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Abstract
Verticillium dahliae is a soil-borne phytopathogen and the causal agent of Verticillium wilt. It affects many agriculturally
important crops around the world, including cotton. In Australia, the billion-dollar cotton industry is increasingly impacted by
Verticillium wilt. Internationally it has been reported that the defoliating V. dahliae Vegetative Compatibility Group (VCG) 1A
causes severe damage to cotton. In Australia however, the non-defoliating VCG2A is causing more severe damage to crops in
fields than the defoliating VCG1A. This review examines the current research to understand the Australian V. dahliae situation,
including current classification systems, genetic analyses and management strategies. It appears that virulence cannot be defined
solely by VCG in Australian Verticillium dahliae isolates causing disease in cotton, and that the industry must continually adapt
their practices in order to keep the disease under control.
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Introduction

In Australia, cotton is a growing billion-dollar industry.
Cotton yields have increased from 500 kg per hectare in the
1960’s to 2000 kg per hectare in 2013 (Hamilton 2016).
Cotton crops are largely furrow irrigated, grown on alkaline
clay soils and tend to be located near flood plains. There is
often reduced or minimum tillage, tail-water recirculated and
in some areas permanent bed systems (Kirkby et al. 2013).
Sustainability and growth of the cotton industry is reliant on
improved cotton varieties, management of soil and water re-
sources, and control of weeds, insect and diseases (Constable
2004). Although Verticillium wilt in Australian cotton is gen-
erally well managed, other countries have seen economic
losses of 50% or more (Wu and Subbarao 2014). The average
incidence levels of Verticillium wilt caused by V. dahliae in
Australian cotton are relatively low but yield losses can vary

between 10 and 62% in some fields (Holman et al. 2016).
However, the recent discovery of the defoliating VCG1A
and the disease severity of the non-defoliating VCG2A pres-
ent an additional problem for management of Verticilliumwilt
as incidences rise (Chapman et al. 2016; Dadd-Daigle et al.
2020; Jensen and Redfern 2017; Kirkby et al. 2013). Hence,
Verticillium wilt is becoming a major concern for the
Australian cotton industry.

Verticillium dahliae

Verticillium encompasses a group of soil-borne ascomycetes.
As of 2011, ten Verticillium species have been described
(Inderbitzin et al. 2011), including V. dahliae, the main causal
agent of Verticillium wilt. Verticillium dahliae is responsible
for disease in over 400 plant species across the world. These
include many economically important crops such as olives,
tomatoes, potatoes, lettuce and cotton (Bhat and Subbarao
1999; Inderbitzin et al. 2011).

The life cycle of V. dahliae allows it to persist on farms for
many years. It survives in soil in highly melanised resistant
structures, known as microsclerotia, for over 10 years (Davis
et al. 1994; Klosterman et al. 2009). These microsclerotia
germinate in the presence of host plants, producing hyphae
that penetrate the root cortex and reach the xylem. As hyphae
and conidia grow within the xylem, the plant host can express
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symptoms of wilting, necrosis and leaf discolouration (Klimes
et al. 2015). As symptoms progress, V. dahliae enters a sap-
rophytic phase where the infection expands to other tissues,
such as leaves, and a mass production of microsclerotia oc-
curs. The extent of symptoms can depend on the susceptibility
of the host and the infecting strain of V. dahliae. While some
plants suffer severe wilting and necrosis, other infections are
less severe, allowing the plant to recover (Daayf 2015).

Historically, the characterisation and classification of
V. dahliae has been based on the symptoms exhibited by the
host plant, or by the interaction of pathogen virulence and host
resistance genes. Consequently, this has led to the use of host-
specific terminology and classification, resulting in a number
of different classification systems. Verticillium dahliae strains
infecting tomato and cotton are divided into “races”, classified
by the presence or absence of the Ave1 gene (Hu et al. 2015;
Maruthachalam et al. 2010). Strains from cotton are also
categorised into defoliating (D) and non-defoliating (ND)
pathotypes (Daayf et al. 1995). While the D and ND
pathotypes largely align to races 1 and 2, respectively, this is
not true for all strains and the systems are generally not used
interchangeably (Hu et al. 2015). Host-specific pathology
groups also include “eggplant pathotype”, “tomato
pathotype”, “mint pathotype” and “sweet pepper pathotype”
(Dung et al. 2012; Komatsu et al. 2001; Papaioannou et al.
2013b). While these classifications are generally understood
in studies that focus on strains infecting a single host type,
complexity arises when investigating Verticillium strains in-
dependently of the plant host they infect. Currently, there is
only one system that classifies all V. dahliae strains into
groups, known as Vegetative Compatibility Groups (VCGs).

Vegetative Compatibility Groups (VCGs)
in Verticillium dahliae

VCGs are determined by strain interaction and describe
the formation of prototrophic heterokaryons, a fusion of
two genetically distinct cells that occurs when two hy-
phal cells meet (Puhalla and Mayfield 1974). While not
molecularly characterised in V. dahliae, related fungal
models have shown that two sets of gene loci, known
as vic (vegetative incompatibility) and het (heterokaryon
incompatibility) govern the process. For isolates to form
a heterokaryon, the alleles at the het or vic loci must be
identical (Jiménez-Gasco et al. 2013). In practice, the
VCG determination process requires that V. dahliae
strains are mutated to become nitrogen non-utilizing
“nit mutants”. Mutants strains, one or two with known
and the other with an unknown VCG, are placed on
opposite sides of a minimal media agar plate and mon-
itored for signs of prototrophic growth. If the mutant
isolates are able to form heterokaryons, which allow

growth on minimal media, the unknown isolate is
assigned the same VCG as the known isolate (Joaquim
and Rowe 1990). This method has led to the identifica-
tion of five VCGs in V. dahliae, namely, VCG1 2, 3, 4
and 6, with VCG1 and VCG2 further characterised into
A and B subgroups, and VCG4 into A, B and AB
(Papaioannou and Typas 2015; Strausbaugh 1993).

Vegetative Compatibility Groups have been used to track
the evolution and movement of V. dahliae. Several groups
found that isolates within VCGs are phylogenetically similar
(Collado-Romero et al. 2006) or fit a clonal reproductivemod-
el (Dung et al. 2013;Milgroom et al. 2014). Others argued that
although isolates of the same VCGmay be genetically similar,
they are often phylogenetically distant, with members of dif-
ferent subgroups being more closely related (Jiménez-Gasco
et al. 2013). In most instances VCGs are monophyletic, with
some exceptions such as VCG2B (Collado-Romero et al.
2008). Following these studies, the origin of the V. dahliae
species has been speculated to be in Europe (Short et al. 2015),
while the virulent VCG1A has been traced back to North
America (Milgroom et al. 2016).

Different plant hosts are often associated with different
V. dahliae VCGs. VCG2A is known to be highly pathogenic
to tomato (Tsror et al. 2001), VCG2B is highly aggressive in
mint (Dung et al. 2013), VCG4A is highly pathogenic to po-
tato (El-Bebany et al. 2013), and VCG1A is virulent in olives
(Dervis et al. 2007). In cotton, it has generally been reported
that VCG1A causes significant damage while VCG2A and
VCG4B are less virulent, although there have been some re-
ports of VCG2B causing damage (Dervis and Bicici 2005;
Dervis et al. 2008; Elena 1999; Jiménez-Gasco et al. 2013;
Korolev et al. 2001).

While VCGs are currently the most widespread method
to describe V. dahliae populations, the genetics behind
VCGs in V. dahliae are not well understood. In their
attempt to create a high-throughput VCG screening meth-
od, Papaioannou and Typas (2015) also sought to under-
stand the genetic relationship between the two, “strong”
and “weak”, heterokaryon reactions observed. These au-
thors found that weak interactions tend to be unstable,
but there is still a transfer of genetic material, suggesting
that they may be vegetatively compatible. Although many
other studies acknowledge that weak reactions occur, most
regard only strong interactions as compatible (Strausbaugh
1993). This could impact the reliability of results examin-
ing relatedness amongst VCGs and highlights a need for a
narrower classification system that does not suffer from
these issues. Additionally, as the VCG determination pro-
cess is labour intensive and time-consuming, several
groups have attempted to develop alternative methods
(Collado-Romero et al. 2009; El-Bebany et al. 2013;
Papaioannou et al. 2013a). However, currently, no molec-
ular method is as reliable as the traditional method.
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Verticillium dahliae in Australian cotton

Since 1983, Verticillium-infected plant samples have been
collected and V. dahliae isolates maintained and stored in
the culture collection of the NSW Department of Primary
Industries (Kirkby et al. 2013). The average incidence of
Verticillium wilt has generally been low throughout NSW.
The incidence rose from 5.5% in 2013/2014 to 7.1% in
2014/2015 and 6.3% in the 2015/2016 season (Chapman
et al. 2016). Disease symptoms are becoming more severe in
some patches of Verticillium wilt, with yield reductions re-
ported to be greater than 6 bales/ha. There are concerns that
this increase in severity is related to the ND VCG2A strain
reported in 2014 (Dadd-Daigle et al. 2020; Smith et al. 2014).

It was previously thought that only one VCG type, ND
VCG4B, was present in Australia, but in 2014, ND VCG2A
was identified (Smith et al. 2014). Following the discovery of
ND VCG2A, analysis of V. dahliae historical samples taken
from the NSW Department of Primary Industries culture col-
lection revealed the presence of the D VCG1A (Chapman
et al. 2016). The D VCG1A has been the cause of severe
disease and crop loss overseas (Jiménez-Díaz et al. 2006).
However, despite the presence of VCG1A in the historical
samples, typical VCG1A disease presentation, including the
typical crop losses and complete defoliation of infected plants,
has not been a widespread observation in Australia. It is not
clear what is causing the disparity between the severity of D
VCG1A and NDVCG2A disease in Australia and overseas. It
is possible, given that VCG2A has been shown to infect
weeds commonly found on cotton fields (Yildiz et al. 2009),
that VCG2A V. dahliae has simply become the most prevalent
strain on Australian cotton fields, amplified by the polyetic
nature of the pathogen, and has acquired the ability to defoli-
ate cotton plants. However, further analysis of the relationship
of genetics to pathogenicity and disease severity in Australian
V. dahliae VCGs is required.

Insights from Verticillium dahliae genome
sequencing

In 2011 the V. dahliae VdLs.17 and V. albo-atrum genomes
were sequenced using the whole genome shotgun approach
via Sanger sequencing (Klosterman et al. 2011). Although the
two ~ 33 Mb genomes were highly similar, there were four
300 kb regions in V. dahliae which had no synteny with
V. albo-atrum. These regions were denoted “Lineage
Specific” (LS) regions. The LS regions were found to be high-
ly repetitive and represented over 50% of all identifiable trans-
posable elements contained in V. dahliae. Faino et al. (2015)
used PacBio long read sequences to create a “gapless” ge-
nome and have since suggested that there are problems with
the initial V. dahliae VdLs.17 sequence. These authors argue

that their method of genome assembly helps to prevent prob-
lems associated with repetitive regions that cause issues when
assembling shorter contigs. Using PacBio sequencing, the
VdLs.17 genome was re-assembled. The newly constructed
genome indicates that 12% is composed of repetitive regions,
four times higher than was previously thought.

With the availability of a V. dahliae reference genome, there
is an increasing understanding of what makes V. dahliae such
an adaptable pathogen with a broad host range. There are sug-
gestions that transposons could be a major reason for the geno-
mic diversity observed and that they contribute to theV. dahliae
“plastic genome” driving adaption to new plant hosts (Amyotte
et al. 2012; Faino et al. 2016). This is supported by de Jonge
et al. (2013) who compared the VdLs.17 reference strain with
10 V. dahliae genomes taken from geographically separate re-
gions and hosts. The study revealed that despite the genomes
being highly similar, chromosome rearrangements had oc-
curred between all strains. Using RNA-seq data and deletion
studies, they showed that effector genes present in the LS re-
gions were important to the development of disease (de Jonge
et al. 2012, 2013), suggesting that chromosome rearrangements
and these LS regions could contribute toV. dahliae’s adaptation
to new hosts. Jin et al. (2017) explored the organism’s use of
alternative splicing and developed their own algorithms, along-
side previously available software, to analyse V. dahliae cDNA
sequences for common splicing events. They found that
V. dahliae has one of the most sophisticated splicing systems
in eukaryotes, outside of animals, and believe that this alterna-
tive splicing could explain some of V. dahliae’s plasticity.

There are an increasing number of studies suggesting that
horizontal gene transfer plays an important role in V. dahliae’s
success as a pathogen. An analysis of V. dahliae isolated from
cotton in China, revealed the presence of a virulence gene be-
lieved to have originated in Fusarium oxysporum, a related
fungal pathogen often found infecting cotton on the same farm
(Chen et al. 2017). Their deletion experiments found that re-
moval of this gene affected the ability of the V. dahliae strain to
infect cotton, but not lettuce or tomato, highlighting it’s ability
to acquire new virulence genes as it expands to different hosts.
There has also been evidence of V. dahliae acquiring genes
from the host plant and from bacteria (de Jonge et al. 2012;
van Kooten et al. 2019). These studies used phylogenetic anal-
ysis to look for candidate genes that are found outside the
Verticillium spp. They found numerous candidate genes of bac-
terial and plant origin, many of which could potentially aid
V. dahliae in getting past the host plant’s defences.

Management strategies for the control
of Verticillium wilt

The nature of V. dahliae infection makes elimination of the
pathogen difficult, however, multiple management strategies
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have been applied over the years. As the V. dahliae life cycle
is dependent on microsclerotia present in crop soil, currently
the two main strategies target either the soil itself, for example
by soil fumigation, or the plants through development of re-
sistant varieties (Short et al. 2015). Soil fumigation aims to
eliminate microsclerotia in crop soil. Traditionally, methyl
bromide was used to control pathogen populations, but was
classified as a Class 1 stratospheric, ozone-depleting sub-
stance and international regulations dictated by the Montreal
Protocol now restrict the use of this chemical (Martin 2003).
Multiple studies have explored alternatives, including green
manures, anaerobic soil disinfection and anaerobic digestion.
Green manure is a method utilising volatile components from
plant waste to reduce the number of microsclerotia (Yohalem
and Passey 2011). Anaerobic soil disinfection uses microbial
activity from agricultural or horticultural waste products, com-
bined with mulched plastics, to deplete available oxygen in
soil, creating anaerobic conditions to prevent fungal growth
(Goud et al. 2004). Anaerobic digestion uses liquid digestate,
a by-product from biogas production, as a bio-fertiliser to
control microsclerotia levels (Wei et al. 2016). However, the
suitability of these methods in commercial processes is still
questionable. While, green manures and anaerobic digestion
are still relatively new and understudied, the well-studied var-
iants, such as Brassica sp., are deemed insufficient (Neubauer
et al. 2014) and anaerobic soil disinfection is not currently
economically viable (Wei et al. 2016).

Production of resistant cotton varieties is a key strategy in
the prevention of Verticillium wilt. The development of resis-
tant varieties in Australia has been ongoing for more than 30
years, with the release of Sicala V-1 in 1990, and Sicala V-2 in
1994 (Liu et al. 2013). Despite successes with Sicala V-2 and
subsequent varieties derived from it, the incidence of
Verticillium wilt has continued to rise in recent years
(Kirkby et al. 2013). This could be linked to the temperature
tolerance, as currently the V. dahliae resistance in available
cotton varieties breaks down when temperatures drop below
22˚C (Quinn et al. 2018). Although there is ongoing research
into Verticillium resistance (Li et al. 2018, 2019; Zhang et al.
2018), the development of new cotton varieties that provide
adequate yield is slow, and the current varieties do not provide
a substantial increase in resistance (Dadd-Daigle et al. 2020).
Also, without a rapid diagnostic system that classifies
V. dahliae into groups meaningful for Australian cotton, it is
difficult to develop targeted and effective strategies.

Currently, crop rotation is one of the methods used to help
manage Verticillium wilt on cotton farms in Australia. Crop
rotation is the practice of varying the successive crops in a
particular field to assist in the control of disease and weed
management. Each crop varies in its susceptibility to certain
pathogens. The success of crop rotation relies on initial inoc-
ulum levels in the soil, the number of rotations with non-host
crops and the wetting and drying cycles that assist in the

breakdown of inoculum in the soil (Wheeler et al. 2019).
For example, most cotton farmers rotate with barley or sor-
ghum as they are not listed as host crops for V. dahliae. While
commodity prices are the short-term driving force, farms with
high disease levels are looking at rotation to ensure cotton
remains sustainable in the long term (K. Kirby, personal com-
munication, September 2016). The current recommendations
to growers are long rotations with moderate irrigation to re-
duce overall pathogen levels and prevent widespread move-
ment of the microsclerotia (Holman et al. 2016; Scheikowski
et al. 2019).

The development of real-time PCR protocols to determine
microsclerotial load from soil samples should assist with man-
aging crop rotation practices (Banno et al. 2011; Gharbi et al.
2016). Removal of the rotational crop plant debris has also
been shown to reduce the number of microsclerotia in the soil,
but does sacrifice soil health (Chawla et al. 2012). However,
the known host range of V. dahliae, both symptomatic and
asymptomatic, is expanding as the pathogen comes into con-
tact with new plant species. There have been instances where a
symptomless host has exhibited extensive vascular coloniza-
tion and so contributes to the microsclerotial load despite the
lack of symptoms (Wheeler and Johnson 2016). This makes
selection of a suitable rotation crop more complex and high-
lights the need for a better understanding of the genomics of
V. dahliae. In some instances, after multiple years of crop
rotation followed by a cotton crop, the incidence of
Verticilliumwilt rises to match those found on farms that have
had continuous cotton growth (Wheeler et al. 2019).

Given that the current attempts to mitigate Verticillium
wilt on cotton farms is becoming increasingly ineffective,
new strategies need to be explored for use in Australia.
One area that hasn’t been well examined in Australian
cotton is the use of endophytes as a biological control.
The idea behind this strategy is to pre-infect the plants
with a microbe that will inhabit the same niche as
V. dahliae, preventing infection by the pathogen. This
has been explored with both bacterial and fungal endo-
phytes (Li et al. 2012; Vagelas and Leontopoulos 2015)
used the less virulent V. nigrescens to take up the niche
usually filled by V. dahliae, preventing the infiltration of
conidia by the more virulent species, while Yuan et al.
(2017) looked at using unrelated fungal species as seed
treatments. Although both studies saw a reduction in
V. dahliae caused Verticillium wilt, the use of
Penicillium simplicissimum and Leptosphaeria sp. also
saw an increase in cotton seed production as the number
of cotton bolls increased (Yuan et al. 2017). As endo-
phytes have been shown to be beneficial in other areas
of crop sustainability, such as protection from insect pests
and abiotic stress (Lugtenberg et al. 2016), this area could
be hugely beneficial to the Australian cotton industry
which is often heavily impacted by water availability.

132 Dadd-Daigle et al.



Improving future understanding
of the Verticillium wilt problem in Australia

The nature of Verticillium wilt in Australian cotton is an in-
teresting problem. Large patches of severe Verticillium wilt
have been found to be caused by the ND VCG2A (Dadd-
Daigle et al. 2020; Jensen and Redfern 2017), which is con-
trary to reporting on other cotton farms around the world. This
could be dependent on factors other than the isolate, such as
the Australian environment, or the farming conditions, and is
an area that warrants further exploration. While studies to
further examine the Australian V. dahliae population are cur-
rently being conducted, no study to date has indicated what
causes the difference in disease potential between Australian
and international cotton crops. In addition, the genetic analy-
ses are revealing an increasing number of methods by which
V. dahliae can adapt. It is no wonder that strategies that work
some of the time, such as crop rotation or the use of resistant
varieties, are becoming less effective (Kirkby et al. 2013;
Wheeler et al. 2019).

There is an increasing need for new mitigation strate-
gies or the development of new cotton varieties resistant
to Verticillium wilt. However, in order to create and im-
plement these strategies, the current classification system
needs to be improved to better represent the V. dahliae
present on Australian cotton farms. Characterisation of the
genetics controlling virulence has improved the classifica-
tion of VCGs within related Fusarium sp. by increasing
molecular clarity between isolates and developing new
classification systems (Carvalhais et al. 2019). Although
there is still some debate surrounding the best tools to
diagnostically identify virulent Fusarium oxysporum strains
(Magdama et al. 2019), a similar molecular understanding
could improve the VCG classification system within
V. dahliae by establishing narrower classifications or by
implementing a new system based on virulence genes un-
related to VCGs.

Future research to improve Verticillium wilt on
Australian cotton farms needs to largely build on cur-
rent research efforts. An improved system for quantifi-
cation of inoculum in soils and a better understanding
of the inoculum to disease thresholds for different
VCGs can clarify the effectiveness of crop rotation
(Wheeler et al. 2019). While an improved understanding
of the environmental conditions and how current farm-
ing methods impact Verticillium wilt on Australian
farms can help inform best farming practices (Kirkby
et al. 2013). It is only through continued development
of new tools and a better understanding of V. dahliae
genetics to rapidly analyse Verticillium wilt samples
that growers may be able to stay ahead of the pathogen,
preventing a situation where yield loss due to disease
outweighs potential yield.
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