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Abstract

Background The disposition of statins varies and involves

both metabolizing enzymes and transporters, making pre-

dictions of statin drug-drug interactions (DDIs) challeng-

ing. Physiologically based pharmacokinetic (PBPK)

models have, however, demonstrated ability to predict

complex DDIs.

Objective In this study, PBPK models of two statins (pi-

tavastatin and atorvastatin) were developed and applied to

predict pitavastatin and atorvastatin associated DDIs.

Method Pitavastatin and atorvastatin PBPK models were

developed using in vitro and human pharmacokinetic data

in a population-based PBPK software (SimCYP�) by

considering the contribution of both metabolizing enzymes

and transporters to their overall pharmacokinetics. The

statin PBPK models and software’s built-in or published

models of inhibitors were used to predict DDIs under dif-

ferent scenarios.

Results The statin models reasonably predicted the

observed exposure change due to Organic Anion Trans-

porting Polypeptide (OATP) 1B1 polymorphism or clinical

DDIs with itraconazole, erythromycin, and gemfibrozil,

while under-predicted the observed DDIs caused by

rifampin and cyclosporine. Further analysis demonstrated

that OATP1B1 inhibition by rifampin or cyclosporine in

the existing inhibitor models needs to be approximately

tenfold stronger to recapitulate the observed DDI with

these two inhibitors.

Conclusion Through quantitative assessment of the effect

of OATP1B1 genetic polymorphism and inhibitors of

transporters and metabolizing enyzmes via PBPK model-

ing, we confirmed the importance of OATP1B1 in the

disposition of these two statins, and explored potential

causes for under-prediction of the inhibitory effect of

rifampin and cyclosporine.
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Key Points

Pitavastatin and atorvastatin PBPK models were

successfully developed by considering the

contribution of both metabolizing enzymes and

transporters to their overall pharmacokinetics. The

statin PBPK models reasonably predicted the

observed exposure change due to OATP1B1

polymorphism or clinical DDIs with Cytochrome

P450 (CYP) inhibitors or OATP1B1 inhibitors.

Further analysis demonstrated that OATP1B1

inhibition by rifampin or cyclosporine in the existing

inhibitor models needs to be approximately tenfold

stronger to recapitulate the observed DDI with these

two inhibitors.

Ki values of inhibitor drugs on OATP1B1 need to be

carefully evaluated with known substrates for a

comprehensive DDI risk assessment to avoid

possible under-prediction of clinical DDI.

1 Introduction

Statins are a class of drugs prescribed widely among 20

million Americans to treat the hypercholesterolemia [1].

Currently marketed statins in the US include simvastatin,

lovastatin, atorvastatin, fluvastatin, pravastatin, rosuvas-

tatin, and pitavastatin. Although statins are generally well-

tolerated, patients concomitantly receiving multiple medi-

cations are at an increased risk of adverse events including

myalgia, myopathy and rhabdomyolysis, due to increased

exposure of statins causing by drug interactions in the

presence of co-medications [2]. For example, in a cross-

sectional study of 2742 dyslipidemia patients, a total of 198

statin-related drug-drug interactions (DDIs) were identified

(7.2%) among those aged 54–75 years who were receiving

a mean of 3.8 and 5.8 concomitant medicines [3]. Thus, it

is crucial to consider DDI risks when co-administering

other drugs in patients receiving statin therapy. Mecha-

nisms that cause statin-related DDIs should be understood

for risk management.

Although statins have similar mechanism of action, their

disposition pathways differ [4]. Lipophilic statins, includ-

ing simvastatin, lovastatin, atorvastatin, and fluvastatin, are

extensively metabolized by CYP3A4 or CYP2C9. Hydro-

philic statins, including pitavastatin, pravastatin and rosu-

vastatin, are mainly eliminated unchanged with minimal

metabolism by CYP enzymes [5]. Drug transporters in the

liver, intestine, and kidneys can also influence the dispo-

sition of statins. All statin drugs are substrates of the

membrane transporter organic anion transporting

polypeptide 1B1 (OATP1B1) (encoded by SLCO1B1)

[6–9]. Pharmacogenetic studies in statin taking patients

with different SLCO1B1 polymorphisms have revealed that

systemic exposure of most statins were significantly

increased in patients with genotype SLCO1B1 c.521 CC, a

polymorphism with reduced OATP1B1 function [10]. The

rank order of mean systemic exposure change (in fold) of

various statins in subjects with variant alleles as compared

to wild type are as follows: simvastatin (4.8)[ pitavastatin

(3.3)[ atorvastatin (3.2)[ pravastatin (2.0)[ rosuvas-

tatin (1.6)[fluvastatin (1.1), indicating the importance of

OATP1B1 in the disposition of some statins [11, 12].

Because different transporters and CYP enzymes con-

tribute to the disposition of different statins, the exposure

change of each statin by the same perpetrator (inhibitor)

drug can be quite different. As such, quantitative prediction

of statin DDI is complicated.

Elsby et al. developed a static model to predict the AUC

change of statins in the presence of transporter or enzyme

inhibitors [13]. By adopting the extended clearance concept

[14], we developed mechanistic static models for all 7

U.S.-marketed statins to predict DDIs in the presence of

enzyme and/or transporter inhibitors (unpublished) [15].

Our analysis showed that 60% (33/56 DDI cases) of pre-

dicted AUC ratios of statin AUC in the presence and

absence of inhibitors (AUCRs) were within 80–125% of

the observed AUCRs. While static models are relatively

straightforward to apply, they are not able to consider the

dynamic concentrations of victim (substrate) drugs and

inhibitors, especially concentrations in different tissues

with varying expression levels of transporters or enzymes.

These limitations hinder quantitative understanding and

prediction of DDIs involving multiple transporters or

complex enzyme-transporter interplay [16].

Physiologically based pharmacokinetic (PBPK) models

integrate human physiologically-dependent system param-

eters with drug-dependent parameters to predict drug

pharmacokinetics in the presence of intrinsic or extrinsic

factors [17]. The use of PBPK to assess DDIs mediated by

drug transporters is emerging, especially in studying the

role of OATPs in the disposition of statin drugs [18–20].

For example, the development of PBPK models for rosu-

vastatin, pravastatin, and simvastatin have been reported

previously [19, 21, 22].

To establish a framework to evaluate statin-associated

risk, we developed PBPK models for pitavastatin and

atorvastatin using in silico, in vitro and human pharma-

cokinetic data. These models considered quantitative con-

tribution from both enzymes and transporters to the

disposition of these drugs. We then used these models to

simulate statin pharmacokinetic in subjects with varying

SLCO1B1 polymorphism or in subjects co-administered
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with various CYP enzymes and/or transporter inhibitors.

The results (1) quantified key factors that determined the

disposition of these two statins and confirmed the signifi-

cant role of OATP1B1, and (2) demonstrated the utility of

PBPK in further understanding of knowledge gaps of pre-

dicting transporter-based DDIs.

2 Methods

PBPK models were developed using a population-based

PBPK software, SimCYP� (SimCYP Ltd, a Certara com-

pany, Sheffield, UK, Version 14.1). Unless otherwise sta-

ted, simulations with virtual population used 5 trials with

10 healthy subjects for each trial (50 subjects in total) in

software’s built-in healthy volunteer virtual population. For

both statins, software’s Advanced Dissolution, Absorption,

and Metabolism (ADAM) model and permeability-limited

liver distribution model were used to parameterize drug

absorption and liver disposition, respectively. Data from in

silico, in vitro absorption, distribution, metabolism and

excretion (ADME), and observed pharmacokinetic data in

healthy subjects with wild type OATP1B1 (encoded by

SLCO1B1) were used to develop the models (see Sects. 2.1

and 2.2). To simulate the effect of SLCO1B1 genetic

polymorphism, sub-virtual populations were created

according to OATP1B1 abundance relative to wild type

transporter, named as extensive transporter (ET, see 2.3).

To simulate the effect of inhibitors on statin pharmacoki-

netic profile, inhibitor models from software’s drug library

or those published in the literature were directly used (See

2.4).

2.1 Pitavastatin Model Development

Pitavastatin drug-dependent parameters are listed in

Table 1 and the section focuses on transporter parameter-

ization. In addition to in silico and in vitro ADME data, the

observed mean pharmacokinetic data of pitavastatin in

healthy subjects receiving 2 mg pitavastatin via intra-

venous infusion or 2 mg oral dose (training dataset) [23]

were used to optimize several parameters. Hepatic meta-

bolism of pitavastatin is assumed to be rate-limited by

hepatic uptake transporters. Direct application of intrinsic

clearance (CLint,T) values for OATP1B1 and OATP1B3

determined in vitro (58.4 and 5.1 lL/min/million cells,

respectively) [24] under-estimated systemic clearance of

the drug. As such, empirical scaling factors for OATP1B1

and OATP1B3 were optimized to be 18 and 18, respec-

tively, according to intravenous and oral pharmacokinetic

data mentioned above [23].

The final pitavastatin PBPK model was verified by simu-

lating the single oral dose of 4 mg pitavastatin [23], the

exposure changes of pitavastatin in different genotypes of

SLCO1B1, or in the presence of OATP1B1 inhibitors as

described below. The simulated results were compared to the

clinical observations to determine the model performance.

2.2 Atorvastatin Model Development

Atorvastatin drug-dependent parameters are listed in Table 1

and the section focuses on transporter parameterization.

Because there was no intravenous plasma concentration-

time profile data available for atorvastatin, oral pharma-

cokinetic profiles in healthy subjects [25, 26] were used

during model development to optimize intrinsic clearance of

hepatic uptake transporter. Atorvastatin is extensively

metabolized by CYP3A4 and actively uptaken into hepato-

cytes through OATP1B1 [27]. Because the uptake process

may be the rate-limiting step for the overall clearance of

atorvastatin, intrinsic clearance of CYP3A (CLint,CYP3A)

may be unidentifiable. We tried two approaches to deter-

mine CLint,T and CLint,CYP3A. First, we obtained CLint,CYP3A

by retrograde analysis with reported value of intravenous

atorvastatin clearance of 37.5 L/h [28]. The derived

CLint,CYP3A was 8 ll/min/pmol of recombinant CYP

according to the design of the software. (In SimCYP, the

unit of CLint,CYP3A is ll/min/pmol if obtained from the ret-

rograde method.) Then, we optimized CLint,T for OATP1B1.

The optimization began with reported in vivo CLint,T of

910 ml/min/kg [29, 30], or 360 ll/min/million cells based

on software’s extrapolation algorithm. The CLint,T can be

further used to calculate the maximum transporter-mediated

uptake (Jmax) of atorvastatin (277.2 pmol/min/million cells)

based on a Michaelis-Menten Constant (Km) of 0.77 lM

(assuming the lowest atorvastatin Km value from the

reported range of 0.77–15 lM, the University of Washing-

ton Metabolism and Transport Drug Interaction Database,

UWDiDB). With the input of these parameters, we simu-

lated the pharmacokinetic of atorvastatin after 20 mg single

oral administration (training dataset). The initial simulation

of atorvastatin over-estimated the AUC, thus an empirical

scaling factor of 4 for OATP1B1, obtained by sensitivity

analysis using the same training set pharmacokinetic dataset

(e.g. plasma concentration-time profile, AUC and Cmax)

after 20 mg oral dosing, was decided [25, 26] (Supple-

mentary Fig. 1). In the second approach, we directly used

CLint,CYP3A based on the in vitro assays with human liver

microsomes (184 lL/min/mg protein for ortho-hydro

metabolite pathway, and 219 lL/min/mg protein for para-

hydroxy metabolite pathway, respectively), and then opti-

mized CLint,T as described in the first approach. (In Sim-

CYP, the unit of CLint, CYP3A is ll/min/mg protein if the

values are obtained from in vitro microsome assay.

[31]) This modeling approach resulted in similar simulation

of atorvastatin pharmacokinetic after 20 mg oral dosing as
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Table 1 Drug-dependent parameters for pitavastatin and atorvastatin PBPK models

Pitavastatin Atorvastatin

Parameters

(Units)

Value Source and comments Parameters (Units) Value Source and comments

Molecular

weight

(g/mol)

421.46 [59] Molecular weight

(g/mol)

558.64 [60]

log Po:w 2.91 [61] log Po:w 4.07 [62]

Compound

type

Monoprotic

acid

Compound type Monoprotic

acid

pKa 5.31 Drugs@FDA[23] pKa 4.46 [22]

Fraction

unbound

0.005 Drugs@FDA[23] Fraction unbound 0.024 Drugs@FDA [63]

Blood/plasma

ratio

0.55 Drugs@FDA[23] Blood/plasma ratio 0.61 [64]

Absorption

model

Advanced

Dissolution,

Absorption,

and

Metabolism

(ADAM)

model

[65] Absorption model Advanced

Dissolution,

Absorption,

and

Metabolism

(ADAM)

model

[65]

Peff,man

(10-4 cm/s)

4.688 GastroPlus ADME Predictor

(Simulation Plus, Lancaster,

CA). Assuming the solution

formulation

Intestinal Breast

Cancer

Resistance

Protein (BCRP)

CLint,T (ll/min)

BCRP: 6 Optimized according to Cmax

and Tmax in [33]

Peff,man (10-4

cm/s)

Predicted Apparent permeability of 7.9

10-6 cm/s in Caco-2 cells [66]

Distribution

model

Full PBPK [67, 68] Distribution model Full PBPK [67, 68]

Vd,ss (L/kg) 0.22 Final value was optimized

according to observed value

[23] by adjusting LogPvo:w

value with method 2 published

by Rodgers et al [68–70] as the

prediction model in SimCYP

Vd,ss (L/kg) 0.226 Final value was optimized

according to observed value

[63] by adjusting LogPvo:w

value with method 2 published

by Rodgers et al [68–70] as the

prediction model in SimCYP

Elimination

model

Enzyme

kinetics

Elimination model Enzyme

kinetics

CYPs CLint

(recombinant)

(lL/min/

pmol)

CLint CYP2C8:

12.98

CLint CYP2C9:

7.93

CLint UGT:

2.52

Retrograde analysis [71]

according to 2 mg intravenous

pharmacokinetic data[23].

CLint for UGT was directly

applied from the in vitro

studies [72] because relative

contribution of UGT and CYP

metabolism is not known.

CYPs (CYP2C8 and CYP2C9)

contribute to approximately

38% of total enzymatic

metabolism. Contribution of

CYP2C8 and CYP2C9 were

defined based on in vitro

phenotyping data [73] (i.e.,

35% and 65% for CYP2C8 and

CYP2C9, respectively)

CYPs CLint

(recombinant)

(lL/min/pmol of

isoform)

CLint CYP3A4:

8

Retrograde analysis [71]

according to 20 mg

PO pharmacokinetic data[25]

[26], assuming 100%

contribution from CYP3A4

Additional

clearance

(lL/min/mg

protein)

HLM CLint:

1452.69

Estimated by the retrograde

analysis in SimCYP
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Approach 1, suggesting that CLint,CYP3A is unidentifiable

and hepatic uptake seems to be the rate-limiting step of the

overall clearance of atorvastatin.

Atorvastatin is a substrate of Breast Cancer Resistance

Protein (BCRP) encoded by ABCG2, and Keskitalo et al

[32] found that subjects with the ABCG2 c.421AA geno-

type showed a 72% and 46% increase in atorvastatin AUC

and Cmax, respectively, as compared to subjects with the

c.421CC genotype, suggesting the important role of BCRP

in the absorption/disposition of atorvastatin. However, due

to the limited data, BCRP and OATP transport CLT could

not be simultaneously fitted with certainty, particularly

using oral data alone. Because the t1/2 of the atorvastatin

was not changed in the ABCG2 genotype, we assume that

BCRP mainly plays a role in the absorption of atorvastatin.

The intrinsic clearance of atorvastatin via intestinal BCRP

was optimized manually to match the simulated Cmax and

time to Cmax (Tmax) to those reported in the literature [33].

The contribution of biliary clearance of atorvastatin from

BCRP was directly adopted from the in vitro hepatocyte

uptake studies (1.4 ll/min/mg protein, assuming 1 million

cell = 1 mg protein) [34], which appears to contribute

minimally to overall hepatic clearance.

The final atorvastatin PBPK model was verified by

simulating the single oral dose of 40 mg [35], the exposure

changes of atorvastatin in different genotypes of SLCO1B1,

or in the presence of CYP3A and OATP1B1 inhibitors as

described below. The simulated results were compared to

the clinical observations to determine the model

performance.

2.3 Simulation of Exposure Change of Statins

in Populations with Different Genotypes

of SLCO1B1

In SimCYP, the CLint.T of transporter is scaled to whole

organ clearance by multiplying a series of scaling factors

including milligram microsomal protein per gram of

liver (MPPGL), transporter abundance (abundance of

various transporter allelic variants), and total liver

weight. Different SLCO1B1 genotypes include ET (ex-

tensive transporter), IT (intermediate transporter), PT

(poor transporter), and UT (ultra-rapid transporter). For

our studies described in this manuscript, all population

simulations were conducted by using SimCYP-defined

virtual healthy population, unless otherwise specified

Table 1 continued

Pitavastatin Atorvastatin

Parameters

(Units)

Value Source and comments Parameters (Units) Value Source and comments

Renal

clearance

CLR (L/h)

0.129 [23] Renal clearance

CLR (L/h)

0.375 [28]

Liver

transporters

CLint,T (lL/

min/million

cells)

OATP1B1

CLint, T: 58.4a

Empirical

scaling factor:

18b

OATP1B3

CL int, T: 5.1a

Empirical

scaling factor:

18b

CLPD: 11a

Refer to footnote Liver transporters

CLint,T (lL/min/

million cells)

OATP1B1

Jmax: 277.2

Km: 0.77 lMc

Empirical

scaling factor:

4d

CLint,T BCRP:

1.4 e

CLpd: 17f

Refer to footnote

BCRP breast cancer resistance protein, CLPD passive diffusion clearance, CLR renal clearance, CLint intrinsic clearance of enzyme, CLint,T
intrinsic clearance of transporter, CYPs Cytochromes P450, HLM human liver microsomes, LogPo:w logarithm of the n-octanol:buffer partition

coefficient, pKa logarithmic constant of acid dissociation constant, OATP organic anion transporting polypeptide, Peff, man effective permeability

in man, Vd,ss steady state volume of distribution, PO per os, oral administration, UGT Uridine 5’-diphospho-glucuronosyltransferase (UDP)-

glucuronosyltransferase
a [24]
b Optimized per method section
c The University of Washington Drug Interaction Database
d Optimized per method section
e [34]
f [74]
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(e.g., simulations in populations with SLCO1B1 c.521

TT or c.521 CC). For a virtual healthy population, the

percentage of each transporter phenotype in a population

would be determined by the frequency values of trans-

porter phenotype under transporter phenotype table in

SimCYP virtual population, which are 0.64, 0.02, 0.27,

and 0.07 for ET, PT, IT, and UT, respectively. The

default relative abundance values for each SLCO1B1

genotype are 1, 0.68, 0.37, and 1.47 for ET, IT, PT, and

UT, respectively. This relative abundance determines

OATP1B1 intrinsic clearance in non-ET subjects as a

fraction of that in ET in simulations of the pharma-

cokinetic of statins in these subjects.

We assumed that population with SLCO1B1 c.521 TT

was consisted of subjects with 100% of ET, and population

with SLCO1B1 genotype c.521 CC was consisted of sub-

jects with 100% of PT. Two populations were created

separately for SLCO1B1 genotype c.521 TT population and

SLCO1B1 genotype c.521 CC population by adjusting the

population frequency of ET or PT to 1 while keeping all

other values as 0, respectively. The plasma concentration-

time profile of pitavastatin or atorvastatin in SLCO1B1

genotype c.521 TT or in SLCO1B1 genotype c.521 CC was

simulated in each respective population (5 trials with 10

subjects in each trial).

2.4 Inhibitor Drug Models

Models for itraconazole and its metabolite hydroxyl-itra-

conazole were directly used from SimCYP software com-

pound library. Erythromycin PBPK model parameters were

adopted from the model published by Yeo et al. [36].

Gemfibrozil PBPK inhibitor model published by Varma

et al. [37] (with the consideration of its metabolite gemfi-

brozil 1-O-b-glucuronide) was directly applied as the

inhibitor model. Cyclosporine model from Jamei, et al [21]

and rifampin model from Varma et al [38] were directly

applied (also see Sect. 2.6). The inhibitory kinetic param-

eters on CYP enzymes and transporters for these inhibitors

are shown in Table 2.

2.5 Measurement of Prediction Performance

Both atorvastatin and pitavastatin have significant inter-

study variability in pharmacokinetics [39]. As such, we

used AUC ratios (with/without co-medication or between

different genotypes) as metrics to evaluate model per-

formance. Effect of SLCO1B1 polymorphism was mea-

sured by statin AUC ratio (AUCR), the ratio between

mean statin AUC in PT subjects to that in ET subjects.

The magnitude of drug interaction was represented by

AUCR (mean AUC of statin in the presence of an

inhibitor drug compared to the mean AUC in the

absence of an inhibitor drug). The prediction perfor-

mance of PBPK models was determined by an R value

(R is the ratio of mean simulated AUCR to mean

observed AUCR, R = AUCRs/AUCRo). There is no

consensus with regard to acceptance criteria of a PBPK

model [40]. A criterion that predicted pharmacokinetic

parameters within twofold of the observed data has been

used frequently to assess the performance of a PBPK

model [40]. Although this twofold criterion is arbitrary,

for the purpose of our analysis and known inter-study

variability, an R value within a twofold range (0.5–2.0)

was regarded satisfactorily. Furthermore, when observed

plasma concentration-time profiles were available, the

models were considered acceptable if the clinical

observations were within 90% confidence interval (CI)

of the simulated mean plasma concentration curve, an

approach used in other PBPK studies [41, 42]. The

similar analysis on change in Cmax as a result of DDI or

different genotypes of SLCO1B1 was conducted and the

results were shown in Supplementary Table 1.

2.6 Evaluation of the Impact of Inhibitor Ki

for OATP1B1 on DDI Prediction

For DDI prediction with rifampin and cyclosporine, a

sensitivity analysis on their Ki for OATP1B1 was con-

ducted by changing the Ki value to up to 100 fold-lower

used in the published models. SimCYP’s built-in sensitiv-

ity analysis function was used to conduct the sensitivity

analysis.

3 Results

3.1 Performance of Pitavastatin and Atorvastatin

Models for Predicting Pharmacokinetic Profiles

via Intravenous and Oral Routes

of Administration

Figure 1 shows that the pitavastatin substrate model

described pitavastatin pharmacokinetic profile after single

intravenous infusion of 2 mg (Fig. 1a), which was used

during model development to optimize several parameters

(Table 1) [23]. The model was also able to independently

describe pitavastatin pharmacokinetic profiles after single

oral doses of 2 mg and 4 mg in healthy subjects (Fig. 1b,

c) [23].

Figure 2 shows that the atorvastatin substrate model

well described atorvastatin pharmacokinetic profile fol-

lowing 20 mg [25] or 40 mg of single oral administration

in healthy subjects [35], in which 40 mg data set was not

used during the model development.
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3.2 Simulation of Exposure Change in Populations

with Different Genotypes of SLCO1B1

Simulation of the effect of SLCO1B1 polymorphism on

systematic exposure of pitavastatin or atorvastatin was

conducted under the assumptions of relative transporter

abundance with SLCO1B1 genotypes as described in

Methods. Both pitavastatin and atorvastatin models pre-

dicted an exposure change in the presence of SLCO1B1

polymorphism to be within twofold of the observed values

(Table 3). The pitavastatin model slightly under-estimated

the change in Cmax as a result of different SLCO1B1

genotypes (R value is 0.39) (Supplementary Table 1).

3.3 DDI Prediction

The predicted mean AUCRs and CmaxR for DDIs with

gemfibrozil, itraconazole, and erythromycin were within

two-fold of observed values (Table 3) (Supplementary

Table 1). Figure 3 and Table 3 compared the simulated

Table 2 Inhibitor PBPK models

Inhibitor PBPK models Inhibitory kinetic parameters Source

Itraconazole Inhibition on

CYP3A4:

Ki of competitive

inhibition:

0.0013 lM

Inhibition on transporter: N/A Built-in SimCYP inhibitor model

Erythromycin Inhibition on

CYP3A4:

Ki of competitive

inhibition: 82

lM

Ki of mechanism-

based

inhibition: 2.25

lM

Inhibition on OATP1B1:

Ki of competitive inhibition: 1.67 lM

[75]

Gemfibrozil Inhibition on

CYP2C8:

Ki of competitive

inhibition:

9.3lM

Inhibition on OATP1B1:

Ki of competitive inhibition: 2.5 lM

[19, 37]

Gemfibrozil metabolite:

gemfibrozil 1-O-b-

glucuronide

Inhibition on

CYP2C8:

Ki of competitive

inhibition: 10.1

lM

Inhibition on OATP1B1:

Ki of competitive inhibition: 7.9lM

[19, 37]

Rifampin Ki of competitive

inhibition on

CYP2C8:

30.2 lM

Ki of competitive

inhibition on

CYP3A4:

18.5 lM

CYP3A4

induction:

CYP3A4 Emax

49.5; CYP3A4

EC50 0.229 lM

Inhibition on transporters:

Ki of competitive inhibition on OATP1B1: 0.93 lM

Ki of competitive inhibition on OATP1B31: 0.3 lM

[38]

Cyclosporine Ki of competitive

inhibition on

CYP3A4:

12.7 lM

Inhibition on transporters:

Ki of competitive inhibition on OATP1B1: 0.014 lM

Ki of competitive inhibition on OATP1B3: 0.007 lM

Ki of competitive inhibition on BCRP: 0.28 lM

[21, 76]

1 In vitro Ki for OATP1B3 by rifampin ranges from 0.22–5 lM, here the value of 0.3 lM was used based on one of the in vitro inhibition

studies with pitavastatin as the probe [77]
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and observed pharmacokinetic profiles of pitavastatin

and atorvastatin, respectively, in the presence of

gemfibrozil.

The simulated pitavastatin or atorvastatin plasma con-

centration-time profiles in the presence of cyclosporine

(200 mg co-administrated with pitavastatin [23], 5.2 mg/kg

Fig. 1 The simulation of plasma concentration-time profile of

pitavastatin. Simulation of pitavastatin pharmacokinetic profile using

the PBPK model (mean profile) following a intravenous infusion of

2 mg pitavastatin (model development), b single oral administration

of 2 mg and c single oral dose of 4 mg pitavastatin (model

verification). Simulations were conducted with virtual healthy

subjects as described in Methods. Data points are observed mean

values [23]

Fig. 2 The simulation of plasma concentration-time profile of

atorvastatin. Simulation of atorvastatin pharmacokinetic profile using

the PBPK model (mean profile) following a single oral dose of 20 mg

atorvastatin (model development) (a), and a single oral dose of 40 mg

atorvastatin (model verification) (b). Data points are observed mean

values (20 mg [25, 26], 40 mg [35]). Simulations were conducted

with virtual healthy subjects as described in Methods. Data from two

different studies (with 20 mg) [25, 26] were presented by different

symbols

696 P. Duan et al.
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co-administrated with atorvastatin[43] or in the presence of

single intravenous infusion or oral dose of rifampin

(600 mg) significantly under-estimated the observed mag-

nitude of clinical DDI (Table 3). The R values of AUCR

(See Sect. 2.6) for pitavastatin co-administered with

rifampin and cyclosporine were 0.32 and 0.41, respec-

tively; and R values of AUC for atorvastatin co-adminis-

tered with rifampin and cyclosporine were 0.31 and 0.25,

respectively (Table 3). Similar under-estimation in the

change of Cmax was found for atorvastatin DDI with

rifampin and cyclosporine, or pitavastatin DDI with

cyclosporine (Supplementary Table 1).

3.4 Evaluation of Inhibitor Ki for OATP1B1

on the Performance of DDI Prediction

The significant under-predictions with rifampin and

cyclosporine may be caused by several factors. To explore

one potential factor, we conducted sensitivity analyses by

assuming that OATP1B1 inhibition potency in both

Fig. 3 a Simulation of pitavastatin pharmacokinetic profile when the

drug is coadministered with gemfibrozil. Mean plasma concentration-

time profile of oral administration of 4 mg pitavastatin in the presence

of 600 mg gemfibrozil. Squares represent mean observed plasma

concentration-time profile of pitavastatin dosed in the presence of

gemfibrozil. Dotted line represents 5th and 95th percentile of

simulated mean data, respectively. Observed data were from

Drugs@FDA [23]. b Simulation of atorvastatin pharmacokinetic

profile when the drug is coadministered with gemfibrozil. Mean

plasma concentration-time profile of oral administration of 40 mg

atorvastatin in the presence of 600 mg gemfibrozil. Squares represent

mean observed plasma concentration-time profile of atorvastatin

dosed in the presence of gemfibrozil. Dotted line represents 5th and

95th percentile of simulated mean data, respectively. Observed data

were from Ref. [81]

Fig. 4 The impact of different Ki values for OATP1B1 on AUCR of

atorvastatin DDI with rifampin (a) and cyclosporine (b). Automatic

sensitivity analysis (ASA) of the Ki values of rifampin (a) and

cyclosporine (b) for OATP1B1 inhibition was conducted with

SimCYP stimulator V14.1 using pitavastatin or atorvastatin PBPK

models with rifampin or cyclosporine as the inhibitor drugs,

respectively. The predicted AUCR was plotted with the

corresponding Ki used in ASA. The Ki used from the published

model was marked with ‘‘initial Ki’’ in the figure. Ki inhibitory

constant, OATP organic anion transporting polypeptide, AUCR ratio

of area under the concentration-time curve, PBPK physiologically

based pharmacokinetic, ASA automatic sensitivity analysis, DDI drug-

drug interaction, Obs observed

698 P. Duan et al.



inhibitors’ PBPK models may be lower than the actual

inhibition potency in vivo. The Ki values for OATP1B1

used in models were adopted from publically reported

values of 0.014 and 0.9 lM for cyclosporine [44] and

rifampin [19], respectively. However, a wide range of Ki

values for OATP1B1 have been reported for cyclosporine

and rifampin (0.014–1.0 and 0.41–3.1 lM, respectively

based on UWDiDB). The analyses showed that decreasing

initial Ki values by tenfold for both rifampin and cyclos-

porine significantly improved the DDI prediction (Table 3;

Fig. 4). For AUCR, the R values of atorvastatin DDI using

these modified Ki values were 0.86 and 1.14 for cyclos-

porine and rifampin, respectively; the R values of

pitavastatin DDI using these modified Ki values became

1.02 and 0.94 for cyclosporine and rifampin, respectively

(Table 3). For CmaxR, the modification in Ki improved the

predictions, with the R values of atorvastatin DDI became

0.68 and 1.33, for rifampin and cyclosporine, respectively;

while the R values of pitavastatin DDI using these modified

Ki values became 0.48 for cyclosporine. Figures 5 and 6

show the simulated concentration-time profiles of ator-

vastatin and pitavastatin in the presence of rifampin with

the modified Ki value, respectively, which were close to the

clinical observations.

4 Discussion

4.1 Performance of Statin PBPK Models

In this study, we developed substrate PBPK models for

pitavastatin and atorvastatin, with the consideration of the

contributions from both enzymes (CYP2C9/2C8/UGT for

pitavastatin and CYP3A4 for atorvastatin) and transporters

Fig. 5 Simulation of atorvastatin-rifampin drug-drug interaction with

OATP1B1 Ki of 0.09 lM. Mean (solid line) plasma concentration-

time profile of oral administration of 40 mg atorvastatin in the

presence of single intravenous infusion of 600 mg rifampin. Triangles

and squares represent mean observed plasma concentration-time

profile of atorvastatin dosed in the presence or absence of rifampin,

respectively. The Ki of rifampin on OATP1B1 was lowered by tenfold

to 0.09 lM from the initial 0.9 lM. Observed data were from Ref.

[79]. OATP organic anion transporting polypeptide, Ki inhibitory

constant

Fig. 6 Simulation of pitavastatin DDI with rifampin using a Ki value

of 0.09 lM for OATP1B1 inhibition. Mean (solid line) plasma

concentration-time profile of oral administration of 4 mg pitavastatin

in the presence of single oral dose of 600 mg rifampin. Squares

represent mean observed plasma concentration-time profile of

pitavastatin dosed in the presence of rifampin. The Ki of rifampin

on OATP1B1 was lowered by tenfold to 0.09 lM from the initial Ki

of 0.9 lM. The dashed lines are 95th and 5th percentile of simulated

mean data, respectively. Observed data was taken from Ref. [23].

OATP organic anion transporting polypeptide, Ki inhibitory constant,

AUC area under the concentration-time curve
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(OATP1B1/3 for pitavastatin and OATP1B1/BCRP for

atorvastatin). Due to limitations in in vitro-in vivo

extrapolation (IVIVE) of transporter-mediated clearance,

scaling factors (e.g. intersystem extrapolation factor (ISEF)

or empirical scaling factor) are frequently applied during

PBPK model development to capture the observed in vivo

clearance [45]. As shown by Jones et al, a wide range of

scaling factors were needed for each of 7 substrate drugs

investigated (including some statins), suggesting signifi-

cant gaps in translating in vitro transporter kinetic data

using PBPK models. This gap cannot be filled with a

common scaling factor [46]. For the pitavastatin model, we

used the CLint.T for OATP1B1 and OATP1B3 measured in

hepatocytes, which were 58.4 and 5.1 lL/min/million cells,

respectively [24]. The difference in CLint.T suggests that

the fractions of transporter for OATP1B1 and OATP1B3

are different, and OATP1B1 is the major transporter for

hepatic uptake of pitavastatin. The initial model with these

in vitro parameters cannot describe the clinically observed

2 mg oral dose or intravenous pharmacokinetic data, and

the same empirical factor of 18 for OATP1B1 and

OATP1B3 has to be applied to capture clinical data. For

atorvastatin, we found that we need to apply a scaling

factor of 4 to CLint.T of OATP1B1 (presented in Jmax and

Km) obtained from hepatocyte study in order to recapitulate

clinical observation.

Clinical studies showed that the exposure of pitavas-

tatin increased by 3.1-fold in subjects with SLCO1B1

c.521 CC (PT) genotype as compared to those with the

wild type c.521 TT (ET) [47]. Similarly, an increase of

2.4-fold in the exposure of atorvastatin was found in

subjects with the SLCO1B1 c.521 CC genotype as

compared to those with the wild type [48]. The reduced

function of OATP1B1 in subjects with genotype

SLCO1B1 c.521 CC could be considered as a genetic

specific inhibition of OATP1B1, which would be con-

sidered as a more specific impairment of OATP1B1

function. Predictions of the AUCR based on different

SLCO1B1 genotypes indicated that the current PBPK

models appear to describe the contribution of OATP1B1

to the disposition of these two statins. The predicted

AUCR in DDI studies with gemfibrozil, itraconazole,

and erythromycin were within twofold range of clini-

cally observed AUCR. The good predictions of DDIs

with multiple inhibitors that inhibit enzymes and/or

transporter OATP1B1 further lend confidence of the final

substrate PBPK models.

Besides being a substrate of OATP1B1, atorvastatin is

also metabolized by CYP3A, and thereby, it is interesting

to know which pathway (OATP1B1 or CYP3A) is the rate-

limiting step of atorvastatin elimination. A sensitivity

analysis was conducted on the Ki of OATP1B1 and

CYP3A4, respectively (Fig. 7). If decreasing the Ki of

cyclosporine for OATP1B1 by 100-fold, the change in

predicted AUCR could be as large as tenfold (a steeper

slope), while same fold-change (100-fold) in its Ki for

CYP3A4 only resulted in a 1.6-fold change in the predicted

AUCR (a flatter slope). Thus, the data suggested that in the

presence of a drug inhibiting both CYP3A4 and OATP1B1,

systemic exposure of atorvastatin was more affected by

OATP1B1 inhibition than by CYP3A4 inhibition. This

sensitivity analysis supported that OATP1B1 was the rate-

limiting step for the hepatic clearance of atorvastatin. Our

observation is consistent with the findings from Maeda et al

[49]. In their study, the exposure of atorvastatin increased

12-fold in the presence of the OATP1B1 inhibitor rifampin,

but did not change in the presence of the strong CYP3A4

inhibitor itraconazole.

Fig. 7 The impact of inhibition of OATP1B1 (a) and CYP3A4 (b) on

the predicted AUCR of atorvastatin DDI with cyclosporine. With

atorvastatin PBPK model as the substrate model and cyclosporine as

the inhibitor model, sensitivity analysis on OATP1B1 Ki (a) or

CYP3A4 Ki (b) was conducted, respectively. The different OATP1B1

Ki or CYP3A4 Ki values were plotted with corresponding predicted

AUCR. Ki inhibitory constant, OATP organic anion transporting

polypeptide, AUCR ratio of area under the concentration-time curve,

PBPK physiologically based pharmacokinetic, CYP cytochrome P450
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Despite the encouraging results of independent verifi-

cation of PBPK models of pitavastatin and atorvastatin

with regard to SLCO1B1 polymorphism and DDI with

some inhibitors (itraconazole, erythromycin, and gemfi-

brozil), significant under-predictions were observed when

published cyclosporine and rifampin PBPK models were

directly used to simulate their effects on the exposure of

pitavastatin and atorvastatin (Table 3). The simulated

inhibitor pharmacokinetic profile of rifampin or cyclos-

porine is close to clinical observation, which excludes the

possibility that the poor prediction of DDI is as a result that

inhibitor model had not been adequately developed (Sup-

plementary Fig. 2). Similar under-prediction of DDI with

cyclosporine was also found in other published PBPK

models. The published pravastatin PBPK model under-es-

timated the clinical cyclosporine-pravastatin DDIs, when

the reported geometric mean in vitro Ki was used in

cyclosporine model [19]. The rosuvastatin PBPK model

developed by Jamei et al [21] also seemed to under-esti-

mate the clinically observed rosuvastatin-cyclosporine

DDIs. In a recent PBPK analysis, Snoeys and colleagues

also updated rifampin PBPK model with Ki for OATPs that

are approximately tenfold lower than those reported by

others in order to predict the risk of clinical DDI [50].

Recently, Zhang et al. developed an atorvastatin PBPK

model to predict PK of atorvastatin and its two metabolites

and the effect of CYP3A modulators on atorvastatin

pharmacokinetic. The author demonstrated reasonable

prediction of the effect of single dose rifampin on ator-

vastatin pharmacokinetic, primarily via OATP inhibition;

however, the author stated that OATP parameters were

‘‘optimized with the data from combination with a single

dose of rifampin’’ and no details on the optimization and Ki

of inhibitor were given. Furthermore, although the pre-

dicted AUCR as a result of rifampin DDI was similar to

observation in Zhang et al.’s model, the change in Cmax is

significantly under-estimated (5.7 predicted vs. 12.7

observed). In our study, we demonstrated that OATP Ki

values for cyclosporine and rifampin need to be lowered by

tenfold in order to predict their effects on the pharma-

cokinetics of pitavastatin and atorvastatin (Table 3). With a

lower Ki, the predicted AUCR and change in Cmax are close

to clinical observation.

In addition to OATP inhibition potency, other reasons

may contribute to under prediction of cyclosporine-statin

or rifampin-statin DDI. First, the current DDI simulations

were conducted in healthy subjects, while the exposure of

cyclosporine may differ between heart transplant patients

and virtual healthy subjects [51]. Second, for both statin

substrates, we directly used hepatic passive diffusion

clearance (CLpd, Table 1) based on in vitro findings,

whereas we optimized empirical scaling factor values for

active uptake processes only. Both passive and active

uptake clearances are important in determining drug

exposure in the liver, and one cannot completely rule out

the possibility of a lower or a higher in vivo CLpd. Models

with lower CLpd may require higher CLint,T by OATP to

describe observed pharmacokinetic profiles during model

development. Consequently, simulated genetic effect and

DDI may be greater. If so, one can imagine the amount of

additional simulations needed to investigate relative con-

tribution of hepatic uptake by CLpd and transporter CLint,T.

Third, concurring disposition pathways that may be

affected by cyclosporine and rifampin have not been

appropriately incorporated in the model for pitavastatin and

atorvastatin. For example, we did additional sensitivity

analysis to investigate the effect of lowering OATP1B1 Ki

of cyclosporine on predicted DDI with pravastatin and

rosuvastatin. As described above, the pravastatin model

under-estimated the clinically observed pravastatin-cy-

closporine DDI [19]. Although lowering the OATP1B1 Ki

of cyclosporine slightly increased the predicted AUCR, it

failed to fully recapitulate the tenfold clinically observed

AUCR (Supplementary Fig. 3). Inhibition of other path-

ways might contribute to clinically observed AUCR.

Cyclosporine is also an inhibitor of MRP2, and MRP2

contributes to the renal clearance of pravastatin, which is

not considered in the pravastatin model. Similarly, the

tenfold decrease in OATP1B1 Ki from 0.014 lM to

0.0014 lM only slightly increase the simulated AUCR of

rosuvastatin from 1.3 fold to around 2.3 fold, and can’t

fully recapitulate the clinically observed 7.1 fold change in

AUC [21] (Supplementary Fig. 4).

Atorvastatin and pitavastatin have inter-conversion of

acid form and lactone forms. However, the administrated

statin is in acid form, and in clinical studies, acids are

major moiety for hepatic uptake by OATPs [27]. Because

the main purpose of our modeling is to build a framework

to evaluate DDI risk of pitavastatin and atorvastatin with

enzyme or transporter inhibitors, we assumed that observed

statin plasma pharmacokinetics are representative for the

acid form. However, the possible impact of acid-lactone

form inter-conversion on clinical DDIs could not be

excluded.

In summary, additional analyses are needed to confirm

potency of OATP inhibition by cyclosporine and rifampin.

In the meantime, one needs to fully characterize disposition

mechanisms for substrate drugs and adequately incorporate

these mechanisms into PBPK models.

4.2 Using in Vivo DDI Information to Inform DDI

Mechanisms

Given the complexity of drug transport process into cells,

obtaining accurate inhibitory kinetic parameters with

in vitro assays is always challenging, and Ki determined
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in vitro is often different from assay to assay, or from

laboratory to laboratory. In addition, several studies have

shown substrate-dependent inhibition potency for some

transporters [52, 53]. A recent study showed substrate-de-

pendent inhibition potency for OATP1B1 while using

different probe substrates, for example, estradiol-17b-glu-

curonide, estrone-3 sulfate, and sulfobromophthalein [54].

Estradiol-17b-glucuronide was the most sensitive in vitro

OATP1B1 probe substrate among the three substrates tes-

ted [54]. It was also shown that for some inhibitors (e.g.

cyclosporine, saquinavir, ritonavir), a more complicated

inhibitory mechanism (i.e., time-dependent inhibition) on

OATP1B1 existed [44, 55]. Pre-incubation of cyclosporine

could further potentiate its inhibitory effect on OATP1B1

while testing with several OATP1B1 substrates [44].

Therefore, it may not be appropriate to use a universal ‘‘Ki’’

for various victim (substrate) drugs.

PBPK modeling offers a great tool to evaluate the

underlying inhibition potency using the observed DDI data,

if uncertainties exist. For example, Kato, et al applied PBPK

models to estimate in vivo Ki of 11 CYP inhibitors, and

found discrepancy between in vitro and in vivo Ki values

[56]. Recently, in the cimetidine and metformin PBPK

models developed by Burt, et al [57], the clinically observed

AUC ratio of DDI could only be recapitulate with the PBPK

model while further decreasing cimetidine Ki for OCT2 up

to 1000-fold or Ki for both OCT1 and OCT2 up to 500-fold.

While an in vitro Ki may not represent in vivo inhibition

potency, an apparent ‘‘in vivo’’ Ki could be estimated by

fitting the pharmacokinetic prediction to the clinical expo-

sure change of the victim drugs. This approach was applied

in the study of Hsu, et al to derive an in vivo inhibition

constant on renal transporters by probenecid [58]. The

optimized probenecid Ki values on the same renal trans-

porters were different for different victim drugs. We used

the similar approach as Hsu, et al to evaluate the influence of

Ki on DDI prediction with rifampin and cyclosporine as

inhibitors, where ‘‘erroneously high’’ Ki values might be one

of the factors for under-prediction. Lowering Ki of rifampin,

by tenfold to 0.09 lM, significantly improved the rifampin-

atorvastatin DDI prediction. In vitro data suggested that the

Ki value of rifampin for OATP1B1 is similar using either

pitavastatin or atorvastatin as the substrate (1.07 lM vs.

3.08 lM, respectively) (UWDiDB). Therefore, we used the

same modified OATP1B1 Ki and applied it to predict

pitavastatin-rifampin DDI. Applying the lower Ki of

0.09 lM to the rifampin PBPK model improved the pre-

diction for pitavastatin-rifampin DDI as well.

The Ki values for cyclosporine varied 6.3-fold when

different OATP1B1 substrates were used in the in vitro

transporter inhibition assays [54], suggesting a possible

substrate-dependent inhibition of cyclosporine on

OATP1B1. The reported Ki of cyclosporine on OATP1B1

used initially in our models was a value optimized with

tacrolimus [44]. However, a further decrease in Ki was

needed to recapitulate the observed clinical DDI data with

our models, suggesting possible substrate-dependent inhi-

bition of cyclosporine on OATP1B1. It is of note that the

in vitro Ki of cyclosporine on inhibiting OATP1B1 while

using pitavastatin or atorvastatin as the substrates were

similar (0.23 lM with pitavastatin vs. 0.16 lM with ator-

vastatin) [54]. Therefore, in our study, we applied the same

optimized cyclosporine Ki based on atorvastatin DDI

studies to the pitavastatin model that improved prediction.

5 Conclusions

Our PBPK models described the pharmacokinetics of

pitavastatin and atorvastatin, and reasonably described

systemic exposure change due to OATP1B1 (SCLO1B1)

polymorphism or clinical DDIs with several OATP1B1 and

CYP inhibitors (Table 3). However, DDIs with rifampin

and cyclosporine were under-predicted using OATP1B1

in vitro Ki values reported from literatures. Sensitivity

analysis revealed that decreasing Ki for OATP1B1

improved predictions, indicating possible discrepancy

between in vitro and ‘‘in vivo’’ Ki values for these two

inhibitors. Ki values of inhibitor drugs on OATP1B1 need

to be carefully evaluated with known substrates for a

comprehensive DDI risk assessment. The under-predictions

suggest that modeling drug transporter kinetics using

PBPK requires further research to improve overall pre-

dictive performance for drug transporters.
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