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Abstract

Background and Objectives Pharmacokinetic/pharmaco-

dynamic link models are widely used in dose-finding studies.

By applying such models, the results of initial pharmacoki-

netic/pharmacodynamic studies can be used to predict the

potential therapeutic dose range.This knowledge can improve

the design of later comparative large-scale clinical trials by

reducing the number of participants and saving time and

resources.However, themodeling process can be challenging,

time consuming, and costly, even when using cutting-edge,

powerful pharmacological software.Here,we provide a freely

available R program for expediently analyzing pharmacoki-

netic/pharmacodynamic data, including data importation,

parameter estimation, simulation, and model diagnostics.

Methods First, we explain the theory related to the estab-

lishment of the pharmacokinetic/pharmacodynamic link

model. Subsequently, we present the algorithms used for

parameter estimation and potential therapeutic dose com-

putation. The implementation of the R program is illustrated

by a clinical example. The software package is then validated

by comparing the model parameters and the goodness-of-fit

statistics generated by our R package with those generated

by the widely used pharmacological software WinNonlin.

Results The pharmacokinetic and pharmacodynamic

parameters as well as the potential recommended thera-

peutic dose can be acquired with the R package. The val-

idation process shows that the parameters estimated using

our package are satisfactory.

Conclusions The R program developed and presented here

provides pharmacokinetic researchers with a simple and

easy-to-access tool for pharmacokinetic/pharmacodynamic

analysis on personal computers.

Key Points

The R program can handle pharmacokinetic/

pharmacodynamic data analysis.

Sample running with real data demonstrates

satisfactory results.

The R program is freely available to use.

1 Introduction

Dose-finding studies occupy a central place in the clinical

development of new drugs [1]. They are crucial for defin-

ing the optimal dose range of a new drug, i.e., the clinical

recommended dose for achieving the optimal therapeutic
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effect [2]. Conventionally, the effective therapeutic dose is

explored in clinical trials, which are usually divided into

phase I, II, and III trials [3, 4]. However, this approach

requires considerable time, resources, and effort. More-

over, ethical issues are frequently encountered. Properly

designed and accurately performed in early dose-finding

studies can reduce the number of volunteers required in

double-blind phase II trials and in comparative large-scale

phase III trials, as well as reducing time and cost [2].

Pharmacokinetic/pharmacodynamic link models are widely

used in dose-finding studies [5–7] and can facilitate the

design of early clinical trials [8]. Such models link dose–

concentration relationships (pharmacokinetics) with con-

centration–effect relationships (pharmacodynamics) to

predict the time course of drug effects resulting from a

certain dosage regimen [9]. Based on these relationship and

known pharmacokinetic parameters, predictions of the

intensity and decay of the pharmacological effect are

possible.

Various software packages can be employed in the dose-

selection process, e.g., WinNonlin, NONMEM, DAS, and

3P87/97. 3P87/97 can handle a variety of linear and non-

linear pharmacokinetic models, but it is unable to perform

pharmacodynamic modeling. Consequently, it cannot

establish the concentration–response relationship, making

it less beneficial in the dose-selection process. DAS is

commonly used in China, because of its broad pharmaco-

logical calculation functionality, including pharmacoki-

netics, pharmacodynamics, and the dynamics of drug

interactions, among others. WinNonlin is a sophisticated

industry-standard tool for nonlinear modeling that is par-

ticularly suited to non-compartmental analysis and phar-

macokinetic/pharmacodynamic modeling. It facilitates

simulations to evaluate data from bioavailability and clin-

ical pharmacology studies. However, WinNonlin and DAS

can carry out pharmacokinetic/pharmacodynamic analysis

only for individual subjects: they cannot deal with the

inter-individual variability. More precisely, they do not

have the capacity to perform stochastic simulation, which

is a key feature of many dose-selection decisions. NON-

MEM, a nonlinear mixed-effect modeling tool, remains the

commonly used computational package for population-

level pharmacokinetic/pharmacodynamic analysis. Several

population analysis methods that can manage inter-indi-

vidual and intra-individual variability are available in

NONMEM, e.g., the iterative two-stage method, stochastic

approximation, and Markov-chain Monte Carlo Bayesian

analysis. However, because NONMEM is written in For-

tran language, running the program is difficult for many

new users [10]. In addition, their high price limits the

utilities of these packages for some researchers. To sum-

marize, as a consequence of limited features, operational

difficulties, high prices, and low accessibility, these

commercial software packages either cannot meet the

needs of dose-finding studies or are not available to some

researchers [11].

R software has gained popularity recently because of

its powerful statistical techniques, support of object-ori-

ented programming, and its accessibility for free of

charge. The purpose of this study is to create a freely

available R code package to support dose selection via a

pharmacokinetic/pharmacodynamic link model. With this

package, users enter experimental pharmacokinetic and

pharmacodynamic data and, by changing a few user-

specialized codes, can then quickly obtain the pharma-

cokinetic/pharmacodynamic parameters and a suggested

effective therapeutic dosage. A clinical study is intro-

duced to illustrate the operation of our R package. The

package is validated by comparing parameters with those

calculated using WinNonlin.

2 Materials and Methods

2.1 Phase I Study

The pharmacokinetic/pharmacodynamic data were

obtained from a phase I clinical study on a new drug,

pegylated recombinant human granulocyte colony-stimu-

lating factor (PEG-G-CSF). It was a single-center, double-

blind, dose-escalation, placebo-controlled study of single

subcutaneous administration. The main inclusion criteria,

exclusion criteria, ethical committee agreement, and all

other important details can be found in Supplement 1. A

total of 34 healthy subjects were randomly assigned to four

different dosage groups: six healthy subjects each for the

30- and 200-lg/kg groups, and 11 healthy subjects each for

the 60- and 100-lg/kg dosage groups. Each dosage group

contained one placebo control who was excluded from the

process of model fitting. Pharmacokinetic observations

involved measuring the serum PEG-G-CSF concentration

(ng/ml) immediately before administration and at 1, 3, 6, 8,

10, and 12 h and at 1, 2, 3, 4, 5, 6, 8, 10, 13, and 17 days

after administration. Pharmacodynamic observations

involved measuring the value of absolute neutrophil count

(ANC, 109/l) before administration and at 3, 6, 8, 10, and

12 h and at 1, 2, 3, 4, 5, 6, 7, 9, 11, 14, 18, and 22 days

after administration.

2.2 Data Analysis

We write a software package in R (Version 3.2.3, The R

Foundation for Statistical Computing, Vienna, Austria) for

pharmacokinetic/pharmacodynamic analysis. We use linear

regression and linear least-squares methods for parameter

estimation. To manage inter-individual variability (by

500 J. Li et al.



modifying the model parameters), we adopt the standard

two-stage (STS) approach. The potential recommended

therapeutic dose can then be obtained using the sigmoid

Emax model. Finally, our software package is validated by

comparing the model parameters obtained using our soft-

ware and Phoenix WinNonlin (Build 6.1.0.173, Pharsight

Corporation, Mountain View, CA, USA). The main steps

of our algorithm are explained in the following sections,

and the details are given in Supplement 2.

2.2.1 Parameter Estimation

The STS approach performs pharmacokinetic/pharmaco-

dynamic analysis in two steps [13]. The first step involves

fitting a model to individual data and estimation of the

individual parameters, with no predefined relationship

between different individuals in the population. These

individual parameters are then used in the second step, in

which the average parameters (mean) and variability (s-

tandard deviation, SD) in the population are calculated.

2.2.1.1 The First Step: Individual Data Fitting A phar-

macokinetic/pharmacodynamic link model is needed to

analyze the relationship between drug concentration and

effect for individual data. The model is formalized in the

following equations:

C ¼ f k; tð Þ ð1Þ
Ce ¼ f k; ke; tð Þ ð2Þ

E ¼ E0 þ
EmC

c
e

EC
c
50 þ C

c
e

ð3Þ

where C and Ce are the serum concentration in the central

compartment and the effect compartment, and E is the

effect of the drug. E0 and Em are, respectively, the initial

effect and the difference between the maximal effect and

the initial effect, whereas EC50 is the concentration at 50 %

maximal effect. c is the binding coefficient and k is the

vector of transfer rates, incorporating k01, the transfer rate

of drug from the site of absorption to the central com-

partment; k10, the elimination rate from the central com-

partment; and k12 and k21, the transfer rates between the

central compartment and the peripheral compartment. ke is

the transfer rate from the central compartment to the effect

compartment (or biophase).

We chose a compartment model for pharmacokinetic

analysis and the sigmoid Emax model for the pharmaco-

dynamic analysis, because of their universality in the

pharmacokinetic/pharmacodynamic link model [9]. We

introduced an effect compartment to deal with the time lag

between C and E [13, 14]. In other words, the relationship

between C and E can be replaced by the relationship

between Ce and E. The latter relationship can be directly

processed by the sigmoid Emax model, and the pharma-

cokinetic and pharmacodynamic models are thereby linked

[15–18].

The two-compartment model is used to illustrate the

algorithm in detail without loss of generality. The model is

expressed as follows:

C ¼ Le�at þMe�bt þ Ne�k10t ð1� 1Þ

Ce ¼ keMe�ket
e ke�að Þt � 1

ke - a
þ e ke�bð Þt � 1

ke - b
þ e ke�k01ð Þt � 1

ke - k01

� �

ð2� 1Þ

E ¼ E0 þ
EmC

c
e

EC
c
50 þ C

c
e

ð3� 1Þ

Assume that the sample data are denoted as E and the

respective observation time is denoted as T. After a value

of ke is given, which is denoted as ke0, the pattern of the

sigmoid Emax model can be rewritten as:

Em

E � E0

� 1 ¼ EC
c
50

EC
c
50 þ C

c
e

ð3� 2Þ

The following equation for C(e0,T), the concentration of

effect compartment in a certain time, shows that the value

of C is affected by ke0 and T:

C e0;Tð Þ ¼ ke0Me�ke0T
e ke0�að ÞT � 1

ke0 - a
þ e ke0�bð ÞT � 1

ke0 - b
þ e ke0�k01ð ÞT � 1

ke0 - k01

� �

ð2� 2Þ

This equation is derived by integrating differential

equations with the initial condition Ce(0) = 0. The left

side of Eq. (3–2) is always greater than 0 for the

assumption E0 = 0.95Emin and Em = 1.05Emax. By taking

the logarithm of both sides of the equation and denoting the

left side as E1, then ln E1ð Þ ¼ �c lnC e0;Tð Þ þ c ln EC50 (3-

3). The parameters of the above regression can be obtained

by the linear least squares method. Denoting the regression

vector
�c

c ln EC50

 !
¼

a

b

 !
, then

EC50 ¼ e�
b
a ð4Þ

For ke0,

E ¼ Em

ea lnC e0;Tð Þ þ 1
þ E0 ð5Þ

Because ke and k are usually the same order of

magnitude, the interval for ke can be estimated as

0.5k\ ke\ 10 k. For a step length of, say, 0.01, all the

values close to ke can be tried. For instance, when

ke = 0.5 k, group (ke, EC50, c)1 can be generated; when
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ke = 0.5k ? 0.01, group (ke, EC50, c)2 can be generated,

and so on. This procedure can be carried out easily on a

personal computer. The value of ke that minimizes the sum

of the squares of the error (SSE) of the effect is ke0, and the

acceptable values of parameters are (ke0, EC50, c). SSE is

given by:

SSE ¼
X

E � Ê
� �2 ð6Þ

where E is observed effect and Ê is fitted effect.

2.2.1.2 The Second Step: Population Analysis Population

characteristics b̂STS and D̂STS of each parameter are esti-

mated as the empirical mean (arithmetic or geometric) and

variance of the individual parameters according to the

following equations:

b̂STS ¼ 1

N

XN
j¼1

b̂j ð7Þ

D̂STS ¼ 1

N

XN
j¼1

b̂j � b̂STS
� �2

ð8Þ

where b̂j is the estimate of individual parameter. The

standard deviation (ŜSTS) is estimated as the square root of

D̂STS. N - 1 can be used instead of N in the denominator of

the variance estimate.

2.2.2 Computation of Appropriate Dosage

According to population pharmacokinetic/pharmacody-

namic estimates, several groups of dosages and their cor-

responding effects can be produced. The relationship

between them can be analyzed using the sigmoid Emax

model, whereas the parameters can be computed by linear

transformation, as mentioned in Sect. 2.2.1. Accordingly,

the dosage corresponding to a certain percentage of the

maximum effect is taken as the appropriate dosage. The

steps below show the algorithm for computing the potential

recommended therapeutic dosage.

2.2.2.1 The First Step: Computing the Average Serum

Concentration The average serum concentration (Cav),

which is the average concentration of a drug between

absorption and excretion, can be computed as follows:

Cav ¼
AUC

t
ð9Þ

where AUC is the area under the concentration–time curve.

AUC can be calculated from the pharmacokinetic model by

integrating the concentration over time. t is the clinically

effective duration, which can be determined on the basis of

clinical experience, and is normally the time when the drug

concentration approaches zero.

2.2.2.2 The Second Step: Computing the Average Effect

The effect correlated to Cav is Eav. With all the parameters

of the pharmacokinetic/pharmacodynamic link model have

been generated, the effect can be computed once the con-

centration is given. Because the pharmacokinetic model

gives the relationship between concentration and time, the

t value that produces the smallest difference between C and

Cav can be considered as the equivalence time tav. Then, an

equivalence concentration of the effect compartment, Ceav,

can be computed as:

Ceav ¼ ke0e
�ke0tav

L

ke0 - a
ðe ke0�að Þtav � 1Þ þ M

ke0 - b

�

ðe ke0�bð Þtav � 1Þ þ N

ke0 - k10
ðe ke0�k01ð Þtav � 1Þ

�

ð2� 3Þ

where L, M, N, a, b, k10, and ke0 are given by the

pharmacokinetic model. Finally, Eav can be computed as:

Eav ¼ E0 þ
EmCe

c
av

EC
c
50 þ Cecav

ð3� 3Þ

whereE0 andEm, respectively, are the initial value of the effect

and the range of the effect correlated to a certain dosage. EC50

and c are given by the pharmacodynamic model.

2.2.2.3 The Third Step: Computing the Relationship

Between Cav and Eav The selection of a dosage is based

on Cavs and Eavs, where s indicates different dosage

groups. Each dosage Di (i = 1, 2, 3…) can be fitted by the

sigmoid Emax model. The parameters of the sigmoid Emax

model of Cav and Eav can be found in the same way, as data

are fitted using the pharmacodynamic model. EC50 is given

as one of the parameters of the model, and then EC90 (the

concentration when the effect reaches 90 %) is given by:

EC90 ¼ e
log EC50þlog

E�E0

Em� E�E0ð Þ½ �c

� �
ð10Þ

where E0 and Em are the initial value and range, respec-

tively, of Eavs. In most cases, E0 is zero. The relationship

between a given dose and the average concentration can

then be established. The appropriate dosage D is usually set

as the dose whose corresponding average concentration is

close to EC90. In addition, researchers can determine the

potential recommended dose by combining the model fit-

ting results and clinical practice.

3 Results

The R code package written to perform the pharmacoki-

netic/pharmacodynamic analysis outlined in the above

algorithm is given in the ‘‘Appendix’’. The package
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contains four parts: data processing, parameter estimation,

simulation, and model diagnostics. The results of each step

as applied to the data generated in a clinical study are

presented below.

Step 1 Data Processing

All the relevant data generated by the clinical trial are

put in a csv file, with observations recorded by columns

giving patient ID, time, drug concentration, and the effect

(lines 1–49).

Step 2 Parameter Estimation

The algorithm for estimating the pharmacokinetic

parameters k01, k10, k12, and k21; the pharmacodynamic

parameters ke0, c, and EC50; and the related Cav and Eav

values for each individual in each dosage group were coded

using the linear least-squares method in lines 50–153.

The Akaike information criterion (AIC) is applied to

select whether the one-compartment model or the two-

compartment model should be used. Consequently, the

two-compartment model is chosen for the pharmacokinetic

analysis, and the target time is set at 120 h, i.e., AUC0–120

is computed in our example. This time was selected,

because the serum concentration of the drug is very small

after 120 h. Consequently, 120 h was considered to be the

clinically effective period for the drug PEG-G-CSF.

Step 3 Simulation

Simulation of the clinical study data was performed in

lines 154–326. The results fall into four categories: fitted

concentration–time curves for each individual and com-

parison with the original data (Table 1; Fig. 1); fitted

effect–time curves for each individual and a comparison

with the original data (Table 2; Fig. 2); the relationship

between Cav and Eav determined by the sigma Emax model

based on four dosages (Table 3; Fig. 3); and a linear

relationship between the dose and AUC0–120 (Fig. 4). The

final parameters are calculated by the population phar-

macokinetic STS method, which produces mean value

and SD of individual parameters in each dosage group

(Table 4).

Note that the initial concentration is zero in the study.

Because G-CSF is normally present in the human body at

very low concentrations, we regard the pre-administration

level as the background value. The observed concentrations

(Table 1) have had this background value subtracted. The

observed concentration/effect data presented in Tables 1

and 2 are mean values of the individual concentra-

tions/effects in each dosage group. The predicted concen-

tration/effect data were fitted with the STS method rather

than simply using the mean concentration/effect to fit the

model.

Table 1 Fitting results of each dosage of pegylated recombinant human granulocyte colony-stimulating factor by the pharmacokinetic model

Time (h) 30 lg/kg 60 lg/kg 100 lg/kg 200 lg/kg

C-obsa C-predb Error (%)c C-obs C-pred Error (%) C-obs C-pred Error (%) C-obs C-pred Error (%)

1 8.308 10.675 28.49 14.876 16.079 8.09 20.535 27.909 35.91 46.844 75.279 60.70

3 23.554 41.650 76.83 50.796 62.503 23.05 82.500 138.234 67.56 166.994 287.489 72.16

6 29.088 46.445 59.67 78.543 89.378 13.79 168.847 228.862 35.54 316.582 492.962 55.71

8 36.014 40.482 12.41 94.268 92.926 -1.42 190.294 256.096 34.58 391.094 574.124 46.80

10 34.006 33.241 -2.25 98.842 91.011 -7.92 228.443 266.170 16.51 442.450 622.621 40.72

12 29.466 26.553 -9.89 99.519 86.340 -13.24 228.477 264.672 15.84 482.786 646.352 33.88

24 10.400 7.641 -26.53 60.219 51.474 -14.52 211.841 172.867 -18.40 506.110 538.340 6.37

48 4.790 3.446 -28.06 13.071 17.913 37.04 64.231 45.902 -28.54 332.254 202.130 -39.16

72 3.544 2.541 -28.29 4.516 7.845 73.72 8.613 13.931 61.74 89.686 67.049 -25.24

96 1.764 1.900 7.73 3.604 4.338 20.38 4.733 6.225 31.52 13.160 24.835 88.72

120 1.252 1.421 13.52 2.555 2.791 9.22 3.336 3.778 13.26 7.718 11.430 48.10

144 0.736 1.063 44.43 1.601 1.930 20.52 1.902 2.616 37.54 4.596 6.518 41.82

192 0.436 0.595 36.38 0.659 0.989 50.08 0.987 1.378 39.63 2.738 2.971 8.52

240 0.216 0.333 54.00 0.455 0.518 13.75 0.571 0.740 29.54 1.266 1.541 21.72

312 0.100 0.139 39.17 0.171 0.197 15.08 0.297 0.291 -1.86 0.538 0.593 10.29

408 0.072 0.044 -39.51 0.096 0.054 -43.51 0.114 0.084 -26.13 0.230 0.167 -27.42

a The original observed mean serum concentration (C-obs) of individuals (ng/ml) in each dosage group
b The predicted mean serum concentration (C-pred) by pharmacokinetic model (ng/ml) in each dosage group
c The relative error between C-obs and C-pred
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Step 4 Model Diagnostics

The statistical criteria for evaluating the goodness-of-fit of

the model, including the coefficient of determination (R2), the

AIC, andBayesian information criterion (BIC), are calculated

in lines 327–380. The results are presented in Table 4.

3.1 Estimation of the Potential Recommended

Therapeutic Dosage

The potential recommended therapeutic dosage is usually taken

as the dosage that can achieve a given percentage ofEmax (EC90

in this case). As shown in Fig. 4, there is a linear relationship

between AUC0–120 (or Cav) and dose (D). We obtain

EC90 = 24.49 (ng/ml) by the sigmoidEmaxmodel.Considering

individual diversity and optimizing the efficacy of the drug, we

could select 60 lg/kg (which achieved 88.89 % ofEmax) as the

potential recommended therapeutic dose on aweight basis, and

3.6 mg for a standard weight of 60 kg.

4 Discussion

4.1 Applicability of Our Pharmacokinetic/

Pharmacodynamic Model

To set up a pharmacokinetic/pharmacodynamic link model

to carry out dose exploration, it is necessary to select

appropriate pharmacokinetic and pharmacodynamic mod-

els. Compartment models are widely used in pharmacoki-

netic analysis [19, 20], and we use AIC criteria to

determine the selection of a one-compartment or a two-

compartment model. We employ the two-compartment

extravascular model for the pharmacokinetic analysis,

because PEG-G-CSF is administered by subcutaneous

injection, and its pharmacokinetics is compatible with the

two-compartment model. Consequently, our software

package is applicable only to extravascular administration

and is not appropriate for intravascular administration.

There are many other commonly used modeling methods,

such as the non-compartmental model, that could have

been used to calculate the pharmacokinetic parameters

without assuming the number of compartments [21].

However, in the analysis of the pharmacokinetic/pharma-

codynamic model, it is necessary to use a compartment

model for pharmacokinetic analysis. As a preliminary

exploration of a pharmacokinetic/pharmacodynamic link

model coded in R, we select the classic compartment

method without loss of generality.

With concentration and response data on the effect

compartment, Several basic pharmacodynamic models,

such as the fixed effect model, the linear model, the log–

linear model, the Emax model, and the sigmoid Emax model,

can be used to extract pharmacodynamic parameters from

the concentration and response data [22]. As a general-

ization of the Emax model and an empirical function for

Fig. 1 Fitted results of our pharmacokinetic model for dosages of

PEG-G-CSF 30, 60, 100, and 200 lg/kg (a–d, respectively). The data
points show the observed serum PEG-G-CSF concentrations for each

individual. The dashed lines show the fitted curves for each

individual. The solid line is the fitted concentration–time relationship

of the population derived using the STS method. PEG-G-CSF

pegylated recombinant human granulocyte colony-stimulating factor

504 J. Li et al.



Fig. 2 Fitted results of our pharmacodynamic model for dosages of

pegylated recombinant human granulocyte colony-stimulating factor

30, 60, 100, and 200 lg/kg (a–d, respectively). The data points show
the observed effects (i.e., the absolute neutrophil counts, ANC) for

each individual. The dashed lines show the fitted effect– time

relationship for each individual. The solid line is the fitted effect–time

relationship of the population derived using the STS method

Table 2 Fitting results of each dosage of pegylated recombinant human granulocyte colony-stimulating factor by the pharmacodynamic model

Time (h) 30 lg/kg 60 lg/kg 100 lg/kg 200 lg/kg

E-obsa E-predb Error (%)c E-obs E-pred Error (%) E-obs E-pred Error (%) E-obs E-pred Error (%)

0 3.222 1.786 -44.57 2.902 1.787 -38.43 3.053 1.520 -50.21 2.526 1.539 -39.07

3 2.064 2.464 19.36 2.261 1.872 -17.18 1.826 1.786 -2.21 2.698 1.645 -39.01

6 6.326 6.535 3.31 5.355 2.189 -59.12 6.061 5.278 -12.91 5.070 3.177 -37.33

8 15.526 10.013 -35.51 13.434 3.047 -77.32 14.068 10.239 -27.22 12.488 6.821 -45.38

10 16.760 15.886 -5.22 16.860 4.843 -71.27 16.108 15.210 -5.57 15.230 10.449 -31.39

12 20.404 19.474 -4.56 17.435 7.817 -55.16 20.152 18.695 -7.23 18.646 13.989 -24.98

24 18.116 24.044 32.72 19.157 21.337 11.38 22.360 27.493 22.96 18.840 24.766 31.46

48 22.436 23.599 5.18 22.369 25.757 15.14 27.117 28.453 4.93 24.648 27.727 12.49

72 18.932 22.025 16.34 27.120 24.682 -8.99 25.041 27.326 9.12 28.398 27.158 -4.37

96 19.314 19.872 2.89 22.818 22.005 -3.56 27.651 24.301 -12.12 22.400 25.437 13.56

120 16.274 17.049 4.76 12.593 17.429 38.40 17.888 20.575 15.02 24.964 22.713 -9.02

144 11.138 14.114 26.72 8.659 11.687 34.97 13.805 16.682 20.84 16.222 19.159 18.11

168 11.254 11.308 0.48 10.006 7.439 -25.65 13.580 12.543 -7.64 13.188 15.183 15.13

216 10.772 6.694 -37.86 7.400 2.912 -60.65 8.860 6.295 -28.95 12.970 6.473 -50.09

264 8.768 3.766 -57.04 5.121 2.067 -59.64 6.443 3.471 -46.12 7.774 2.625 -66.24

336 4.130 2.044 -50.51 4.224 1.861 -55.95 4.643 2.004 -56.84 4.888 1.682 -65.60

432 3.618 1.787 -50.61 3.092 1.801 -41.75 2.887 1.570 -45.62 3.850 1.603 -58.37

528 3.420 1.786 -47.78 2.602 1.788 -31.30 3.010 1.520 -49.50 2.688 1.546 -42.48

a The original observed mean effect (E-obs) of individuals (109/l) in each dosage group
b The predicted mean effect (E-pred) by pharmacodynamics model (109/l) in each dosage group
c The relative error between E-obs and E-pred
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describing the nonlinear concentration relationship, the

sigmoid Emax model is classical and is typically used

[23–27]. With the compartment model and the sigmoid

Emax model, the effect can be computed once the concen-

tration is given [28]. Note that this characterization of the

dose–concentration–effect relationship is essentially con-

fined to drugs that have a direct correlation between the

measured concentration and the observed effect [9]. It is

not appropriate for drugs for which the peaks of concen-

tration and effect are not reached concurrently. Conse-

quently, we introduce an effect compartment to deal with

the time lag between concentration and effect [13, 14].

To summarize, we adopt the commonly used and widely

applicable compartment model and sigmoid Emax model to

establish a pharmacokinetic/pharmacodynamic link model.

In future work, we will consider introducing alternative

pharmacokinetic models, such as the non-compartment

model, and alternative pharmacodynamic models, such as

the mixed-effect model, to improve the flexibility and

applicability of our package for pharmacokinetic/pharma-

codynamic analysis.

4.2 Validation of Our Pharmacokinetic/

Pharmacodynamic Analysis

There are several other pharmacological software packages

that can perform pharmacokinetic/pharmacodynamic

analysis. To validate our package, we compare our model

parameters and model diagnostic statistics with those cal-

culated by the widely used software WinNonlin. The

pharmacokinetic model both in our package and in

WinNonlin is a two-compartment model, and both use the

sigmoid Emax model for the pharmacodynamic analysis.

Our algorithm is the linear least-squares approach, whereas

the algorithm in WinNonlin is the Gauss–Newton method

with the Levenberg and Hartley modification. A compar-

ison of the two software packages is given in Table 4. For

the four dosage groups, 20 of the 32 parameters calculated

using our package are within 30 % difference of the values

calculated using WinNonlin. The R2 values for the good-

ness-of-fit of our model are all greater than 0.7. Moreover,

the differences in R2, AIC, and BIC between the two

packages are all less than 40 %. Based on this comparison,

we conclude that our package’s performance is

satisfactory.

4.3 Limitations of Our Algorithm

Certainly, there are large differences for some parameters

in Table 4. For example, the difference for E0 in the 60 lg/
kg group is greater than 55 %, and the difference for k21 in

the 100 lg/kg group is greater than 46 %. Moreover, all

the goodness-of-fit statistics for the WinNonlin model are

smaller than those for our model, which indicates that

WinNonlin does a better job of model fitting. These dif-

ferences result from the different algorithms used for

model fitting. Our package uses linear least-squares method

to estimate parameters. In our study, neither the compart-

ment model nor the sigmoid Emax model is fundamentally

linear. We use a log algorithm to change them into a linear

form to make them compatible with linear regression

Fig. 3 Results of the average concentration (Cav) and average effect

(Eav) determined by our pharmacokinetic/pharmacodynamic link

model. The fitted curve shows the relationship between the concen-

tration and effect based on the sigmoid Emax model

Fig. 4 Relationship between AUC0–120 and dosage. The dots repre-

sent the AUC0–120 of each individual in each dosage group. The line

shows the fitted relationship between AUC0–120 and dosage

Table 3 Cav and Eav of each dosage of pegylated recombinant human

granulocyte colony-stimulating factor by the pharmacokinetic–phar-

macodynamic model

Da (lg/kg) Cav
b (ng/ml) Eav

c (109/l)

30 8.17 (3.60) 22.60 (2.74)

60 32.35 (17.48) 25.67 (2.96)

100 72.27 (58.12) 28.41 (3.14)

200 200.14 (137.77) 27.76 (2.29)

In brackets is standard deviation
a The dosage of administration
b The average concentration (ng/ml) of each dosage from 0 to 120 h

by pharmacokinetic model
c The effect (ANC, 109/l) corresponding to each Cav by the phar-

macokinetic–pharmacodynamic model
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methods. Consequently, errors occur in the estimation of

both pharmacokinetic and pharmacodynamic parameters.

Furthermore, because the linear least-squares method is

applied twice in the two-compartment model, the second

step (based on the first step) enlarges the error. Nonlinear

regression has some advantages compared with linear

regression [29–31]. If the process is inherently nonlinear,

nonlinear regression (such as the Gauss–Newton method

employed in WinNonlin) can describe it better than linear

regression. We adopt linear least-squares regression for the

preliminary exploration of pharmacokinetic/pharmacody-

namic analysis, because of its simplicity and effectiveness.

In future work, we may consider nonlinear methods to

improve parameter estimation.

Another source of error is that the pharmacokinetics of

biological products, such as PEG-G-CSF, exhibit relatively

large inter-individual variability [32, 33]. The observed

mean concentration/effect for individuals in each group

presented in Tables 1 and 2 actually have large standard

variation. Therefore, as we mentioned before, we adopt a

typical population pharmacokinetic method, STS method

rather than directly using the mean concentration/effect

data, to estimate the model parameters and predict the

concentration/effect. Therefore, despite fitting the popula-

tion data well, our model would generate large errors

(Tables 1, 2), because of the large variability of the

observed data. The STS method is a simple approach for

pooling individual estimates of the model parameters.

However, simply calculating the mean and standard devi-

ation of individual parameters tends to overestimate

parameter dispersion. Moreover, if the modeling is per-

formed with sparse data, the STS method may run into

practically unidentifiable parameters or problems resulting

from the model selection [34, 35]. Several advanced pop-

ulation pharmacokinetic methods can handle these inter-

individual and intra-individual variabilities. These methods

include the global two-stage method, the iterative two-

stage method, the Bayesian two-stage method, the nonlin-

ear mixed effects model, and nonparametric methods

[36, 37]. We may consider incorporating some of these

techniques into our package to improve the handling of

inter-individual variability in the future.

4.4 Meaning for Drug Research

To ensure efficacy and safety, a key objective in new

drug research is to estimate an effective therapeutic

dose. If the dose is too low, treatment may prove inef-

fective. If the dose is too high, problems of safety and

tolerability may arise [38]. Using pharmacokinetic/

pharmacodynamic modeling in phase I clinical trials

involving dose exploration can save a lot of time and

resources. We aim to implement the complex pharma-

cokinetic/pharmacodynamic data fitting process by pro-

ducing a software package that is compact, flexible,

readily available, and can be widely used. R is fully free

computational programming software that is becoming

increasingly popular worldwide. Users of our package

can import their pharmacokinetic/pharmacodynamic

data and quickly obtain parameter estimates and the

dose-exploration range.

5 Conclusions

Dose-finding studies are of great importance in clinical

pharmacology, especially those studies dedicated to

finding the dose that can achieve a certain percentage of

the maximal treatment effect. Many current commer-

cially available pharmacological analysis packages

require a steep learning curve. We have shown that it is

possible to model pharmacokinetic/pharmacodynamic

data and address optimal dose problems in a package

based on the R programming language. We present our

algorithm and demonstrate the accessibility and feasi-

bility of the package by modeling data obtained in a

clinical study. The validation procedure implemented by

the widely accepted software WinNonlin illustrates that

our package is satisfactory. Although the package has

limitations in respect of the types of pharmacokinetic/

pharmacodynamic model and model fitting algorithm

employed, we have created a simple, freely available

tool to fit pharmacokinetic/pharmacodynamic data that

can be used by those who do not have access to com-

mercial pharmacological software. The next step in our

research will address the limitations and make the R

package more applicable.

Compliance with Ethical Standards

Conflict of interest Jijie Li, Kewei Yan, Lisha Hou, Xudong Du,

Ping Zhu, Li Zheng, and Cairong Zhu declare that they have no

conflict of interest.

Funding There is no any funding used for this study.

508 J. Li et al.



Appendix

1 ---

2 title: "An Algorithm and R Program for Fitting and Simulation of PK/PD Data"

3 author: "Jijie Li, Kewei Yan, Lisha Hou,Xudong Du, Ping Zhu, Li Zheng, Cairong Zhu"

4 date: "2016.7.18"

5 output: word_document

6 ---

7

8 ```{r, message=FALSE, results="asis",echo=FALSE}

9 # ==========================

10 # This code contains 4 parts:

11 # data process

12 # pkpd parameter estimation

13 # simulation

14 # model diagnostics

15 # =====================

16 # =part 1 data process=

17 # =====================

18
# observations are recorded by columns, marked with different patient ID and time, since observations of pk and pd are not 

recorded by exactly the same time, two data files are needed

19 pkdata0 <- read.csv(file = "D:/pkdata.csv", head = TRUE)

20 pddata0 <- read.csv(file = "D:/pddata.csv", head = TRUE)

21 # deleted columns of patients applied with placebo, which are recorded as NA

22 pkdata <- pkdata0[,-6]

23 pkdata <- pkdata[,-12]

24 pkdata <- pkdata[,-14]

25 pkdata <- pkdata[,-21]

26 pkdata <- pkdata[,-25]

27 pkdata <- pkdata[,-27]

28 pddata <- pddata0[,-6]

29 pddata <- pddata[,-12]

30 pddata <- pddata[,-14]

31 pddata <- pddata[,-21]

32 pddata <- pddata[,-25]

33 pddata <- pddata[,-27]

34

35 pkdata1 <- pkdata[,-1]

36 pddata1 <- pddata[,-1]

37

38 t <- pkdata[,1]

39 te <- pddata[,1]

40 k <- ncol(pkdata1)

# there are 6 main outputs: CFIT: fitted concentration: EFIT,:fitted effect (concentration of ANC); PKPARA(pk parameters): 
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41 k, and ka; PDPARA( pd parameters),:gamma, EC50; Cav, average concentration,; Eav, effect(or concentration of ANC)under 

Cav

42
# outputs for individuals are recorded by columns, statistics analysis can be applied to investigate some characteristics of 

sample or population

43 CFIT <- matrix(0,ncol = k, nrow = 601)

44 EFIT <- CFIT

45 PKPARA2 <- matrix(0,ncol = k,nrow = 4)

46 PKPARA <- matrix(0,ncol = k,nrow = 6)

47 PDPARA <- matrix(0,ncol = k,nrow = 4)

48 CAV <- matrix(0,ncol = k)

49 EAV <- CAV

50 # ==================================

51 # =part 2 pkpd parameter estimation=

52 # ==================================

53 # =pk=

54
# concentration - time curves approximately share the same trends under the same dosage, that is, for instance, when dosage 

is 30μg, all of the curves reach maximum value in 6th lag and begin to eliminate after 9th lag

55

# here, the shape of 4 dosages are restrained by given tmax and teli, which makes statistics for sample or population, such as 

mean and median, make sense. tmax is the time point that the concentration of drug reaching the maximum value, while, teli 

is the time point that drug beginning to eliminate.

56 for (i in 1:k) {

57 if (i <= 5){

58 teli <- 9

59 tmax <- 6

60 }else if (i <= 15 & i >= 6){

61 teli <- 9

62 tmax <- 6

63 }else if (i <= 25 & i >= 16){

64 teli <- 10

65 tmax <- 8

66 }else {

67 teli <- 11

68 tmax <- 8

69 }

70
# residual method is applied here, two - compartment model is chosen to fit the concentration data for each individual,

output will be stored in matrix CFIT, parameters will be stored in matrix PKPARA

71
# concentration data form 0 to maximum concentration and from maximum concentration to concentration beginning to 

eliminate are used to apply log-linear regression to estimate the pk parameters

72 x <- pkdata1[,i]

73 EFF <- pddata1[,i]

74 # pk

75 xtd1 <- x[teli:k]
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76 td1 <- t[teli:k]

77 int1 <- lm(log(xtd1) ~ td1)$coefficients[1]

78 sl1 <- lm(log(xtd1) ~ td1)$coefficients[2]

79 res1 <- exp(int1 + sl1 * t)

80 xtd2 <- x[tmax:(teli-1)] - res1[tmax:(teli-1)]

81 td2 <- t[tmax:(teli-1)]

82 int2 <- lm(log(abs(xtd2)) ~ td2)$coefficients[1]

83 sl2 <- lm(log(abs(xtd2)) ~ td2)$coefficients[2]

84 res2 <- exp(int2 + sl2 * t)

85 xtd3 <- x[1:(tmax-1)] - res2[1:(tmax-1)] - res1[1:(tmax-1)]

86 td3 <- t[1:(tmax-1)]

87 int3 <- lm(log(abs(xtd3)) ~ td3)$coefficients[1]

88 sl3 <- lm(log(abs(xtd3)) ~ td3)$coefficients[2]

89 a <- exp(int2)

90 b <- -sl2

91 c <- exp(int1)

92 d <- -sl1

93 e <- -exp(int3)

94 f <- -sl3

95 k21 <- (a*d*(f-b)+c*b*(f-d)) / (a*(f-b)+c*(f-d))

96 k01 <- f/2

97 k10 <- b*d/k21

98 k12 <- b + d - k21 - k10

99 coeff <- c(a,b,c,d,e,f)

100 names(coeff) <- c("a","b","c","d","e","f")

101 para <- c(k01,k10,k12,k21)

102 names(para) <- c("k01","k10","k12","k21")

103 out <- list(coeff,para)

104 names(out) <- c("coeff","para")

105 tfit <- seq(0:600) - 1

106 cfit <- a * exp(-b * tfit) + c *exp(-d *tfit) + e *exp(-f *tfit)

107 cfit[1] <- 0

108 # =================

109 # =pd=

# biophrase is introduced here in order to fit the lag between concentration and effect, or concentration of ANC, ke0 describes 

110 the transfer velocity, which is very close to ka, which can be computed by trails, in R, function Optim() is good for users to 

find ke0, in convenience, ke0 is set by 0.02, that is, the mean of ka in this study

111 # when ke0 is set, gamma and EC50 can be estimated by log-linear regression as well

112 ke0 <- 0.015

113 Emax <- max(EFF) * 1.05

114 E0 <- min(EFF) * 0.95

115 Em <- Emax - E0
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116 # log - linear regression

117 NE <- (Em - (EFF - E0)) / (EFF - E0)

118 Ce <- ke0*exp(-ke0*te)*(a/(ke0-b)*(exp((ke0-b)*te)-1) + c/(ke0-d)*(exp((ke0-d)*te)-1) + e/(ke0-f)*(exp((ke0-f)*te)-1))

119 Ce[1] <- 0.05

120 vec <- c(8:13)

121 int <- lm(log(NE)[vec] ~ log(Ce)[vec])$coefficients[1]

122 sl <- lm(log(NE)[vec] ~ log(Ce)[vec])$coefficients[2]

123 gamma <- -sl

124 EC50 <- exp(int/gamma)

125 pdpara <- c(EC50,gamma,E0,Emax)

126
cefit <- ke0*exp(-ke0*tfit)*(a/(ke0-b)*(exp((ke0-b)*tfit)-1) + c/(ke0-d)*(exp((ke0-d)*tfit)-1) + 

e/(ke0-f)*(exp((ke0-f)*tfit)-1))

127 cefit[1] <- 0.05

128 efit <- E0 + (Em * cefit^gamma) / (EC50^gamma + cefit^gamma)

129 # ======================

130 # =related statistics, Cav and Eav=

131 # AUC, according to the definition, AUC can be given by sum of fitted value of concentration

132 AUC <- sum(cfit)

133 # Cav, AUC / time, here time is set by 120, according to the design of experiment

134 Cav <- AUC / 120

135
# Eav is the effect( or concentration of ANC), related to Cav, in order to find Eav, 3 steps are needed, find time tav, find 

concentration of biophrase ceav, find effect of average concentration Eav 

136

137

cdiff <- cfit - Cav

targ <- abs(cdiff)

138 tav <- match(min(targ[20:100]),targ)

139 ceav <- ke0*exp(-ke0*tav)*(a/(ke0-b)*(exp((ke0-b)*tav)-1) + c/(ke0-d)*(exp((ke0-d)*tav)-1) + 
e/(ke0-f)*(exp((ke0-f)*tav)-1))

140 Eav <- E0 + (Em * ceav^gamma) / (EC50^gamma + ceav^gamma)

141 # ========

142 # =output=
143 # ========

144 CFIT[,i] <- t(cfit)

145 EFIT[,i] <- t(efit)

146 PKPARA[,i] <- t(coeff)

147 PKPARA2[,i] <- t(para)

148 PDPARA[,i] <- t(pdpara)

149 CAV[i] <- Cav

150 EAV[i] <- Eav

151 }
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152 CFIT.REAL <- CFIT

153 ```

154

155 # pk 

156

157 ```{r, message=FALSE,results="asis",echo=FALSE}

158 #=============

159 # =part 3 simulation=

160 # ============

161 # 4 parts are included:

162 # 1. fitted concentration - time curve of 4 dose groups , with comparison to original data;  

163 # 2. fitted effect - time curve of 4 dose groups , with comparison to original data;

164 # 3. linear relationship between doses and related individual average concentration  

165 # 4. relationship between average effect and AUC0~120of 4 dosage groups based on sigma Emax model 

166 # doses for patients are known, then patients can be grouped by patient ID's

167 dose30 <- c(1:5)

168 dose60 <- c(6:15)

169 dose100 <- c(16:25)

170 dose200 <- c(26:30)

171 DOSE <- c(rep(30,5),rep(60,10),rep(100,10),rep(200,5))

172 d.d <- c(30,60,100,200)

173 # =====================

174

# concentration plot, individual fitted curves, average fitted curve and original data included, the average fitted curve is given 

by equation with mean value of parameters, in this way, the deviance of patients can be measured, furthermore, original data, 

fitted data and error are shown

175 ```

176

177 ## dose30  

178 dose30 is shown below as a example.

179 Change line 182 "dose<-dose30" and repeat line 182-215 if users want to compute parameters with other doses.

180
181 ```{r, message=FALSE,results="asis",echo=FALSE}

182 dose <- dose30

183 pkp <- PKPARA[,dose]

184 pkp2 <- PKPARA2[,dose]

185 coeffp <- apply(pkp,1,mean)

186 coeffp2 <- apply(pkp2,1,mean)

187 stdp <- apply(pkp2,1,sd)

188 a <- coeffp[1]

189 b <- coeffp[2]

190 c <- coeffp[3]

191 d <- coeffp[4]
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192 e <- coeffp[5]

193 f <- coeffp[6]

194 pkpfit <- a * exp(-b * tfit) + c *exp(-d *tfit) + e *exp(-f *tfit)

195
matplot(tfit,CFIT.REAL[,dose],type = "l", col = "black",xlim = c(0,120),ylim = c(0,80), ylab = "Concentration(ng/ml)", xlab 

= "time(h)")

196 lines(tfit,pkpfit,lwd = 2)

197 par(new = TRUE)

198
matplot(t,pkdata[,dose+1],pch = 20, col = "black",xlim = c(0,120),ylim = c(0,80),ylab = "Concentration(ng/ml)", xlab = 

"time(h)")

199

200 AUC <- sum(pkpfit[0:120])

201 mean.k <- coeffp2

202 names(mean.k) <- c("k01","k10","k12","k21")

203 sd.k <- stdp

204 names(sd.k) <- c("k01","k10","k12","k21")

205 data30p1 <- cbind(apply(pkdata[,dose+1],1,mean), pkpfit[t+1])

206 error <- (data30p1[,2] - data30p1[,1]) / data30p1[,1]

207 error[1] <- 0

208 data30p <- cbind(data30p1,error)

209 ```

210

211 ```{r}

212 AUC

213 mean.k

214 sd.k

215 data30p

216 ```

217
218 # pd

219

220 ## dose30 is shown below as an example.

221 Change line 226 "dose<-dose30" and repeat line 226-244 if users want to compute parameters with other doses.

222

223 ```{r, message=FALSE,results="asis",echo=FALSE}

224 # ======

225 # effect plot, individual fitted curves and original data included, original data, fitted data and error are shown

226 dose <- dose30

227 matplot(tfit,EFIT[,dose],xlim = c(0,500), type = "l", ylim = c(0,40), ylab = "effect(109/L)", xlab = "time(h)", col = "black")

228 par(new = TRUE)

229 matplot(te, pddata1[,dose],xlim = c(0,500), ylim = c(0,40), pch = 20, ylab = "effect(109/L)", xlab = "time(h)", col = "black")

230
231 mean.gam <- apply(PDPARA[,dose],1,mean)
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232 names(mean.gam) <- c("EC50","gamma","E0","Emax")

233 sd.gam <- apply(PDPARA[,dose],1,sd)

234 names(sd.gam) <- c("EC50","gamma","E0","Emax")

235

236 data30d1 <- cbind(apply(pddata1[,dose],1,mean),apply(EFIT[te+1,dose],1,median))

237 error <- (data30d1[,2] - data30d1[,1]) / data30d1[,1]

238 data30d <- cbind(data30d1,error)

239 ```

240

241 ```{r}

242 mean.gam

243 sd.gam

244 data30d

245 ```

246

247 ```{r, message=FALSE,results="asis",echo=FALSE}

248 # ======

249 # linear relationship between AUC0~120 and dose, weighted LSE are computed here

250 Q <- function(par,x,y) {

251 x1 <- par[1] + par[2]*x

252 x2 <- c(rep(x1[1],5),rep(x1[2],10),rep(x1[3],10),rep(x1[4],5))

253 s <- sum(abs(x2 - y)/x2)

254 return(s)

255 }

256 par0 <- optim(c(-1,1),Q,x = d.d, y = 120*CAV)

257 par <- par0$par

258 xa <- c(0:200)

259 ya <- par[1] + par[2]*xa

260 plot(DOSE,120*CAV,pch = 20,xlab = "dose(μg/kg)",ylab = "AUC(h*109/L)", xlim = c(30,200))

261 lines(xa[30:200],ya[30:200])

262

263 # ==========================

264 # sigmoid Emax model on average effect and dose, sigma E-max model and log-linear regression are used

265 d.e <- c(mean(EAV[dose30]), mean(EAV[dose60]), mean(EAV[dose100]), mean(EAV[dose200]))

266

267 cav30m <- mean(CAV[dose30])

268 cav30sd <- sd(CAV[dose30])

269 cav60m <- mean(CAV[dose60])

270 cav60sd <- sd(CAV[dose60])

271 cav100m <- mean(CAV[dose100])
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272 cav100sd <- sd(CAV[dose100])

273 cav200m <- mean(CAV[dose200])

274 cav200sd <- sd(CAV[dose200])

275

276 eav30m <- mean(EAV[dose30])

277 eav30sd <- sd(EAV[dose30])

278 eav60m <- mean(EAV[dose60])

279 eav60sd <- sd(EAV[dose60])

280 eav100m <- mean(EAV[dose100])

281 eav100sd <- sd(EAV[dose100])

282 eav200m <- mean(EAV[dose200])

283 eav200sd <- sd(EAV[dose200])

284 m1 <- rbind(cav30m,cav60m,cav100m,cav200m)

285 sd1 <- rbind(cav30sd,cav60sd,cav100sd,cav200sd)

286 cav <- cbind(m1,sd1)

287 m2 <- rbind(eav30m,eav60m,eav100m,eav200m)

288 sd2 <- rbind(eav30sd,eav60sd,eav100sd,eav200sd)

289 eav <- cbind(m2,sd2)

290
291 emax <- max(d.e) * 1.05

292 e0 <- 0

293 em <- emax - e0

294 Y <- (em - (d.e - e0)) / (d.e - e0)

295 X <- m1

296 int <- lm(log(Y) ~ log(X))$coefficients[1]

297 sl <- lm(log(Y) ~ log(X))$coefficients[2]

298 gamma1 <- -sl

299 EC501 <- exp(int/gamma1)

300 cefit1 <- c(0:500)

301 efit1 <- e0 + (em * cefit1^gamma1) / (EC501^gamma1 + cefit1^gamma1)

302 plot(X,d.e,pch = 22, xlab = "concentration(ng/ml)", ylab = "effect(109/L)", xlim = c(0,250), ylim  = c(20,30))

303 lines(cefit1,efit1)

304 EMAX <- efit1[500]

305 EC90 <- exp((1/9)^(-gamma1))

306 # ====================

307 # =simulation results=

308 # ====================

309 #d.e

310 #X
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