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Introduction

Over 25% of the biodiversity on Earth is made up of soil 
microorganisms that have interacted with soil, plants, and 
animals in ecosystems around the planet for millions of 
years (Fierer 2017; Wagg et al. 2014). Plants and soil bacte-
ria may interact in a variety of ways, and the plant may be 
positively or negatively impacted depending on the species. 
Soil microorganisms, including mutualists and pathogens, 
regulate the presence of various species and the growth of 
certain plants through recurring interactions (Li et al. 2020). 
This symbiont or pathogen community of plants is made up 
of a wide range of bacteria, archaea and fungi (Hussain and 
Khan 2020).

Rhizosphere microorganisms including plant growth-
promoting rhizobacteria (PGPR) and Arbuscular 
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Abstract
In this study, two efficient plant growth promoters coupled with potent antagonists viz. Pseudomonas monteilii strain-
CRC1, Cedecea davisae strain-CRC2 and AM Fungi named Glomus intraradices (GI) were assessed individually and 
in combination for their potential to increase yield and essential oil yield as well as lessen the severity of the disease 
caused by Rhizoctonia solani in Pogostemon cablin (patchouli). In field trials, nine treatments were used: CRC1, CRC2, 
GI, CRC1 + CRC2, CRC1 + GI, CRC2 + GI, CRC1 + CRC2 + GI, un-inoculated vermicompost, and uninoculated soil as 
control, with five replications in randomised complete block design, where Rhizoctonia root-rot/wilt was a persistent prob-
lem. As compared to the control, the plants inoculated with CRC1 + CRC2 + GI performed best and significantly increased 
the plant height (87%), plant spread (50%), branch count (67%), herbs yield (67%), essential oil yield (69%) as well 
as reduced the percent disease index (68%) and percent wilt incidence (87.5%). Moreover, the Patchouli alcohol, a key 
component of its essential oil, was found to be markedly enhanced by 10% in CRC1 + CRC2 + GI inoculated plants. Fur-
thermore, 43, 27 and 191% of higher uptake of NPK were observed in CRC1 + CRC2 + GI inoculated plants, respectively. 
After harvesting, a considerable abundance of CRC1, CRC2, and GI in the rhizosphere soil was observed. The results 
of this experiment indicate that higher herb yields and other observed plant attributes could be due to improved nutrient 
(NPK) uptake by the patchouli plants. The management of wilt disease and the production of high-quality essential oils 
in patchouli both can be accomplished with the help of the established consortium.
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mycorrhizal fungi (AMF) are often considered to have the 
ability to accelerate plant growth through direct or indirect 
interactions with plant roots (Artursson et al. 2006). PGPR 
has significant plant-associated microbiome constituents 
such as Azospirillum, Pseudomonas, Azotobacter, Klebsi-
ella, Enterobacter, Alcaligens, Arthrobacter, Burkholderia, 
Microbacterium, Bacillus, etc. (Singh et al. 2009; 2012 a; 
2012b; 2013a; 2013b; 2018; Agnolucci et al. 2020; Soni et 
al. 2022; 2023). These PGPRs can improve plant growth 
through fixing nitrogen, solubilizing and mineralizing phos-
phorus and other nutrients, siderophores formation, phyto-
hormones production, induced systemic resistance (ISR), 
improving tolerance/resistance from various abiotic and 
biotic stresses, maintaining the soil’s health via nutrient 
recycling and performing other vital tasks like soil forma-
tion and the breakdown of organic materials etc. (Wallen-
stein 2006; Saxena et al. 2020; Soni et al. 2014a, b, 2022, 
2023). AMF maintains symbiotic relationships with more 
than 70% of terrestrial plants and through their arbuscules, 
where the exchange of vital nutrients and sugars takes place 
between host plants and fungi (Wagg et al. 2019). AMF can 
significantly improve the fitness of a host plant by increas-
ing the exhaustion zone by collecting additional water and 
nutrients through a dense hyphal network (Ezawa and Saito 
2018; Field and Pressel 2018), tolerance to drought, heavy 
metals, and diseases (Li et al. 2019; Soni et al. 2014a, b, 
2022; Singh et al. 2013a, 2018), enhances plant quality by 
fostering the synthesis of secondary metabolites/bioactive 
compounds (organosulfides, polyphenols, phytosterols, stil-
benes, vitamins, lignins, and terpenoids, including carot-
enoids), which can be essential for plant tolerance to abiotic 
and biotic stresses or beneficial to human health due to their 
antioxidant properties (Gianinazzi et al. 2008, 2010).

The rhizobacteria and hyphal network of AM fungus 
can communicate with each other in the rhizosphere and 
symbiotically improve plant growth (Barea et al. 2017; 
Rasmann et al. 2017; Yuan et al. 2021; Soni et al. 2014a, 
2022). For the production of their fundamental building 
blocks, bacteria depend on lignin and cellulose-hydrolyzed 
fungi (Roman et al. 2006). Fungal hyphae build “fungal 
hyphae highways” for bacteria to transport substrates by 
forming hyphal networks to link soil patches (Barea et al. 
2002; Warmink et al. 2011). Fungi in turn receive nutrition 
from bacteria. Moreover, several bacteria have been found 
to increase the amount of AM fungal colonisation and to 
boost spore germination and hyphal growth rate (Bharad-
waj et al. 2008b; Nazir et al. 2010; Soni et al. 2014a, 2022). 
Some of the hypothesised mechanisms for mycorrhization 
stimulation include the production of volatile compounds 
that can help AM spores germinate, nitrogen availability 
through nitrogen fixation, solubilization of soil phosphate 
sources, detoxification of the fungal microhabitat, change in 

pH, and level of siderophores (Bharadwaj et al. 2012; Soni 
et al. 2022). The capacity of these organisms to produce cell 
wall-degrading enzymes, which may weaken the cell walls 
of the roots and facilitate the AM fungi’s penetration of the 
roots, has also been investigated as a possible mechanism 
(Bharadwaj et al. 2008a, b; Nazir et al. 2010).

Most plant-microbe interactions in soil depend on the 
release of different chemicals from roots that can influence 
the development and activity of microbes (Hartmann et al. 
2009). The hyphal exudates and deposition of AM fungal 
mycelial products found in the root exudates of mycorrhizal 
plants have the potential to act as substrates for bacterial 
growth and exert a direct influence on the bacterial com-
munities in the myco-rhizosphere. AM colonisation can 
increase the overall number of aerobic bacteria in the rhi-
zosphere (Krishnaraj and Sreenivasa 1992) without having 
any effect on it (Waschkies et al. 1994) or reducing it (Ames 
et al. 1984). Several researchers also assessed the function 
of AMF concerning G. intraradices. According to Filion et 
al. (1999), mycelial exudates of G. intraradices can either 
promote or prevent the growth of other fungi and bacteria. 
According to Toljander et al. (2007), G. intraradices myce-
lial exudates altered the composition of the bacterial popu-
lation in addition to promoting bacterial growth and vitality. 
The size and makeup of particular microbial groups have 
frequently been used to describe the environmental impact 
of microbial inoculants in soil. However, these methods do 
not offer a thorough understanding of how inoculants affect 
the health of the soil ecosystem (Doyle and Stotzky 1993).

Patchouli (Pogostemon cablin Benth), a member of the 
Lamiaceae family, is one of the most important aromatic 
and medicinal herbs. Several bioactive substances, such as 
terpenoids, phytosterols, flavonoids, organic acids, lignins, 
glycosides, alcohols, pyrone, and aldehydes, have been 
found in patchouli. Patchouli alcohol, patchoulene, patchou-
lene epoxide, pogostone, and pachypodol are of particular 
significance among the many chemicals. The pharmacologi-
cal effects of these substances include anti-peptic ulcer, anti-
microbial, anti-oxidative, anti-inflammatory, and influence 
on ischemia/reperfusion injury, analgesic, anticancer, anti-
diabetic, anti-hypertensive, and immunoregulatory effects 
(Junren et al. 2021).

Patchouli oil is one of the most popular and demanded 
essential oils (Rekha et al. 2007). This oil cannot be 
replaced by a synthetic, which increases its value (Ram-
achandra et al. 2002). Patchouli oil is produced in India; 
however, to fulfil the domestic demand, India imports oil 
from Indonesia, Malaysia, and Singapore (Jhunjhunwalla 
2006; Srivastava et al. 2022). Indonesia was the main 
supplier, accounting for more than 80% of India’s total 
import value of patchouli essential oil, which was roughly 
US$70,319,999 up till 2016 (https://www.zauba.com/
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importanalysis-patchouli+oil-report.html; Srivastava et al. 
2022).

Patchouli is prone to a variety of ailments, the two most 
detrimental of which are collar rot and wilt. Rhizoctonia 
solani has been identified as the pathogen responsible for 
collar rot and wilt and causes more than 20% of the eco-
nomic losses (Narayanappa et al. 1984). Due to the wide 
variety of organisms they are connected with, soil-borne ill-
nesses are complicated. Patchouli wilt has also been linked 
to Fusarium oxysporum, according to reports (Gogoi et al. 
2017). Typically, synthetic compounds are used to control 
phytopathogenic organisms. Their broad usage is thought 
to have contributed to the emergence of pathogens that are 
resistant to these pesticides (Elad et al. 1992), endangering 
the stability of crop output. Increased concentrations may 
result in decreased soil biological activity, which could lead 
to agricultural fields losing their fertility (Van Zwieten et 
al. 2010).

The enormous local demand has led to an increase in 
patchouli cultivation in India and other countries. In another 
study, we showed that the de-oiled patchouli waste could 
be successfully bio-converted into enriched vermicompost 
using efficient bioinoculants viz. Trichoderma harzianum, 
Pseudomonas monteilii, Bacillus megaterium and Azoto-
bacter chroococcum (Singh et al. 2013c). The biomass yield 
and growth of patchouli were both dramatically boosted by 
the use of improved vermicompost. An additional investi-
gation discovered that inoculating patchouli plants with 
particular bioinoculants (N-fixers, AM fungus, and Pseudo-
monas) significantly boosted the herb biomass yield (Singh 
et al. 2012a). Also, P. monteilii and Cedecea davisae are 
established as negative regulators of certain plant pathogens 
(Singh et al. 2009, 2013a) but the interaction study is lack-
ing in patchouli.

Considering the aforementioned aspects the present 
study was designed to investigate the interaction between 
bioinoculants (N-fixers and pseudomonad) and AM fungus 
(G. intraradices) and identify a synergistic combination 
of a PGPR and AM fungus which could improve the plant 
growth, and oil yield, soil health and able to suppress Rhi-
zoctonia collar-rot/wilt under organic field conditions.

Materials and methods

Microbial cultures

CSIR-Central Institute of Medicinal and Aromatic Plants 
(CSIR-CIMAP), Lucknow, India had a vast collection of 
bioinoculants (26° 89′ N latitude, 80° 98′ E longitude). 
These bioinoculants have been tested for their ability to 
promote plant development and combat disease (MAPs). 

Based on growth promotion, yield-enhancing, and disease-
suppressing activities on medicinal and aromatic plants as 
described in our earlier studies (Singh et al. 2013a, b, c), as 
well as patchouli pot studies, two native bacterial isolates, 
were chosen: CRC1 (Pseudomonas monteilii-HQ995498; 
MTCC9796) and CRC2 (Cedecea davisae-HQ995499; 
MTCC9797 (unpublished data). The Microbial Culture Col-
lection of CSIR-CIMAP provided the AM fungus (Glomus 
intraradices; GI), which was recommended in our previous 
study for better growth and yield of patchouli (Singh et al. 
2012a).

Selection of compatible bioinoculants

A compatibility test between CRC1 and CRC2 was carried 
out by following the methods described by Jain et al. (2011). 
The 24-hour-old culture of CRC2 was spread on a nutri-
ent agar medium (Himedia, India) containing Petri-dishes 
and then the CRC1 culture was streaked at the centre of 
Petri-dishes. The plates were incubated for 48 h at 28℃. 
The absence of a zone of inhibition at the intersections indi-
cates that the two strains are compatible. The compatibility 
among two different domains of bioinoculants i.e., bacteria 
(CRC1 and CRC2) and AM fungus (GI) was also screened 
out by observing the root colonizing ability and AM spores’ 
population under pot conditions (unpublished data).

Multiplication of bioinoculants

The bacterial culture (CRC1) was multiplied in nutrient 
broth (Himedia, India) and N-fixer (CRC2) on Jensen’s 
broth (Himedia, India) for 36 h at 210 rpm on an incubator 
shaker (Excella E24R–New Brunswick Scientific, Eppen-
dorf, India). The bacterial suspension was centrifuged at 
8000×g for 10 min. The supernatants were discarded and 
the pellets containing bacterial cells were suspended in 500 
mL of 100 mM phosphate buffer, pH 7.0. The CFU (colony 
forming unit) in this suspension for bacterial strains was 
maintained between 2.1 and 2.8 × 108 mL–1.

An inoculum of the AM fungus G. intraradices (Singh 
et al. 2012a) was propagated on maize roots (Zea mays L.) 
for ten weeks in a 1:1 volume mixture of sterilised sand and 
soil (4.5 kg) with low phosphorus content (6.9 kg ha-1), and 
it was then allowed to dry for two weeks. A mixture of AM 
fungus propagules (spores and mycelium) from a dry maize 
pot culture was used as the inoculum, which was based on 
the colonised roots and the sand-soil fraction. The roots in 
the pot culture were taken out of the soil, cut into segments 
measuring 1 cm, and thoroughly mixed with the sand soil 
mixture. After that, the mixture was kept at 5 °C until usage. 
The inoculum potential of the AM fungus used in this exper-
iment was determined using Liu and Luo’s methodology to 
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Bangalore, India. Bangalore is located at latitude 12°58ʹ N, 
longitude 77°35ʹ E and an altitude of 930 m above mean sea 
level. The climate is semi-arid tropical. The soil was a red 
sandy loam (Kandiustalf) with a pH of 6.1, percent organic 
carbon 0.33, available N 183 kg ha–1, Olsen’s P2O5 13.2 kg 
ha–1and exchangeable K2O 111.5 kg ha–1.

A picture of efficient bioinoculants CRC1, CRC2, GI 
and vermicompost, field trial of experiment is depicted 
in Fig. 1. The field trials were composed of nine treat-
ments (based on our previous findings): CRC1 (Pseu-
domonas monteilii–HQ995498, MTCC9796), CRC2 
(Cedecea davisae–HQ995499, MTCC9797), GI (Glomus 
intraradices), CRC1 + CRC2, CRC1 + GI, CRC2 + GI, 
CRC1 + CRC2 + GI, un-inoculated vermicompost, and un-
inoculated soil as control with five replications in random-
ized complete block design. The initial soil samples were 
collected to determine the initial levels of the bioinoculant 
population. The 50–day old rooted cuttings in the nurs-
ery were transplanted with a spacing of 60 cm×45 cm in 
3.6 m×3.6 m raised beds in fields continuously cultivated 
with patchouli crop for the last two years where Rhizoc-
tonia collar-rot/wilt (> 20% disease incidence) was a con-
sistent problem. In all the treatments (except soil only) 
the recommended dose of total N requirement (66 kg 
ha–1harvest–1) was supplied through vermicompost as a 
nutrient supplement based on their N content whereas plots 
receiving vermicompost only (no bioinoculants) served as 
control (Singh et al. 2013c). Five plants were randomly 
tagged for growth/disease severity observations from each 
net plot and the mean value of five plants was taken for 
statistical analysis from each plot. Plant height, number of 
primary branches and wilt incidence were recorded at the 
time of harvesting. Percent wilt incidence (PWI) (yellowing 
and drooping of leaves) was observed in each replicated plot 
before harvest (Singh et al. 2013a).

PWI =
Numbers of wilted plants

total number of plants
× 100

Re-transplanting of the patchouli-rooted cuttings was done 
following the same methods for 2 years. The harvesting of 
the crop was done after 155–160 days of transplanting and 
biomass yield was recorded. The severity of collar/root-rot 
disease was measured on a 0–4 scale, where 0 = no symp-
toms, 1 = 1–25%, 2 = 26–50%, 3 = 51–75% and 4 ≥ 75% 
collar/root affected by rot. Based on the collar/root disease 
symptoms score of each treatment, the percentage disease 
index (PDI) was calculated (Kesavan and Chowdhary 1977).

PDI =
∑

of numerical grading recorded
number of roots observed ×Highest numerical rating

× 100

be 3.9 ± 1.3 infecting propagules g− 1 of the sand-soil mix-
ture. This is the quantity of inoculums that can infect roots 
under a typical set of conditions (Liu and Luo 1994).

Collection and multiplication of earthworms

Earthworms (Eisenia fetida), acquired from the vermicom-
posting facility of the CSIR-CIMAP, were multiplied in large 
numbers in cow dung. The waste from the patchouli distil-
lation was mixed with cow dung to serve as worm-bedding.

Production of quality vermicompost

CSIR-CIMAP has developed and patented a technology to 
produce high-quality vermicompost (VC) from aromatic 
oil crop distillation waste (Kalra et al. 2002, 2010; Singh et 
al. 2012b). To keep the de-oiled patchouli waste moist, tap 
water was sprayed across it with a hose pipe on alternate 
days. The epigeic earthworm (adult clitellate Eisenia fetida) 
was transferred into vermicomposting units/pits. Every 
week, the substrate was turned over to ensure uniformity. 
After 80 days, the compost was ready to harvest, as indicated 
by the formation of a consistently sized, dark brown to black 
granular structure. At this point, the supply of tap water was 
stopped. The vermicompost was taken out of the pits with 
the worms two days later and evenly placed on plastic under 
the cover of shade. By using a 2 mm sieve to recover the 
granular vermicompost, the worms and their cocoons were 
separated and employed in the subsequent batch of vermi-
composting. Before application in organic plots, the vermi-
compost was kept in the shade in airtight polyethene bags 
to preserve the moisture content (around 45%). Every year, 
samples of sieved vermicompost (approximately 50 g) were 
taken, and NPK analysis was performed as described by 
Jackson (1973). On a dry weight basis, the vermicompost 
contained 1.21% N, 0.67% P, and 0.87% K.

Field study

Patchouli var. ‘Johore’ nursery was raised from termi-
nal stem cuttings (5-month-old crop) in polyethene bags 
(7.5 cm×14 cm) filled with a mixture of soil and sand in 
a ratio of 1: 1 (v/v). Holes were punched in the polyethene 
bags suitably to provide drainage of excess water if any. AM 
fungi inoculum (10 g pot− 1) was placed adjacent to the stem 
cuttings of patchouli. However, for bio-inoculants treatment 
stem cuttings were dipped in their respective treatment for 
half an hour before planting and the respective culture sus-
pension (5 ml cutting− 1) was also poured into each treat-
ment. The experimental trials were conducted in the certified 
organic farm (Ecocert) at CSIR-Central Institute of Medici-
nal and Aromatic Plants (CSIR–CIMAP), Research Centre, 
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the injector and the flame ionization detector were main-
tained at 250 and 300 °C, respectively. 0.2 µL of samples 
were injected with a split ratio of 1:80. Peaks were identi-
fied by co-injection with authentic pure samples. The per-
centages of the main components of patchouli oil, namely, 
β-patchoulene, caryophyllene, α-guaiene, seychellene, 
α-δ-patchoulene, α-bulnesene and patchouli alcohol were 
calculated.

Physical, chemical and microbiological analysis

The rhizosphere soil of each sample was taken after harvest-
ing from a depth of 0–15 cm at 5 random sites near plant 
roots using a soil auger. Five points of soil were obtained 
from each plant site, mixed well, sieved, and pooled to form 
one sample. The sample was kept in sealed plastic bags 
stored in the refrigerator at 4 °C for further physic-chemical 
and microbiological analysis.

The pH was determined in a 1:10 (w/v) rhizospheric 
soil: water suspension. Soil organic carbon was analyzed 
following the method of Walkley and Black (1934). The 
NPK analysis in plant samples was carried out according 
to the procedure of Jackson (1973). To examine the AM 
fungi colonization, fine roots from host plants were cut into 
5 mm size sections, cleared with 10% KOH and stained 
with 0.05% trypan blue (Phillips and Hayman 1970). The 

Oil extraction

The harvested plants were shade-dried for 4 days to complete 
the removal of moisture content. Afterwards, the essential 
oil was extracted by hydro-distillation process using Clev-
enger’s apparatus (Langenau 1948). The leaves were kept in 
a round bottom flask and filled with plenty of water to evade 
overheating. Due to the heat effect, the generated vapour 
(mixture of essential oil and water) was condensed and col-
lected in other flasks. The pure oil was obtained by water 
elimination from the mixture using rotavapour. The yield of 
essential oil was found by the following equation.

Y =
W1 × 100

W2

Where W1 is the weight of oil collected (g) and W2 is the 
weight of the plant material (g) used.

Essential oil analysis

The oil samples were analyzed for major constituents using 
a Varian CP 3800 gas chromatograph. The chromatograph 
was fitted with a CP–5 SIL 30 m×0.25 mm column and pro-
grammed 100 °C (2 °C), 8 °C, and 200 °C (3 min.). The 
carrier gas was nitrogen at a flow rate of 0.4 mL min–1 and 

Fig. 1 Efficient bioinoculants (A)P. monteilii str CRC1 (B) C. davisae str CRC2 (C)G. intraradices; GI and (D) Vemicompost, applied in experi-
mental plot (E) Control plot (F) Treated plot
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results and discussion are based on the average of the trials 
during the 2 years.

Results

Effect of bioinoculants on growth characteristics of 
patchouli

Plants treated individually or in combination with bioin-
oculants or AM fungus significantly improved the growth 
parameters of patchouli compared to un-inoculated VC 
control (Fig. 2). Maximum increase in plant height (88%), 
plant spread (50%) and the number of branches (67%) was 
achieved when the patchouli nursery was treated with micro-
bial consortium CRC1 + CRC2 + GI followed by CRC2 
alone (73, 41 and 47%, respectively) and dual inoculation 
with CRC2 + GI (61, 38 and 40%, respectively) compared 
to un-inoculated VC control plants (Fig. 2).

Effect of bioinoculants on shade dry biomass, oil 
yield, oil quality and incidence of Rhizoctonia collar-
rot/wilt of patchouli

The wilt incidence in patchouli plants significantly declined 
from 55 to 80%, however, the maximum reduction in PWI 
was observed in CRC1 + CRC2 + GI (Fig. 3A). The infec-
tion site was the collar region. The disease progressed 
upwards to the shoot and downwards to the root. The collar/
root of the plant became almost brown to black. The percent 
disease index (PDI) of Rhizoctonia collar-rot ranged from 
4.50 to 18.50% in various treatments. The severity of Rhi-
zoctonia collar-rot was significantly reduced (68%) in treat-
ment with CRC1 + CRC2 + GI and CRC2 + GI followed by 
CRC2 (67%). VC alone could also reduce the disease sever-
ity by 23% compared to un-inoculated soil-only plots (no 
vermicompost or bioinoculants) (Fig. 3B). Shade dry bio-
mass (23–67%) and oil yield (23–69%) were significantly 
higher when the patchouli nursery was treated with various 
bioinoculants/AM fungus (individually or in-combination) 
compared to un-inoculated VC control plants (Table 1); 
Consortium of beneficial microbes CRC1 + CRC2 + GI 
being most effective yielded considerably higher herb and 
oil yields (an increase of 67% and 69%, respectively) fol-
lowed by CRC2 alone (34 and 35%, respectively) and 
dual inoculation ofCRC2 + GI (31 and 33%, respectively) 
(Table 1). The content of essential oil varied from 1.94 to 
1.96% (on shade shade-dry basis) but no significant differ-
ences were observed among the treatments (Table 1). Also, 
the quality of essential oil was not affected in any of the 
treatments (Table 2).

percentage of root length colonized by mycorrhizal fungi 
was calculated as reported by Mcgonigle et al. (1990). Posi-
tive counts for mycorrhizal colonization included the pres-
ence of aseptate hyphae/vesicles/ arbuscules. Wet sieving 
and decanting procedures were used for the isolation and 
estimation of AM fungal spores from the soil (Gerdemann 
and Nicolson 1963). Pseudomonads and N–fixer popula-
tions [colony forming unit (CFU) g–1] in the root zone soil 
were determined by serial dilution (10–2 folds) with 0.85% 
saline solution (Denin 1963) using King’s B medium (King 
et al. 1954) and Jensen’s medium (Jensen and Petersen 
1954) in triplicate, respectively. King and Jensen’s medium 
was supplemented with different concentrations of antibiot-
ics (CRC1: 25 µg mL− 1 medium rifampicin, strain CRC2: 
10 µg mL− 1 medium streptomycin sulphate) for estimat-
ing the selective population of pseudomonads and N-fixers 
found to be tolerant to particular antibiotics.

Statistical analysis

The collected data were subjected to statistical analysis by 
analysis of variance method (ANOVA), suitable to random-
ized complete block design (RCBD) for field experiment, 
with the help of β-version of software ASSISTAT 7.6. The 
experimental data of the two trials of field experiments 
had similar variance values, so the data were combined for 
further analyses. Significant differences among treatments 
were based on the F–test in ANOVA and treatment means 
were compared using the least significant difference (LSD) 
at P ≤ 0.05. The standard error (SE) of the mean in vertical 
bar charts was computed with Sigma Plot 11 software. The 

Fig. 2 Effect of bioinoculants and AM fungus (alone or in-combi-
nation) on growth characteristics of patchouli. VC, vermicompost; 
CRC1, P. monteilii; CRC2, C. davisae; GI, G. intraradices. Error bars 
shown as standard error of mean (SE). Different letters above the error 
bars indicate a significant difference at P ≤ 0.05
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Effect of bioinoculants on chemical properties of 
soil and nutrient uptake by patchouli

Application of bioinoculants or AM fungus individu-
ally or in combination significantly improved the percent 
of total organic carbon (2–13%) (Table 3). However, the 
maximum increase was observed when the patchouli plants 
were treated with CRC1 + CRC2 + GI (13%) followed by 
CRC1 alone (8%) compared to vermicompost control plants 
(Table 3). Another significant change in pH was observed 
in patchouli plants treated with microbial consortium 
CRC1 + CRC2 + GI where the soil pH improved from 6.10 
to 6.13 (Table 3). Also, a marked improvement from 6.01 
to 6.10 in soil pH was noticed with VC alone compared to 
un-inoculated soil alone treatment (no vermicompost or bio-
inoculants) (Table 3).

An increase in the nutrient (NPK) uptake was noticed in 
bioinoculants or AM fungus-treated patchouli plants but the 

Table 1 Effect of bioinoculants and AM fungus (alone or in-combina-
tion) on biomass and essential oil yield of patchouli
Treatments Shade dry 

herb yield 
(t ha− 1)

Oil percent Oil 
yield 
(kg 
ha− 1)

CRC1 0.99c 1.95a 19.38d
CRC2 1.08b 1.95a 21.12b
GI 1.04bc 1.95a 20.29c
CRC1 + CRC2 1.03bc 1.95a 20.09c
CRC1 + GI 1.05b 1.95a 20.50bc
CRC2 + GI 1.06b 1.95a 20.71bc
CRC1 + CRC2 + GI 1.35a 1.95a 26.31a
VC only 0.81d 1.95a 15.78e
Soil only 0.51e 1.94a 9.95f
Values in each column followed by different letters are significantly 
different at P ≤ 0.05. CRC1, P. monteilii; CRC2, C. davisae; GI, G. 
intraradices

Table 2 Gas Chromatography (GC) profile of patchouli oil in field condition
Treatments Mean chemical composition

β-Patchoulene Caryophyllene α- Guaiene Seychellene α,δ 
Patchoulene

α-Bulnesene Patchouli 
alcohol

CRC1 1.15a 3.21a 9.29a 5.19a 5.05a 10.57a 42.50a
CRC2 1.19a 3.27a 8.94a 5.29a 5.10a 10.32a 41.26a
GI 1.20a 3.83a 8.92a 5.15a 5.19a 10.98a 42.69a
CRC1 + CRC2 1.19a 3.10a 9.01a 5.20a 5.30a 10.11a 42.19a
CRC1 + GI 1.18a 3.28a 9.13a 5.44a 5.53a 10.82a 42.83a
CRC2 + GI 1.19a 3.87a 8.99a 5.55a 5.89a 10.25a 42.13a
CRC1 + CRC2 + GI 1.21a 3.67a 8.79a 5.74a 5.46a 10.11a 42.17a
VC only 1.20a 3.10a 8.55a 5.65a 5.14a 10.99a 42.55a
Soil only 1.21a 3.29a 8.99a 5.66a 5.69a 10.55a 42.50a
Values in each column followed by different letters are significantly different at P ≤ 0.05. CRC1, P. monteilii; CRC2, C. davisae; GI, G. intrara-
dices

Fig. 3 Effect of bioinoculants and AM fungus (alone or in-combina-
tion) on (A) Percent wilt incidence (PWI) and (B) Percent disease 
index (PDI) of patchouli. VC, vermicompost; CRC1, P. monteilii; 

CRC2, C. davisae; GI, G. intraradices. Error bars shown as standard 
error of mean (SE). Different letters above the error bars indicate a 
significant difference at P ≤ 0.05
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compared to un-inoculated VC control plants (Table 4). 
Significantly higher root colonization by AM fungus (65%) 
was observed in the case of CRC1 + CRC2 + GI followed by 
CRC1 + GI compared to un-inoculated VC control plants but 
the maximum population of AM fungus (317 spores 100 g–1 
soil) was recovered in treatment with GI alone followed by 
CRC1 + CRC2 + GI (315 spores 100 g–1 soil)(Table 4).

Discussion

Organic manures and plant-beneficial microbes are vital 
components for improving soil health and yields in agricul-
tural systems. Delivering both components will be beneficial, 
particularly in organic fields (Singh et al. 2012a, b; 2012c; 
Singh et al. 2018; Soni et al. 2014a, b, 2022, 2023). Disease 
control activity or plant growth promotion can be achieved 
when beneficial microorganisms are present above 1 × 105 
microbial count g–1 of seed, root or soil (Raaijmakers and 
Weller 1998). Generally, the objective of nursery bio-inocu-
lation (especially for patchouli vegetative cuttings) is not to 
achieve a growth response, but rather to establish a strong 
relationship of bioinoculants with the plant so that it can be 
effectively transferred to the field (Singh et al. 2012a). The 
pre-inoculation of vegetative cuttings in nurseries provides 
the introduced bacterial strains with a special advantage 
over the indigenous bacterial/fungal strains after transplant-
ing in the field (Sorensen et al. 2008). Inoculation with AM 
fungi at very early stages has been found to result in higher 
crop uniformity, reduced transplant mortality (Waterer and 
Coltman 1988) and higher yields after transplanting to 
the field (Lovato et al. 1996).In our previous studies, we 
reported that even low levels of root colonization (< 18%) at 
the nursery stage helped spread new roots after transplant-
ing to the organic field which might be adequate for the suc-
cessful establishment of mycorrhizal plants, especially in 
the organic field conditions (Singh et al. 2012a, 2018).

maximum N, P and K uptake (43, 27 and 191%, respec-
tively) were observed in patchouli cuttings treated with 
microbial consortium CRC1 + CRC2 + GI followed by dual 
inoculation of patchouli cuttings with CRC2 + GI (41, 21 
and 14%, respectively) (Table 3) compared to un-inoculated 
VC control plants.

Root zone microbial population at harvesting time

The initial population (CFU g–1soil) of N–fixers and fluores-
cent pseudomonads in the experimental plots were 0.4 × 103 
and 0.5 × 103 respectively. On the other hand, the AM fun-
gus population was 88 spores 100 g–1 soil. The bioinoculants 
(P. monteilii, C. davisae) or AM fungus (G. intrardices) 
populations were significantly higher in their respective 
treatments where the inoculation was done individually or 
in combination as compared to un-inoculated VC control 
plots (Table 4) but the highest population (CFU g–1 soil) 
of N–fixers and fluorescent pseudomonads were maintained 
in treatment with microbial consortium CRC1 + CRC2 + GI 

Table 3 Effect of bioinoculants (CRC1 and CRC2) and AM fungus 
alone or in-combination on chemical properties and nutrient uptake 
of patchouli
Treatments Chemical properties of soil and nutrient 

uptake (kg ha− 1)
pH TOC 

(%)
N P K

CRC1 6.11ab 0.52b 41.20c 13.90d 17.00bc
CRC2 6.11ab 0.51bc 43.50b 13.80d 16.90bc
GI 6.08c 0.50 cd 39.80d 14.80c 17.80ab
CRC1 + CRC2 6.09bc 0.51bc 43.90b 13.90d 17.50b
CRC1 + GI 6.10bc 0.47f 41.50c 15.01bc 17.80ab
CRC2 + GI 6.09bc 0.49de 44.60ab 15.10b 18.10ab
CRC1 + CRC2 + GI 6.13a 0.54a 45.40a 15.80a 18.90a
VC only 6.10bc 0.48ef 31.70e 12.50e 15.90c
Soil only 6.01d 0.39 g 28.50f 10.10f 13.10d
Values in each column followed by different letters are significantly 
different at P ≤ 0.05. CRC1, P. monteilii; CRC2, C. davisae; GI, G. 
intraradices

Treatments Root zone bioinoculants population
N-fixers
(CFU× 
104 g−1 soil)

Pseudomonads
(CFU× 104 g− 1 
soil)

AM 
spores
(100 g− 1 
soil)

AM root 
coloni-
zation 
(%)

CRC1 1.1c 2.6b 125c 36c
CRC2 1.3ab 2.3e 119d 32de
GI 1.1c 2.4d 317a 58b
CRC1 + CRC2 1.4a 2.6b 121d 35 cd
CRC1 + GI 1.2bc 2.5c 312b 61b
CRC2 + GI 1.3ab 2.1f 316a 59b
CRC1 + CRC2 + GI 1.4a 2.7a 315a 65a
VC only 0.7d 0.6 g 101e 31e
Soil only 0.4e 0.5 h 89f 25f

Table 4 Mean population of 
bioinoculants in the root zone 
soil of patchouli at the time of 
harvesting

Values in each column fol-
lowed by different letters are 
significantly different at P ≤ 0.05. 
CRC1, P. monteilii; CRC2, C. 
davisae; GI, G. intraradices
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for chemical fertilisers and fungicides, improving yields and 
reducing the severity of disease while reducing the risks to 
the environment and human health associated with the use 
of dangerous chemicals. The choice of prospective bioin-
oculants/antagonists, method, modes, appropriate combi-
nations, environment, and other elements all play a role in 
the bioinoculant’s performance (Singh et al. 2012a). The 
effective bioinoculants worked well when vermicompost 
was added because it provided ideal growth conditions for 
bioinoculants (near-neutral pH, nutrients, and strong water-
holding capacity) (Soni et al. 2022). Vermicompost alone 
produced a lower yield in the current study, which points to 
the positive benefits of bioinoculants inoculated at nursery 
raising time, either alone or in combination.

The treatments had no effect on the essential oil’s quality, 
however using bioinoculants or the AM fungus alone or in 
conjunction with vermicompost increased the essential oil 
yield. Similar patterns were seen in a previous study where 
patchouli plants rooted in vermicompost and supplemented 
with microbes like AM fungi (G. aggregatum, G. fascicu-
latum, G. intraradices, and G. mosseae) and plant growth 
promoters (P. fluorescens, B. subtilis, B. megaterium, and 
Azotobacter) when transplanted into pots and fields pro-
duced significantly more essential oil yield (Singh et al. 
2012a).

The nutrient uptake (NPK) by patchouli was consider-
ably improved by either a single or combined inoculation 
of P. monteilii, C. davisae, and G. intrardices. The maxi-
mum uptake of NPK was seen in plants inoculated with 
CRC1 + CRC2 + GI. Similar outcomes were noted in plants 
such as the Eucalyptus hybrid, Ficus benjamina, and C. for-
skohlii that had been exposed to a favourable microbial and 
fungal consortium (Srinath et al. 2003; Singh et al. 2013a). 
C. davisae has also demonstrated improved N uptake 
capacity in basil crops, making it a suitable substitute for 
N-fixation in patchouli (Singh et al. 2013b). According to 
Naik et al. (2008), P. Monteilii is a P-solubilizer, which may 
have helped C. forskohlii absorb phosphorus more effec-
tively. The AM fungus (G. intrardices) and P. monteilii play 
a crucial role in solubilizing inorganic phosphate, which 
could then be transported to the plants by the hyphae of the 
mycorrhizal fungi. This means that P. monteilii could be an 
incredibly useful microbe in organic or sustainable farm-
ing where phosphorus is a major bottleneck. Additionally, 
its antagonistic behaviour toward plant pathogens (such as 
F. chlamydosporum and R. solani) and compatibility with 
N-fixers and AM fungi to form a powerful microbial consor-
tium may be helpful in organic farms for managing nutrients 
and diseases.

In the treatment with CRC1 + CRC2 + GI, higher levels 
of pseudomonad and N-fixer populations, as well as more 
numbers of AM fungal spores and increased mycorrhizal 

Our past findings in medicinal and aromatic plants (Singh 
et al. 2012a, b; Soni et al. 2022) are consistent with the fact 
that AM fungi/bio-inoculants considerably increased plant 
growth characteristics. Our prior research has demonstrated 
that the dual inoculation of AM fungi (G. fasciculatum or 
G. mosseae) and plant growth-promoting bacteria (PGPR) 
like P. monteilii (strain CRC1) and Bacillus subtilis (strain 
DAz26) can significantly enhance the growth of medicinal 
plants like C. forskohlii and Artemisia annua (Awasthi et al. 
2011; Singh et al. 2013a).

Plant growth parameters were significantly improved 
by AM fungi/bio-inoculants which are supported by ear-
lier findings (Singh et al. 2012a, b; Soni et al. 2022), in 
medicinal and aromatic plants. Our earlier findings have 
established that dual inoculation of AM fungi (G. fascicu-
latum or G. mosseae) along with plant growth-promoting 
bacteria (PGPR) such as P. monteilii (strain CRC1) and 
Bacillus subtilis (strain DAz26) can effectively improve the 
growth of medicinal plants like C. forskohlii and Artemisia 
annua (Awasthi et al. 2011; Singh et al. 2013a). Addition-
ally, patchouli plants grew faster in vermicompost made 
from distillation waste that was enriched with the microbial 
consortium T. harzianum, P. monteilii, B. megaterium, and 
A. chroococcum (Singh et al. 2013c). Increased systemic 
resistance, the generation of plant hormones, enzymes, or 
antibiotics, a decrease or weakening of pathogens, and the 
application of AM fungi or bio-inoculants (alone or in com-
bination) contributed ultimately to the growth parameters of 
the plants (Zahir et al. 2004).

By increasing nutrient availability through N-fixation or 
P solubilization/mobilization and reducing disease sever-
ity, the use of beneficial microorganisms (P. monteilii, C. 
davisae, and G. intrardices) individually or in combination 
could have improved patchouli crop development and yield. 
According to Puttanna et al. (2010), the low nutritional level 
of the soil and the low capacity of the microorganisms to 
colonise in poor soil had a negative impact on the growth 
and yield of the patchouli crop in the soil alone treatment 
(without vermicompost and bioinoculants). The application 
of efficient bioinoculants in the proper combination with an 
organic fertiliser (vermicompost as a nutrient supplement) 
may be helpful for the growth and yield of patchouli crops. 
Additionally, more diverse microbial populations in vermi-
compost (Singh et al. 2012b) may help to inhibit the growth 
of R. solani. Our earlier studies showed the advantages of 
using vermicompost and effective bioinoculants in reduc-
ing disease severity and increasing yields in C. forskohlii 
(Singh et al. 2011, 2012a, b, 2018). The effectiveness of 
using eco-friendly bio-agents (T. harzianum, G. virens, and 
G. aggregatum) in reducing patchouli collar rot was previ-
ously demonstrated by Mishra et al. (2000). Microbial con-
sortiums like CRC1 + CRC2 + GI may be a good substitute 
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