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Abstract
Curcumin is a promising therapeutic agent that exhibits manifold therapeutic activities. However, it is challenging to study 
curcumin as it exhibits poor aqueous solubility and low permeability and it is a substrate for P-glycoprotein (P-gp). It is read-
ily metabolized in the body, but many active metabolites of curcumin have been identified that could also be exploited for 
therapy. Strategies for the oral bioenhancement of curcumin to leverage the potential of curcumin as a therapeutic molecule 
are discussed here in light of these challenges. A brief discussion of conventional bioenhancement strategies using cyclo-
dextrin complexes, solid dispersions, and solid self-emulsifying drug delivery systems is given. However, the major focus 
of this review is the application of nano-based approaches to the bioenhancement of curcumin. A description of the main 
advantages of nanosystems is followed by a detailed review of various nanosystems of curcumin, including nanosuspensions 
and various carrier-based nanosystems. Each nanosystem considered here is first briefly introduced, and then studies of the 
nanosystem containing curcumin are discussed. Lipid-based systems including liposomes and solid lipid nanoparticles, 
microemulsions, self-microemulsifying drug-delivery systems, nanoemulsions, and polymeric nanoparticles—which are 
widely explored—are dealt with in detail. Other miscellaneous systems discussed include inorganic nanoparticles, micelles, 
solid nanodispersions, phytosomes, and dendrimers. The possibility of using intact nanoparticles to achieve the targeted oral 
delivery of curcumin and thus harness the benefits of this wonder nutraceutical is an exciting prospect.
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Key Points 

Curcumin, a hydrophobic nutraceutical pigment, has 
various therapeutic activities

Curcumin, a BCS class IV agent, exhibits poor bioavail-
ability due to low solubility and permeation

Nano-based approaches can improve the oral bioavail-
ability of curcumin

1 Introduction

Curcumin, a bioactive hydrophobic polyphenolic nutraceu-
tical pigment, has attracted significant global attention due 
to its range of therapeutic activities [1]. Pharmacological 
studies have demonstrated the potential of curcumin in the 

prevention and treatment of various diseases [2]. Curcumin 
is widely accepted to be a holistic nutraceutical that can 
improve the general health of those who consume it. The 
United States Food and Drug Administration (USFDA) cat-
egorizes curcumin as a generally recognized as safe (GRAS) 
substance [3, 4]. Moreover, it has been proven that a dose 
of curcumin of up to 12 g/day is safe for human consump-
tion without incurring any side effects [3, 5–7]. Curcumin 
contains approximately 77% of the active constituent diferu-
loylmethane, 17% demethoxycurcumin, and 6% bisdemeth-
oxycurcumin as the major components [2, 8, 9]. The mul-
tifarious activities of curcumin have triggered considerable 
research aimed at identifying therapeutic applications of 
this substance in several preclinical animal models [10, 11]. 
Some of this research has evolved into phase I [12, 13] and 
phase II [14] clinical trials. The various applications of cur-
cumin as a therapeutic agent are summarized succinctly in 
Fig. 1. Despite its versatility, safety, and promising therapeu-
tic potential, the exploitation of curcumin as a therapeutic 
agent has been severely limited by a number of challenges. 
The present review provides a comprehensive discussion of 
strategies for the oral bioenhancement of curcumin, focusing 
in particular on nano-based approaches for the improved oral 
delivery of curcumin.

http://crossmark.crossref.org/dialog/?doi=10.1007/s13318-019-00545-z&domain=pdf
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2  Challenges Involved in the Efficacious 
Delivery of Curcumin

Curcumin is a class IV drug in the Biopharmaceutics Clas-
sification System (BCS), which indicates that it exhibits 
poor aqueous solubility and negligible permeability through 
the gastrointestinal epithelium. In addition, curcumin is a 
substrate for P-glycoprotein (P-gp), a transmembrane ATP-
dependent drug efflux pump which expels curcumin from 
the intestinal membrane, thereby limiting its permeability 
[15, 16]. Curcumin has a logP value of ~ 3 and is practi-
cally insoluble in water (~ 10–20 µg/mL), even at acidic and 
neutral pH [17–20]. This, in conjunction with its poor per-
meability, limits the absorption of curcumin [21]. Although 
the permeability of curcumin is higher under acidic condi-
tions, it is significantly below the permeabilities associated 
with the USFDA-approved BCS class of highly permeable 
substances.

Curcumin conjugates are water soluble [22] and can 
therefore be detected in the urine of curcumin-treated mice 
[23]. Following intraperitoneal or intravenous administra-
tion, curcumin is excreted primarily in bile as tetrahydro-
curcumin and hexahydrocurcumin glucuronides (the major 
metabolites) and dihydroferulic acid along with ferulic 
acid (minor biliary metabolites) [24]. Figure 2 depicts the 
metabolic pathways of curcumin. Some of its metabolites 

are as active as or even more active than curcumin. Hexa-
hydrocurcumin, a major metabolite, is reported to be just 
as or even more potent in vitro and in vivo than curcumin 
[25] in terms of arresting the cell cycle in SW480 cells 
(a human colorectal cancer cell line) [26]. In vitro study 
showed that tetrahydrocurcumin inhibits radiation-induced 
lipid peroxidation [27] and increases antioxidant enzyme 
levels [28]. Tetrahydrocurcumin decreased the develop-
ment of polyps and aberrant crypt foci in azoxymethane-
induced colon carcinogenesis in rats [29] and significantly 
attenuated chloroquine-mediated oxidative kidney damage 
[30]. Tetrahydrocurcumin also showed superior antioxidant 
and antidiabetic activities compared to curcumin in type-2 
diabetic rats [31]. Octahydrocurcumin exhibited stronger 
free-radical scavenging activity than curcumin [32]. As well 
as being a substrate of P-gp, curcumin binds to multidrug 
resistance-associated protein (MRP) transporters, which is 
yet another reason for its low bioavailability [33, 34]. All 
of these factors synergistically limit the bioavailability of 
curcumin.

3  Bioenhancement Strategies for Curcumin

Strategies for the bioenhancement of curcumin must nec-
essarily address the issues that limit its bioavailability, as 
discussed above. Various strategies have been explored for 

Fig. 1  Curcumin as a therapeutic agent
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oral curcumin bioenhancement. Enhancing the solubility 
and dissolution rate is a major area of investigation, and 
that research has already been discussed in a review [35]. 
Solubility enhancement approaches include cyclodextrin 
inclusion complexes, solid dispersions (SDs), and solid 
self-emulsifying drug-delivery systems (S-SEDDs) using 
surfactants as solubilizers. Increasing the surface area by 
micronization, manipulating solid-state crystallinity, and 

synthesizing prodrugs are other well-reported techniques 
for improving the aqueous solubility of curcumin [36].

Cyclodextrins (CDs) entrap hydrophobic drugs such as 
curcumin in their lipophilic cavities, facilitating solubiliza-
tion and possibly stabilization, and often even masking the 
taste of the drug. All of these properties are relevant for 
curcumin [37, 38]. Complexation significantly enhances the 
solubility of curcumin. For instance, a 31-fold increase in 

Fig. 2  Metabolic pathways of curcumin, as adapted from Pan et al. [22]. UDP uridine 5′-diphospho-glucuronosyltransferase, -2H oxidation
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solubility was seen using the coprecipitation technique, a 
19-fold increase using the solvent evaporation technique, an 
18-fold increase using the freeze-drying technique [39], and 
a 190-fold increase was observed with the kneading method 
using methyl-β-cyclodextrin (MβCD) [40]. The solubilities 
of various cyclodextrin complexes also increased at pH 5 
and pH 6 by up to an order of  104 [41, 42] and 0.73 mg/
mL, respectively [43]. Curcumin exhibited greater affin-
ity for 2-hydroxypropyl-β-CD (HPβCD) than other cyclo-
dextrin derivatives when prepared by solvent and knead-
ing techniques. The capacities of various cyclodextrins to 
enhance curcumin solubility decrease in the following order: 
HPβCD > MβCD > βCD > γCD (gamma-cyclodextrin)  [40]. 
These complexes also enhance curcumin’s anticancer and 
anti-inflammatory activities [39]. A 202-fold increase in 
the solubility of curcumin was observed when it was com-
plexed with HPβCD; this complex significantly inhibited 
angiogenesis in chick embryos compared to uncomplexed 
curcumin [40].

Solid dispersions of hydrophobic drugs in a hydrophilic 
inert carrier in the solid state have been found to improve the 
solubility and dissolution rate of the drug and to decrease 
presystemic metabolism, thereby increasing the bioavailabil-
ity of the drug [44]. Solid dispersions are usually prepared 
by a solvent/fusion solvent method, solvent evaporation, 
and a melting (fusion) method [45, 46]. A solid dispersion 
of curcumin with  Solutol® HS15 showed higher solubility 
and a fivefold improvement in bioavailability compared to 
those of free curcumin [47]. Meanwhile, solid dispersions 
of curcumin with cellulose acetate and mannitol presented 
enhanced aqueous solubility compared to curcumin, as well 
as a sevenfold improvement in oral bioavailability [48]. A 
curcumin  Gelucire®50/13-Aerosil solid dispersion showed 
a 3600-fold improvement in aqueous solubility, a 7.3-fold 
improvement in dissolution rate, and greater stability (up 
to 9 months). In addition, an improvement in curcumin gas-
trointestinal absorption was indicated by a 5.5-fold increase 
in systemic bioavailability and enhanced anti-inflammatory 
activity in rats [49].

A heat-treatment-based approach showed that upon heat-
ing curcumin, a 12-fold enhancement in curcumin solubility 
was achievable. Heating did not degrade the curcumin [50]. 
S-SEDDS, wherein the self-emulsifying liquid is converted 
into a solid form, improved curcumin solubility, dissolution, 
and absorption. The transformation of curcumin to an amor-
phous or partially amorphous state led to increases in solu-
bility and dissolution rate [51, 52]. Different solidification 
techniques, such as spray drying, adsorption to solid carriers, 
melt granulation, and melt extrusion techniques were used 
to prepare the S-SEDDS [53–55]. Curcumin formulated in 
S-SEDDS dissolved rapidly and completely within 5 min 
at a gastric pH of 1.2 and an intestinal pH of 6.8 (phos-
phate buffer) [51]. Administration of S-SEDDS containing 

curcumin enhanced defensive action against chronic heart 
failure by improving ventricular pump function and decreas-
ing myocardial lipid peroxidation damage, infarction, fibro-
sis, and pachynsis as compared to a curcumin suspension 
administered in rats [56].

3.1  Curcumin as a P‑gp Substrate

Curcumin is reportedly a P-gp substrate. Hence, P-gp inhi-
bition as a strategy to enhance curcumin bioavailability has 
also been explored. Piperine inhibited the metabolism of 
curcumin as well as the flux of glucuronide in the secretory 
direction. It also inhibited ABC transporters on the apical 
side of Caco-2 cells along with MRP-1 and MRP-2 associ-
ated with enteroenteric and hepatic pre-systemic metabolism 
[57, 58]. P-gp function and the expression of P-gp at the pro-
tein and mRNA levels were also inhibited [59] in a concen-
tration-dependent manner [60, 61]. Quercetin, a flavonoid, 
improved curcumin bioavailability by inhibiting the P-gp 
efflux pump as well as the metabolizing enzyme CYP3A4 
in the intestinal mucosa, leading to improved uptake of cur-
cumin by human colon carcinoma WiDr cells [62–64]. Com-
binations of curcumin with piperine and quercetin have been 
employed successfully for the bioenhancement of curcumin 
[65–67].

4  Nano‑Based Approaches to Enhancing 
Oral Bioavailability

Nanoparticles offer substantial benefits over conventional 
drug-delivery systems due to their small size and conse-
quently large surface area. While enhancing solubility is 
one way to improve bioavailability, transporting intact 
nanoparticles though the gastrointestinal mucosa is another 
mechanism that could permit significant bioenhancement. 
Enhanced permeation through mucosal tissues is also fea-
sible using appropriate nanostrategies. Furthermore, nano-
formulations can be tailored to ensure sustained and con-
trolled release, contributing to bioenhanced drug delivery. 
Targeted delivery through an increased circulation half-life 
as well as altered drug disposition due to drug localization 
and cell-specific uptake in vivo are other important benefits 
of nanoformulations. Nanostrategies are therefore specifi-
cally attractive for BCS class IV drugs such as curcumin that 
require solubilization and permeation enhancement [68].

Among the various nutraceuticals that have been investi-
gated for possible bioenhancement using nano-based strat-
egies, curcumin has been relatively well studied. Efforts 
have been directed primarily towards the design of cur-
cumin nanosystems for cancer treatment [69–72]. Another 
important therapeutic lead is the application of curcumin 
nanosystems for the treatment of infectious diseases such 
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as tuberculosis [73], hepatitis B [74], malaria [75], influ-
enza [76], and the Zika and chikungunya viruses [77], as 
well as for other conditions such as rheumatoid arthritis 
[78]. Most of those studies reported parenteral adminis-
tration and are therefore not discussed here. As the most 
popular route—and the one that is most convenient for 
the patient—is the oral route, and it is recommended that 
nutraceuticals should be administered for long periods, this 
review primarily focuses on nanostrategies that have been 
employed for the bioenhancement of curcumin following 
oral administration.

When reviewing various reported nanotechnologies for 
oral curcumin delivery below, we provide a brief description 
of each nanosystem and how it facilitates bioenhancement in 
order to aid reader understanding. Figure 3 provides a pic-
torial representation of the various nanosystems discussed 
here.

4.1  Nanosuspensions

Nanosuspensions are carrier-free dispersions of water-insol-
uble drugs in aqueous media [79]. The colloidal size range 
of the drugs is less than 1 µm, and the nanosuspensions are 
stabilized by surfactants and other agents [80, 81]. The small 
particle size (PS) and correspondingly high surface area, 
coupled with high thermodynamic energy, favor rapid disso-
lution of the drug. Two major approaches are reported for the 
preparation of drug nanosuspensions: top-down and bottom-
up [82, 83]. The first relies on sizing down large micron-
sized particles to nanosize, which in most cases requires 
high shear/pressure homogenizers. On the other hand, the 
bottom-up technique involves the generation of nanosus-
pensions with desired size distributions from solutions by 
crystallization, precipitation, etc., which inherently requires 
organic solvents that are removed after the process is com-
plete. Other techniques such as spray drying and supercriti-
cal processes using carbon dioxide may also be employed 
[84]. The limited stability of high-energy nanosuspensions is 

Fig. 3  Nano-based delivery systems of curcumin. NPs nanoparticles
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yet another challenge, and one that necessitates approaches 
for stabilizing nanodispersions [85]. Conversion to the solid 
state through processes such as freeze drying and vacuum 
drying is utilized. While this demands sophisticated drying 
equipment such as freeze dryers and vacuum dryers, another 
problem is the possible agglomeration of the nanosized par-
ticles, resulting in larger particles [86]. One advantage of 
this approach, however, is the possibility of converting the 
nanosuspension into a bioenhanced yet convenient solid dos-
age form such as a tablet or capsule for oral administration.

Studies on curcumin nanosuspensions are scarce. Cur-
cumin nanosuspensions created by a solvent–antisolvent 
precipitation method using sodium lauryl sulfate and poly-
vinylpyrrolidone K-60 presented threefold-increased aque-
ous solubility, increased stability, and an improved dissolu-
tion rate compared to free curcumin [87]. Curcumin–TPGS 
nanosuspensions and curcumin–Brij78 nanosuspensions 
prepared by a  CO2-assisted in-situ nanoamorphization 
method yielded enhanced dissolution rates, with a sustained 
release period in vitro of over 32 h. The three- to fourfold 
bioenhancement achieved following oral administration was 
also attributed to P-gp inhibition by Brij78 and tocopheryl 
polyethylene glycol succinate (TPGS) as well as to their 
ability to inhibit curcumin metabolism [88]. A curcumin 
nanosuspension prepared by high-pressure homogenization 
followed by lyophilization using TPGS as stabilizer exhib-
ited spherical curcumin nanoparticles ~ 200 nm in size. 
A  sevenfold bioenhancement following oral administra-
tion was attributed to the increased fluidity of the intestinal 
mucosal membrane, which loosened the conformation of 
the membrane protein [89]. A curcumin nanosuspension 
obtained by a solvent–antisolvent technique and stabilized 
by Poloxamer 188 and TPGS generated larger particles 
596.5 ± 5 nm in size. Nevertheless, a tenfold bioenhance-
ment was observed [90]. It is therefore apparent that nano-
suspension bioenhancement is influenced by not only the 
stabilizer and size but also significantly by the particular 
nanosuspension preparation process employed.

4.2  Lipid‑Based Nanoparticles

4.2.1  Liposomes

Liposomes are phospholipid-based vesicular systems. They 
comprise one or more aqueous layers surrounded by phos-
pholipid membrane bilayers that exhibit high biocompat-
ibility and low toxicity. They may be prepared from natural 
or synthetic phospholipids. Liposomes are flexible vesi-
cles whose rigidity is often modulated through the inclu-
sion of cholesterol in the lipid membrane. They are usu-
ally 0.025 μm (small) to 2.5 μm (large) in diameter and can 
be unilamellar, multilamellar, or even multivesicular. Mul-
tilamellar liposomes exhibit an onion structure wherein the 

unilamellar phospholipid vesicles form concentric spheres, 
each separated by an aqueous phase [91, 92].

Liposomes may be prepared by various techniques, 
including solvent dispersion methods, mechanical dispersion 
methods, and detergent removal methods. Among these, the 
most popular are the lipid film hydration and ether/ethanol 
injection methods. The drug may be loaded before or after 
the formation of the liposomes by active or passive tech-
niques, respectively [93]. Both hydrophobic and hydrophilic 
drugs may be incorporated into liposomes. While hydro-
phobic drugs are entrapped by the lipid bilayer, hydrophilic 
drugs are incorporated into the aqueous core of the lipo-
some. Due to their high biocompatibility, liposomes are the 
most extensively investigated nanosystems. Comparisons of 
the oral bioenhancement of a number of hydrophobic drugs 
using liposomes to conventional oral dosage forms such as 
tablets and suspensions is reported [94, 95].

Different approaches have been investigated for the prepa-
ration of liposomal curcumin formulations. A combination 
of thin film evaporation and dynamic high-pressure micro-
fluidization was studied for the preparation of curcumin Plu-
ronic liposomes [96], while liposomal curcumin was made 
from lecithin by a mechanochemical method of homogeni-
zation and microfluidization [97]. A curcumin–βCD com-
plex loaded into nanomagnetoliposomes was prepared by a 
simple and rapid coencapsulation method [98], while silica-
coated curcumin-loaded flexible liposomes were generated 
by a dry-film dispersion technique [99]. Curcumin liposomes 
comprising soya phosphatidylcholine and TPGS coated with 
N-trimethyl chitosan chloride are also reported [100]. The 
liposomes were evaluated for size, bioenhancement, and 
in some cases for efficacy based on their plasma antioxi-
dant activity. In vitro anticancer efficacy in cell lines is also 
reported. Details of these studies are summarized in Table 1.

4.2.2  Solid Lipid Nanoparticles

Solid lipid nanoparticles (SLNs) are colloidal lipid carriers 
(50–1000 nm) made up of biocompatible and biodegrad-
able physiological lipids. Although lipidic in nature (unlike 
liposomes), SLNs are rigid particles that are only suitable 
for loading hydrophobic drugs. Important facets of SLNs are 
their capacity for high drug loading, good stability, excel-
lent biocompatibility, and enhanced bioavailability. Being 
hydrophobic, they are excellent nanocarriers for controlled 
release and for targeted drug delivery to the reticuloendothe-
lial system [101]. SLNs can be prepared by various methods, 
including high-pressure homogenization, ultrasonication, 
high-speed homogenization, solvent evaporation, a microe-
mulsion-based method, a double emulsion method, solvent 
emulsification-diffusion, a supercritical fluid technique, film-
ultrasound dispersion, a solvent injection technique, a pre-
cipitation technique, and a spray drying method [102]. All of 
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these methods employ solvents. A green method for prepar-
ing SLNs is the melt homogenization method. In SLNs, the 
drug is generally dispersed in the lipid matrix. A limitation 
of SLN is the expulsion of the drug from the SLNs over 
time; this issue led to the development of nanostructured 
lipid carriers (NLCs).

A number of lipids have been evaluated as candidates 
for the preparation of SLNs.  Gelucire®50/13 SLNs were 
prepared by a microemulsion template method followed by 
freeze drying [103], while soya lecithin SLNs were prepared 
by hot homogenization followed by freeze drying [104] and 
an emulsion/evaporation method [105]. Glycerol monostea-
rate (GMS)-soya lecithin SLNs were also studied [106]. 
Apart from their physicochemical properties, stability [107], 
and bioenhancement [108], the curcumin SLNs were evalu-
ated for cytotoxicity, in vitro cell uptake, and in vitro and 
in vivo anticancer efficacies [109]. The effect of the dose of 
curcumin on bioavailability was also reported. NLCs of cur-
cumin revealed good permeation and particularly enhanced 
efficacy in colitis [110]. Details of various studies are sum-
marized in Table 2.

4.2.3  Liposomes Versus SLNs for Curcumin

Liposomes are among the most biocompatible nanoformula-
tions developed thus far, due to the high biocompatibility, 
safety, and biodegradability of the phospholipids. Neverthe-
less, SLNs are far more straightforward to manufacture than 

liposomes, and the lipids used in SLNs are biocompatible 
and biodegradable. While curcumin liposomes are prefer-
able for parenteral delivery, curcumin SLNs are the practical 
choice for oral delivery, based also on cost.

4.3  Microemulsions and SMEDDSs

Microemulsions (MEs) are transparent or slightly opalescent 
optically isotropic emulsions with nanosized globules. They 
comprise oil, water, and surfactant, most often in combina-
tion with a cosurfactant [111, 112], and can be o/w, w/o, 
or even bicontinuous. Unlike emulsions, microemulsions 
form spontaneously with minimal energy input. Their high 
solubilization capabilities for hydrophilic and lipophilic 
drugs, good thermodynamic stability, and ability to protect 
drugs from degradation [113–115] are some of their major 
advantages. Furthermore, the ability of microemulsions to 
enhance bioavailability, especially of hydrophobic drugs, is 
well demonstrated [116–119]. They are generally prepared 
by simply gently mixing all of the components. The drug is 
either dissolved in the most soluble component prior to mix-
ing or added to the microemulsion under stirring. A phase 
inversion temperature method has also been reported for the 
preparation of microemulsions [120]. A microemulsion of 
curcumin with various oils, surfactants, and cosurfactants 
was reported. While high concentrations of monoglycerides 
(MG) and diglycerides (DI-G) were readily incorporated 
into the ME, long-chain triglycerides such as vegetable oils 

Table 1  Summary of liposomal nanosystems of curcumin

PS particle size, Lps liposomes, AUC  area under the concentration–time curve, Cmax maximum plasma concentration, IC50 half-maximal inhibi-
tory concentration, βCD β-cyclodextrin

Liposomal carrier Method of preparation Dose Outcomes Reference

Based on Pluronic Thin-film evaporation – PS 50–100 nm, spherical. Bioavailability 
was strongly influenced by the composi-
tion of Pluronic and decreased in the order 
F127 > P85-Lps > F87 and curcumin-Lps

[96]

Lecithin Mechanochemical homogenization and 
microfluidization

100 mg/kg to rats PS 263 nm. 4.96-fold enhancement in  
AUC (0–120) (26,502.8 μg × min/L), higher 
Cmax (319.2 ± 70.4 μg/L), and higher 
plasma antioxidant activity

[97]

Based on a βCD complex Simple and rapid encapsulation method – PS 67 nm. Low  IC50 value (64.7791 μg/mL). 
Synergistically enhanced radical scaveng-
ing activity

[98]

Based on silica coating Thin-film method with homogenization 50 mg/kg to rats PS 157 nm. Exhibited 7.76-fold and 3.31-
fold improvements in curcumin bioavail-
ability compared to curcumin suspension 
and curcumin-loaded flexible liposomes, 
respectively

[99]

Coated with N-trimethyl 
chitosan chloride

Thin-film dispersion method 40 mg/kg to rats PS 657.7 nm, zeta potential + 15.64 mV, 
improved systemic bioavailability with a 
1.6-fold increase in AUC (416.58 μg × h/L) 
and a 1.5-fold increase in Cmax 
(46.13 μg/L) compared to uncoated cur-
cumin liposomes and curcumin suspension

[100]
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were incorporated in lower quantities [121, 122]. The nature 
of the surfactant and cosurfactant significantly influenced 
the solubilization capacity [123] of the ME for oils and the 
drug, with ethanol enabling greater oil incorporation, a glob-
ule size of less than 30 nm, and significantly enhanced drug 
solubility [124]. The challenge is to overcome the issues that 
limit the use of ethanol in formulations. Bioenhancement 
also varies based on the composition of the ME, and special 
functionalized MEs have been reported that are tailored to 
specific end uses. Various curcumin MEs that have been 
evaluated for oral delivery are compiled in Table 3 [121, 
122, 124–126]. Although MEs for use as drug-delivery sys-
tems are simple to manufacture and exhibit high physical 
stability, the large amount of surfactant needed continues to 
represent a serious limitation [113–115].

Self-microemulsifying drug-delivery systems 
(SMEDDSs) are dry microemulsions without an aqueous 
phase that are advantageous for the incorporation of hydro-
lytically unstable drugs [127]. They provide all the advan-
tages of microemulsions, as they spontaneously form micro-
emulsions in aqueous media. SMEDDSs can be inserted 
into capsules or converted into solid dosage forms by spray 
drying, adsorbed onto highly adsorptive solids, and even 
coated onto pellets or tablets [128, 129]. SMEDDSs of cur-
cumin that were coated onto inert tablet cores as a polymeric 
advanced third-generation solid dispersion revealed in situ 
film formation with enhanced solubility and bioavailability 
of curcumin, and showed promising efficacy in a preclinical 
model of rheumatoid arthritis [78]. Other studies of cur-
cumin SMEDDSs [51, 78, 130–132] are listed in Table 3.

4.4  Nanoemulsions

Nanoemulsions (NEs) are kinetically stable transparent or 
translucent dispersions of oil, emulsifier, and water with a 
globule size of less than 100 nm [133, 134]. Unlike micro-
emulsions, NEs do not form spontaneously; considerable 
energy is required to generate NEs as the surfactant concen-
tration in them is low. They are also called mini emulsions 
or ultrafine emulsions [135, 136]. Being emulsions, they 
also permit the incorporation of hydrophobic and hydro-
philic drugs, and, due to the small globule size, they facili-
tate the bioenhancement of hydrophobic drugs [137, 138]. 
A number of methods of preparing nanoemulsions have been 
reported, which differ from ME preparation methods by the 
substantial energy required. Reported methods of preparing 
NEs include high-energy emulsification, ultrasonication, 
high-pressure homogenization, low-energy emulsification, 
a phase inversion temperature method, a phase inversion 
composition method, a solvent displacement method, micro-
fluidization, spontaneous emulsification, a solvent evapora-
tion technique, and a hydrogel method [139].

Due to their limited stability and the energy needed to 
prepare them, relatively few studies on curcumin nanoe-
mulsions have been reported; these are discussed in Table 3 
[140–144].

4.5  Polymeric Nanoparticles

Polymeric NPs are solid colloids up to 1000 nm in size that 
are prepared using either natural or synthetic polymers that 
may or may not be biodegradable [145, 146]. Based on the 
distribution of the drug within the polymer, they are referred 
to as either nanocapsules (wherein the drug is within the 
cavity surrounded by a polymer coating) or nanospheres 
(where the drug is dispersed homogeneously in a polymeric 
matrix) [147, 148]. NPs show increased reactivity, surface 
area, sensitivity, and stability compared to liposomes [149]. 
Their high membrane permeability (due to their tiny size) as 
well their ability to target specific organs make them attrac-
tive drug carriers [150].

Among the approaches used to prepare drug-loaded NPs, 
nanoprecipitation is the simplest. This method is based on 
the precipitation of drug-loaded polymeric particles from an 
organic solution in aqueous media. Other methods include 
solvent evaporation, emulsion solvent diffusion, emulsion 
solvent evaporation, electrospraying, and nano spray drying 
[151–153]. Green techniques based on ultrasonication and 
microwaves are also reported [154, 155]. Polymeric NPs 
favor the attachment of ligands for targeted drug delivery 
[1, 156].

Polymeric NPs are the most studied nanosystems for 
curcumin bioenhancement. They are made from natural or 
synthetic polymers that may also be biodegradable [157]. 
Various methods of preparation are reported, which gener-
ally depend on the polymer used. Such polymers include 
bovine serum albumin–dextran [158], caseinate-zein poly-
saccharide [159], chitosan-zein [160], chitosan [161–164], 
Enteromorpha prolifera-based chitosan [165].  Eudragit® 
RLPO [166], genipin-crosslinked caseinate [167], Gantrez™ 
[1, 156], lysozyme Artemisia sphaerocephala Krasch-seed 
polysaccharide [168], poly(lactic-co-glycolic acid) (PLGA) 
[34, 73, 169–173], rice bran albumin [174], saponin coating 
[175], serratiopeptidase [176], sodium alginate and cation-
ized gelatin [177], and Soluthin  MD® [178].

These curcumin NPs have been evaluated not only for 
bioenhancement but also for various therapeutic activities 
in vitro and in vivo. A brief summary of the large number of 
published studies on curcumin NPs is provided in Table 4.

4.6  Miscellaneous Nanosystems

Other nanosystems have also been explored for oral cur-
cumin delivery, albeit to a limited extent. They are discussed 
in this section.
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Table 3  Summary of emulsion-based lipidic nanosystems of curcumin

Type of formulation Method of preparation Dose Outcomes Reference(s)

Microemulsions Oil titration method 1 mg/kg to rats Globule sizes < 20 nm, with improved 
stability. Faster and higher ex vivo cur-
cumin permeation through nasal mucosa 
of sheep. A 3.24-fold enhancement of 
curcumin AUC in the brain compared 
to intravenous curcumin, AUC (0–24h) 
(4953.11 ± 194.8 ng × h/g) and Cmax 
(400.982 ± 27.8 ng/g), with a 1553.18% 
increase in brain bioavailability. Intra-
nasal administration revealed a 5.1-fold 
enhancement of AUC 0−24 and relative 
bioavailability for curcumin in brain with 
curcumin–docosahexaenoic acid ME 
compared to curcumin solution

[121, 122]

Pseudo-ternary phase diagrams – Globule size < 30 nm. 10,000-fold increase 
in aqueous solubility compared to an 
aqueous solution of curcumin. Increases 
in curcumin permeation of 10% after 6 h 
and around 70% after 24 h

[124]

Water titration 200 mg/kg to rats Droplet size 27.3 nm. A 4.5-fold higher 
AUC (690.49±150.05 mg × min/mL), 
4.3-fold greater Cmax (3570 ± 1180 ng/
mL), and 22.6-fold increase in bioavail-
ability compared to curcumin suspension

[125]

Water titration 24 mg/kg to rats Droplet size 51.24±1.45 nm with zeta 
potential − 4.17 ± 0.53 mV. A 9.6-fold 
enhancement in bioavailability with an 
approximately tenfold increase in  
AUC (0–t) (180.97 ± 2.71 ng × h/mL) and a 
12.3-fold greater Cmax (66.19 ± 4.43 ng/
mL) compared to curcumin suspension

[126]

SMEDDSs Spray drying 25–100 mg/kg to rats Droplet size 147 ± 5.8 nm. AUC increased 
by 7.6 times (282.54 ± 61.37 ng × h/mL) 
and Cmax 4.6 times (155.56 ± 18.34 ng/
mL)

[51]

Simplex lattice 50 mg/kg to mice PS 21 nm. Absorption via passive transfer 
diffusion across the lipid membranes 
of rat intestine. 3.86 times higher oral 
absorption of curcumin compared with its 
suspension

[130]

Water titration method 50 mg/kg to rats Enhanced solubility, absorption, and 
16-fold higher bioavailability. 14-fold 
higher absorption with a 13.93 times 
greater AUC and a 17.52-fold higher Cmax 
than free curcumin

[131]

Water titration method 200 mg/kg to mice Droplet size 32.9 ± 19.3 nm. Approxi-
mately 12.7-fold higher AUC (0–∞) 
(277.06 μg × h/L), 3.1-fold increased Cmax 
(196.56 μg/L), and 12.73-fold higher bio-
availability than curcumin suspension

[132]
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4.6.1  Inorganic Nanoparticles

In recent years, inorganic nanoparticles have gained con-
siderable attention in relation to diagnostic and therapeu-
tic applications, mainly for cancer. Inorganic nanoparti-
cles include, for example, nanometer-sized quantum dots, 
manganese phosphate nanoparticles, noble metals, carbon 
nanotubes, silica nanoparticles, and magnetic nanoparti-
cles [179, 180], and they possess unique size-dependent 
physical properties such as optical and electrical effects, an 
efficient contrasting effect, and magnetism. They also have 
good microbial resistance and good storage properties [181, 
182]. However, even though curcumin inorganic NPs have 
the potential to be used in various important applications, no 

study of their possible utilization for oral bioenhancement 
has been reported.

4.6.2  Micelles

Micelles are aqueous dispersions of self-assembled aggre-
gates of surfactant or block copolymer molecules in the size 
range 5–100 nm [183, 184]. They are formed when the con-
centration of block copolymer is above the critical micellar 
concentration in aqueous solution [185, 186]. Micelles can 
form through simple dissolution, dialysis, o\w emulsion, sol-
vent evaporation, and lyophilization [187]. Adequate loading 
of hydrophobic drugs such as curcumin into micelles is a 
challenge, as is ensuring that the resulting micelles are safe, 

Table 3  (continued)

Type of formulation Method of preparation Dose Outcomes Reference(s)

Advanced third-
generation Cur-
SMEC-SD

Water titration method 50 mg/kg to rats Globule size ~ 100 nm. AUC (0–t) 
19.05 μg × h/mL, AUC (0–∞) 22.21 μg × h/
mL, Cmax 5.02 μg/mL, with a 413.82% 
bioenhancement compared to free 
curcumin and a twofold increase com-
pared to curcumin SD without SMEC. 
Enhanced stability for 6 months. Inhibi-
tion of paw volume compared to plain 
curcumin and curcumin SD, demonstrat-
ing enhanced efficacy. High efficacy of 
~ 80% compared to standard treatment 
with indomethacin in rheumatoid arthritis

[78]

Nanoemulsions Phase inversion temperature technique – An improved 2-month storage stability and 
high solubility for curcuminoids. Droplet 
size decreased as the concentration of 
surfactant increased

[140]

Precipitation 197 mg/kg to mice PS 218 nm, with classic digestion-diffusion 
permeation mechanism by Caco-2 cell 
monolayers. AUC (0–∞) 210 μg × min/mL) 
Cmax 29.9 ± 5.1 μg/mL, and a ninefold 
increase in oral bioavailability

[141]

– 1800 mg/kg to mice A 40-fold increase in Cmax and a 10.5-fold 
improvement in oral bioavailability. 
Decreased toll-like receptor-4 and recep-
tor advanced glycation end-product pro-
tein expression, decreased blood mono-
cytes, inhibited secretion of monocyte 
chemoattractant protein-1, and suppressed 
inflammation

[142, 143]

High-pressure homogenization – Droplet size 106.1 nm. TNF-α and IL-6 
gene expression was downregulated in 
lipopolysaccharide-stimulated Caco-2 
cells at 4.2 mg/mL. Transforming growth 
factor-beta 1 was upregulated and there 
were no changes in the mRNA levels of 
IL-10 and IL-8 compared to untreated 
cells

[144]

PS particle size, ME microemulsion, Cur-SMEC-SD curcumin self-microemulsifying composition solid dispersion, SMEC self-microemulsi-
fying composition, IL-6 interleukin 6, IL-8 interleukin 8, IL-10 interleukin 10, TNF-α tumor necrosis factor-alpha, mRNA messenger RNA, 
SMEDDSs self-microemulsifying drug-delivery systems, TPP tripolyphosphate, AUC  area under the concentration–time curve, Cmax maxi-
mum plasma concentration
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given that they are surfactant-based carriers. Nevertheless, 
micellar curcumin formulations have been evaluated for oral 
delivery [188–191], and they are discussed in Table 5.

4.6.3  Solid Nanodispersions

Nanodispersions are nanosized dispersed drug particles that 
are less than 1 μm in size and generally comprise emulsify-
ing components [192]. They can be self-microemulsifying 
or even self-micellizing. Nanodispersions are prepared by an 
emulsification-evaporation method [193], or by other tech-
niques such as melt emulsification or even the solubilization 
of liquid components in a solid matrix. Their small size, 
rapid dissolution, and the possible formation of micelles or 
a ME enables bioenhancement. The few studies that have 
been reported on nanodispersions [194–196] are reported 
in Table 5. Despite numerous advantages, nanodispersions 
of curcumin have not been widely studied, probably because 
they rely on surfactants for bioenhancement and long-term 
surfactant toxicity is a concern.

4.6.4  Phytosomes

Phytosomes, also called phytolipids, are phyto-phospholipid 
complexes that are essentially composed of phosphatidyl-
choline with polyphenolic compounds [197]. Phytosomes 
are a patented technology intended for the creation of lipid-
compatible molecular complexes with improved absorption 
and bioavailability of phytochemicals for enhanced thera-
peutic benefits [198] through enhanced pharmacokinetic 
and pharmacodynamic effects [199, 200]. The application 
of phytosomes for the oral delivery of curcumin [201–206] 
is also discussed in Table 5.

4.6.5  Dendrimers

Dendrimers are nanometric, hyperbranched, monodisperse 
polymeric materials that are also known as arborols [207, 
208]. Dendrimers consist of an initiator core, interior lay-
ers of repeating units, and an outermost exterior layer that 
provides a multifunctional surface for surface chemistry 
modification and has the advantage of a narrow polydis-
persity index [209]. Their small size and ability to cross 
cell barriers via both paracellular and transcellular pathways 

have made them attractive carriers for nano drug delivery. 
Table 5 depicts studies of curcumin dendrimers for oral 
delivery [210–214].

5  Bioenhancement Through Targeting

Targeted delivery of curcumin nanosystems following oral 
delivery could be enabled by ensuring intact particle uptake 
through the Peyer’s patches (PP) in the GIT. Hydrophobic 
particles are known to be readily taken up by the Peyer’s 
patches, with particles < 1 µm in size easily transcytosed 
into the circulation [215, 216]. It has been suggested that 
to enable such targeting, intact nanoparticles should reach 
the PP in the intestine; this is a vital prerequisite. Balancing 
mucoadhesion and hydrophobicity was proposed as one of 
the strategies to achieve high PP uptake [217]. Other authors 
have also demonstrated lung targeting using this approach. 
Designing curcumin nanoparticles for intact uptake through 
the PP could open up the possibility of exploiting curcumin 
for targeted delivery to the lungs to act as an anticancer, anti-
infective, and anti-inflammatory agent of great promise. This 
is a nascent field, and these results throw the door open to a 
myriad of research possibilities.

6  Future Perspective and Conclusion

Curcumin, a wonder nutraceutical, has manifold therapeutic 
activities and has been extensively studied. This review of 
the oral bioenhancement of curcumin, which presents the 
gamut of research efforts in this field, suggests that nan-
odelivery is a viable approach to overcoming the solubility 
and permeability challenges associated with BCS class IV 
drugs such as curcumin. This could provide a huge window 
of opportunity to harness the drug for various therapeutic 
needs. Indeed, harnessing safe phytoconstituents such as 
curcumin through intelligent drug-delivery strategies could 
open the door to the development of various patient-friendly 
and safe therapies of major afflictions that affect mankind. 
One major area that could be explored is the uptake of intact 
curcumin NPs for targeted delivery to various organs and 
even tumors.
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Table 5  Summary of miscellaneous nanosystems of curcumin

PS particle size, HNSCC head and neck squamous cell carcinoma, MDA-MB-231 epithelial human breast cancer cell line, HPV human papil-
lomavirus, SKBr3 breast cancer cell line, BT549 human breast cancer cell line, RNA ribonucleic acid, GAS5 growth arrest-specific 5, AUC  area 
under the concentration–time curve, Cmax maximum plasma concentration

Type of formulation Method of preparation Dose Outcomes Reference(s)

Micelles Thin-film dispersed 
method

– PS 46 nm. Absorbed through the intestine via passive dif-
fusion. Relative bioavailability of curcumin in micelles 
compared to curcumin suspension was 927.3%

[188]

Solvent evaporation 
method

– PS 188 ± 3 nm. Threefold increase in cytotoxicity and 
55-fold enhancement in oral bioavailability compared to 
curcumin alone

[189]

Ultrasonic cavitation – PS 19.99 nm. Curcumin:water and surfactant:water weight 
ratios were 0.7 and 0.11, respectively

[190]

– – More than 20,000-fold increase in water solubility and 
greater stability in basic pH and light. Improved dissolu-
tion and increase in permeation across everted sacs of rat 
small intestine. 117-fold improved oral bioavailability 
compared to curcumin suspension

[191]

Solid nanodispersions Simple mixing method 340 mg/kg to rats PS 158–610 nm. Improved oral bioavailability compared to 
suspension. Higher stability at physiological temperature

[194]

– 150 mg/kg to rats PS 85.40–135.3 nm. Enhanced membrane permeability. A 
19-fold oral bioenhancement compared to free curcumin. 
Higher cytotoxic activity against glioblastoma U-87 MG 
cells compared to curcumin

[195]

Solvent diffusion-evapo-
ration method

– Spherical particles with good storage stability under ambient 
conditions. Sustained release profile over 72 h with the 
Higuchi model

[196]

Phytosomes – 360 mg/kg 5.6-fold higher AUC (26.7 μg × min/mL), 29-fold higher 
absorption, and higher curcumin accumulation in liver

[201–203]

– – Curcumin naringenin combination exhibited higher antioxi-
dant activity with an extended duration of action

[204–206]

Dendrimers – – No cytotoxicity towards the T47D breast cancer cell line. 
Reduced cancer proliferation and increased telomerase 
inhibition

[210]

– – Improved aqueous solubility and bioavailability with Cmax 
90 ng/mL, and showed tumor-targeting efficacy against 
different cancer cell lines such as human malignant glioma 
cell line U-251, breast cancer cell line MDA-MB-231, 
HNSCC cells, and HPV-negative and HPV-positive cervi-
cal carcinoma cell lines. G3-curcumin dendrimers were 
internalized by U-251 glioma cells, specifically within 
nuclei

[211]

– – Exhibited both cytotoxic activity and improved water 
solubility. Induced cytotoxicity against SKBr3 and BT549 
human breast cancer cells, and induced cellular apoptosis 
based on caspase-3 activation

[212]

– – Polyamidoamine curcumin dendrimer downregulated and 
inactivated the activity of telomerase and induced apop-
tosis with dose-dependent cytotoxicity in a breast cancer 
cell line

[213]

– – Treatment of MDA-MB231, MCF7, and SKBr3 breast can-
cer cells led to increased expression of tumor suppressor 
candidate 7 (RNA gene) and GAS5 (non-protein-coding 
RNA), significantly reduced apoptosis, and superior mem-
brane penetration compared to dendrosomal curcumin. 
The antitumor properties of dendrosomal curcumin were 
enhanced in the presence of GAS5

[214]
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