducers. Based on the magnitude of 
the simulated interactions, 3-fold and 6-fold lower entrec-
tinib doses (i.e., 200 mg and 100 mg) are required to miti-
gate the effects of moderate and strong CYP3A4 inhibitors, 
respectively. The appropriateness of the recommended dose 
adjustments was confirmed by further simulations of 100 

mg and 200 mg entrectinib co-administered with CYP3A4 
inhibitors. When considering the concomitant use of moder-
ate and strong CYP3A inducers, the magnitude of the sim-
ulated interactions suggests that 2-fold and 4-fold higher 
entrectinib doses (i.e., 1200 mg and 2400 mg) would be 
required to mitigate the effects of enzyme induction. How-
ever, clinical use of entrectinib doses > 600 mg is not con-
sidered appropriate given the safety profile of entrectinib. 
While the recommended dose of 600 mg is well tolerated, 
doses above 600 mg produced dose-limiting toxicities in 
dose-finding studies [33, 42, 43]. Modeling of the exposure 
versus response relationship demonstrated that the likeli-
hood of a patient experiencing a ≥ Grade 3 adverse event 
was markedly higher at exposures above those typically pro-
duced by 600 mg dosing [41]. Use of high doses of entrec-
tinib would therefore carry potential safety risks for indi-
viduals, and in this context it is more prudent to recommend 
that use of entrectinib with moderate or strong CYP3A4 
inducers be avoided rather than attempt a dose adjustment.

Fig. 7  Simulated and observed M5 plasma concentrations in adults 
with NTRK1/2/3+ or ROS1+ solid tumors after a single dose of 
entrectinib (a) and at steady state (b). Black and gray lines median 

model-predicted concentrations with 5th and 95th percentiles; circles 
observed individual concentrations from Study RXDX-101-02. Main 
panel linear Y-axis; inset log scale Y-axis
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Fig. 8  Proportional changes in simulated entrectinib (a) and M5 
(b) AUC inf exposure parameters from co-administration of various 
CYP3A4 inhibitors and inducers. Symbols geometric mean ratios, 

error bars upper and lower 95% confidence intervals.  AUC inf area 
under the concentration-time curve from time zero to infinity, CYP 
cytochrome P450, sim simulated, obs observed, PK pharmacokinetic

Table 6  Predicted mean entrectinib and M5 parameters from co-administration of moderate and strong CYP3A4 inhibitors with 100 mg or 200 
mg entrectinib

Values are expressed as geometric means
AUC inf area under the concentration-time curve from time zero to infinity, Cmax maximum concentration, CYP cytochrome P450

Simulated
dosing

Analyte Parameter Entrectinib
alone

Entrectinib co-administered with:

Itraconazole Erythromycin Verapamil Clarithromycin Flucanazole Diltiazem

600 mg 100 mg 200 mg 200 mg 200 mg 200 mg 200 mg

Single dose Entrectinib Cmax (nM) 2030 643 1120 1200 1100 1020 970
AUC inf (nM·h) 53300 38600 49400 53200 45000 42400 38300

M5 Cmax (nM) 523 18.9 165
AUC inf (nM·h) 14500 2330 8050
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5  Conclusions

A PBPK model of entrectinib and its active metabolite M5 
was developed, and has been shown to accurately predict 
the pharmacokinetics of both entrectinib and M5 in vivo. 
This model has been used to derive dosing recommendations 
for co-administering entrectinib with CYP3A4 inhibitors or 
inducers. A 6-fold lower entrectinib dose (i.e., 100 mg) is 
recommended when co-administered with a strong CYP3A4 
inhibitor, and a 3-fold lower entrectinib dose (i.e., 200 mg) 
is recommended when co-administered with a moderate 
CYP3A4 inhibitor, but use of entrectinib with moderate 
or strong CYP3A4 inducers should be avoided. The PBPK 
modeling has been used in lieu of clinical studies to enable 
regulatory decision-making.
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