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Abstract Powdery scab of potato, caused by the obligate
biotrophic protozoan pathogen Spongospora subterranea
f-sp. subterranea (Sss), is a major problem in potato growing
areas throughout the world. It results in lesions (scabs) on the
surface of the tubers which renders them unmarketable. In
recent years there has been an increasing number of reports
of the disease, many from new areas. Management of the
disease has proved difficult and relies on the integrated appli-
cation of a range of methods. Biocontrol is not currently used
for the management of powdery scab although the results of
preliminary studies have been encouraging. This review eval-
uates the potential for developing a biocontrol strategy for
powdery scab.

Keywords Biocontrol - Powdery-scab - Plasmodiophorid -
Potato - Integrated control

Introduction

Powdery scab of potato, caused by the biotrophic protozoan
pathogen Spongospora subterranea f.sp. subterranea (Sss), is
a major problem in many potato growing areas throughout the
world. It results in lesions (scabs) on the surface of tubers that
are filled with a brown powder consisting of sporosori (also
referred to as sporeballs), hence the common name (Harrison
et al. 1997). Affected tubers have low acceptance at market
and are down-graded or rejected by traders, leading to reduced
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returns to growers and increased waste within the industry. For
producers of seed potatoes, the lesions may lead to rejection of
entire consignments as the disease is spread through infected
tubers (Falloon et al. 1996; Kirkham 1986). Economic losses
in the fresh potato market are very difficult to quantify. Annual
losses to the Australian processing industry have been estimat-
ed at A$13.4 million (Wilson 2016).

In addition to producing lesions on tubers, the pathogen
also infects roots, a process that leads to reduced water and
nutrient uptake and thus impaired shoot and tuber growth
(Falloon et al. 2016). Historically this aspect has received less
attention because tuber lesions are more evident, but root in-
fection is now considered to have the greater deleterious effect
on crop production. In field trials, impairment of water and
nutrient utilisation can lead to a 25% reduction in shoot dry
weight, a 26% reduction in the number of tubers per plant and
a 42% reduction in tuber weight per plant (Falloon et al.
2016). Susceptibility of cultivars to root infection is only
loosely related to previously determined susceptibility to pow-
dery scab (i.e. development of tuber lesions) and hence they
are considered to be separate disease processes (Falloon et al.
2016; Nitzan et al. 2008). Root infection, with impaired water
and nutrient utilisation, can occur from early in the growth of
plants, but gall formation and tuber lesions only become evi-
dent at later stages of plant development (Falloon et al. 2016).
Gall formation, when severe, can also lead to impaired water
and nutrient utilisation (Johnson and Cummings 2015).

In addition to its direct impact on the host crop, Sss is also
the vector of the potato mop-top furovirus (Arif et al. 1995).
Mop-top virus has been reported to cause yield losses of be-
tween 30 and 60% (Carnegie et al. 2010) and tubers express-
ing the characteristic ‘spraing” symptoms are unacceptable at
market. The virus has spread around the world in the last
40 years and it can remain infective in fields without cultiva-
tion of potatoes for many years (Kirk 2008; Kalischuk et al.
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2016) . It is speculated that alternative hosts may prolong
survival of the infectious virus although the host range of the
virus is more restricted than that of its vector (Kirk 2008).
The pathogen Sss has proved challenging to control, with no
single method reliably giving full control. Rather, management
relies on the integrated application of a range of tools (Falloon
2008). In this paper we will briefly review the biology of the
pathogen and current control methods as a basis for exploring
the potential to develop effective biological control options.

Occurrence

Powdery scab was first reported as a disease in Germany in 1841
(Harrison et al. 1997). Subsequently there were reports on occur-
rences of the disease from many locations between 1846 and
1992 (Harrison et al. 1997). In recent years there has been a
resurgence in reports of the disease, many from new areas such
as Australia, New Zealand, Columbia, Pakistan, Korea and
others (Balendres et al. 2016; Harrison et al. 1997; Merz 2008).
The resurgence in the disease has been attributed to increased
cultivation of potato cultivars with long growing seasons, use of
susceptible cultivars, increased irrigation of crops, inadequate
crop rotation, and de-registration of mercury based fungicides
(Braithwaite et al. 1994; Harrison et al. 1997; Merz 2008). As
the disease is transmitted through infected tubers, the increased
transport of seed tubers around the world may have exacerbated
the spread of the disease (Gau et al. 2015). Increased awareness
and increased efficiency in detection of the disease may also have
contributed to the increase in reporting.

Taxonomy

Spongospora subterranea (Wallr.) Lagerh f. sp. subterranea
Tomlinson, the causal agent of potato powdery scab, is a soil-
borne obligate pathogen and a plasmodiophorid characterized
as having cruciform nuclear division, multinucleate
plasmodia, biflagellate zoospores and resting spores
(Hutchison and Kawchuk 1998). The taxonomic position of
the plasmodiophorids has been uncertain for some time.
Traditionally they were placed in the fungi although other
researchers have argued for a protozoal origin (reviewed in
(Qu and Christ 2004)). Analysis of SSU-rDNA sequences in
five independent studies led to the conflicting views that they
are unrelated to any other eukaryotes (three studies) or are
related to the rhizopoda (two studies). The results of more
recent analyses now robustly place them within the eukaryote
supergroup Rhizaria, as a sister group to the omnivorous
vampyrellid amoebae (Neuhauser et al. 2014).
Plasmodiophorids are the better known members of the group
because they include a number of plant parasites causing eco-
nomically significant diseases of crops including brassicas,
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potatoes, and grain crops (e.g. maize, rice, wheat, sorghum).
The most studied species is the clubroot-causing
Plasmodiophora brassicae, a parasite of crucifers which ac-
counts for up to 10% loss of the worldwide production of
Brassica crops. Other well-studied species include
Spongospora subterranea, which causes powdery scab of po-
tato and can serve as a vector for Potato Mop Top Virus. Non-
pathogenic species such as Polymyxa graminis transmits eco-
nomically important viruses to a number of grain plants while
Polymyxa betae is the vector for beet necrotic yellow vein
virus, the cause of sugar beet “rhizomania”.

Life cycle

The life cycle (Fig 1) has been described in the excellent reviews
of Harrison et al. (1997), (Merz 2008), and Balendres et al.
(2016). In the asexual or zoosporangial phase (Fig 1 inner
circle) the host plant is infected by haploid biflagellate zoospores
that encyst on the root or tuber surfaces and penetrate the plant
tissue. Within the plant the zoospores develop into multicellular
plasmodia. After repeated cell divisions the plasmodia differen-
tiate into zoosporangia from which haploid biflagellate second-
ary zoospores are released. These exit the sporangia through
pores that extends through the sporangium walls and the root
surfaces resulting in release directly into the soil. The secondary
zoospores can initiate infections on other parts of the same plant
such as tubers, or on adjacent plants. This provides the basis for
multiple re-infection in a single growing season and thus the
potential for very rapid inoculum build-up.

In the sexual phase (Fig 1 outer circle) thick walled resting
spores each germinate to release a primary biflagellate haploid
zoospore. Two haploid zoospores may undergo cell fusion
(plasmogamy) to form a binucleate zoospore that infects the plant
(although this last step is still debated). This develops into a
multinucleate plasmodium with binucleate cells. Eventually the
nuclei fuse (karyogamy) and undergo meiosis to differentiate into
thick walled spores within a structure known as a sporosorus.
The resting spores are very resistant structures and can persist in
soil for 4-5 years. The sexual stage has not been detected in Sss
but has been described in the closely related species
Plasmodiophora brassica (Tommerup and Ingram 1971).

The potential for rapid increases in inoculum level and the
persistence of resistant spores in the soil are key consider-
ations in the development of management strategies for Sss.

Pathogen diversity

In considering the development of control strategies for Sss it
is essential to understand the degree of genetic diversity in,
and the genetic structure of the pathogen population. Various
studies have shown the existence of genotypic variation,
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Fig. 1 Tentative life cycle of
Spongospora subterranea f.sp.
subterranea. The outer path
represents sexual reproduction
and the inner path represents
asexual reproduction.
(Reproduced from Merz (2008)
with permission of Springer)
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including between geographic locations. Analysis of ITS se-
quences showed that North American isolates, together with
Australasian and some European collections formed a clonal
population (group II) whilst South American and some
European collections formed a separate group (group I)
(Bulman et al. 2001; Gau et al. 2015; Qu and Christ 2004).
The South American collections showed greater genetic diver-
sity compared to collections from the rest of the world, sug-
gesting that this is the centre of origin of the species (Gau et al.
2013; Gau et al. 2015).

Qu and Christ (2004) found that their European (from
Ireland and Scotland) collections were associated with particu-
lar potato cultivars. The European group I collections were all
from cv. Saturna from different locations in Ireland and
Scotland over several years whilst the European group II col-
lections were from cv Kerrs Pink from locations in Ireland over
several years. In some instances collections were obtained from
both cultivars from the same area by the same growers. Similar
observations were reported by Gau et al. (2013). In some
Andean regions of South America short day relatives of the
widely grown long day potato species Solanum tuberosum
ssp. tuberosum are cultivated. These are S. tuberosum ssp.
andigena, and S. tuberosum phureja. South American samples
of Sss from S.t. phureja root galls formed one group, whilst
samples from tuber lesions on S.7. tuberosum and S.t. andigena
formed another group. Samples from the rest of the world
formed a third group with a highly clonal structure.

Analysis of North American isolates with a suite of RFLP
markers showed that they clustered into two groups, one in-
cluded isolates originating from western North America., , and
the second included isolates originating from eastern North
America (Qu and Christ 2006b).
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The results of the different studies show that there is geno-
typic variation across geographical regions. They also high-
light the need for a large scale study on a world wide popula-
tion using multiple genetic loci such as microsatellite markers
(Dobrowolski et al. 2003) or RFLP markers (Qu and Christ
2006b). The greater genetic diversity found in the South
American population (Gau et al. 2015) suggests that this
may be the centre of origin of the pathogen. Movement of
potato propagules from South America needs to be appropri-
ately regulated to minimize the risk of introducing new path-
ogen diversity into the world’s production regions.

Current control of powdery scab
Host resistance

Although a number of potato cultivars with different levels of
resistance to Sss have been identified (Falloon et al. 2003), no
cultivar is known to be completely resistant to powdery scab
(Falloon 2008; Hernandez Maldonado et al. 2013). Resistance
varies from very resistant to very susceptible (quantitative)
suggesting a polygenic basis (Falloon 2008). In general, more
resistant cultivars have fewer galls and fewer zoospores in
their roots although the correlation is not tight and exceptions
exist (Falloon et al. 2003). Hernandez Maldonado et al. (2013)
compared Sss accumulation in roots and the numbers of galls
that developed on a resistant and a susceptible potato cultivar
and found that although there was little difference between the
cultivars at early stages of infection there was increasing di-
vergence as the disease progressed. This suggests that
although the primary infection may be the same in both
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cultivars, secondary infection may be restricted in the
resistant cultivar.

Chemical control

There are a number of agro-chemicals that can be applied to
seed tubers or to the soil, at or before planting, that have been
shown to reduce powdery scab levels (reviewed in Falloon
(2008)). Braithwaite et al. (1994) evaluated 25 fungicide treat-
ments applied to severely infected tubers just before planting.
Plant emergence was assessed, and at maturity tubers were
harvested and scored for powdery scab infection. A number
of the treatments reduced the proportion of diseased tubers
from 95% at planting to an average of 29% in the subsequent
crop compared with the untreated controls which declined to
70%. Some of the other treatments resulted in phytotoxic ef-
fects. Treatment of tubers with zinc sulfate and zinc oxide six
weeks before planting also reduced infection in the subse-
quent crop compared with untreated controls.

A subsequent study evaluated chemicals applied either as
tuber dressings or as in-furrow applications. The fungicides
fluazinam, mancozeb, dichlorophen-Na, were effective as tu-
ber dressings of infected tubers, reducing the incidence of
powdery scab and increasing the yield of tubers (kg/plot) by
up to 36% (Falloon et al. 1996). The same study evaluated in-
furrow treatments by planting uninfected tubers of cvs Rua
and Agria into heavily infested soil. Treatments with
fluazinam reduced powdery scab incidence, and increased
yield of marketable “Rua” tubers by up to 55%, and “Agria”
tubers by 140%. High rates of mancozeb also reduced inci-
dence of the disease and increased marketable yield of “Rua”
by 34%, and of “Agria” by 68%. In-furrow treatment with
zinc oxide and foliar treatments with phosphorous acid did
not control the disease.

Crop rotation

Long rotations with non-host species are recommended
as the resting spores of Sss can persist for many years
in the soil (Falloon 2008). However, the host range of
Sss is much wider than was previously thought and
includes many non-solanaceous species (Qu and Christ
2006a). Of 26 species within 10 families from
monocotyledons and dicotyledons tested, 16 species
were found to be susceptible to Sss. Twelve species
were newly recorded hosts for Sss. However Qu and
Christ (2006a) also observed that although some species
were infected, they did not produce sporosori. It was
suggested that these could possibly be used to reduce
the inoculum levels in soil. Sparrow et al. (2015) mon-
itored pathogen DNA levels in soils of South Eastern
Australia over an eight years period and suggested a
minimum of five years between potato crops.
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Larkin and Griffin (2007) evaluated the potential of rota-
tion with brassica crops to decrease the level of pathogen
inoculum in soil and so reduce disease severity in subsequent
potato crops. Brassicas produce sulphur compounds, gluco-
sinolates, which break down to isothiocyanates that are toxic
to a wide range of phytopathogens. In a field trial, Indian
mustard significantly reduced Sss inoculum levels in the soil
as measured by a bioassay. Crops of rapeseed or yellow mus-
tard were less effective. All three brassica species decreased
the severity of powdery scab by 25-39% relative to a standard
oats rotation. The brassicas also reduced the incidence of tu-
bers with scabs by 19-40% with Indian mustard again being
the most effective. Indian mustard produces high levels of
glucosinolates, some of which convert to the most biologically
active forms of isothiocyanates produced by brassicas
(Charron and Sams 1999). In the same study, rotation with
‘Lemtal’ ryegrass led to similar reductions in disease
severity and incidence of tubers with lesions as were
observed after rotation with the brassicas. This suggests that
factors other than the production of isothiocyanates may have
been responsible for the reduction in incidence and severity.

As an alternative to direct pathogen inhibition, rotation
crops may also affect pathogens indirectly by influencing
changes in the soil microbial community. This may increase
disease suppression by the soil. In a study to examine the
effects of rotation systems on soil microbial communities,
Larkin and Honeycutt (2006) demonstrated distinctive effects
of specific rotation crops and cropping sequences on these
communities. They also found higher populations of microor-
ganisms that are generally beneficial to plants, such as
Pseudomonas spp. and Trichoderma spp., after planting bar-
ley, canola, and sweet corn crops.

Agronomic factors

Agronomic factors, particularly soil nitrogen status and soil
water content were found to affect the severity of disease
(Shah et al. 2014). The incidence and/or severity of powdery
scab were increased by nitrogen (nitrate and ammonium) ap-
plications. Nitrogen application resulted in a greater amount of
Sss DNA in the soil and this effect was observed for two years
after the trial. A positive correlation between soil Sss DNA
and disease severity was observed by Brierley et al. (2013)
and by Nakayama and Sayama (2013). However, Shah et al.
(2012) reported that in their study there was no consistently
strong relationship between the amount of inoculum at time of
planting as measured by the number of sporosori per g soil and
disease incidence or severity at harvest. Irrigation treatment
also affected disease severity. An irrigation regime optimal for
potato growth resulted in greater severity, but not greater in-
cidence, of powdery scab than a constrained irrigation input
(Shah et al. 2014). This is consistent with higher soil moisture
content facilitating the movement of zoospores through the
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soil and increasing the chances of plant infection (Merz 2008;
Balendres et al. 2016).

Potential for biocontrol

Biocontrol, based on the use of an organism to restrict the
ability of a pathogen to cause disease is an aspect of plant
disease control that has received much attention in recent
years. This is fuelled by the emergence of fungicide resistance
in pathogen populations, deregistration of fungicides, and
growing concerns about the use of chemicals in food produc-
tion. In contrast biocontrol is seen as a safe, non-toxic, renew-
able alternative. In some cases of biocontrol the level of con-
trol rivals that achieved with chemicals although a lack of
consistency of control is often a concern.

Identifying biocontrol agents

There are few reports of studies aimed to identify potential
biological control agents (BCAs) for Sss in potato. The most
extensive study is that of Nakayama and Sayama (2013). They
reported 54-70% suppression of disease development over
three years by application of an isolate of Aspergillus
versicolour to tubers. These values compared to 77 to 93%
suppression by the synthetic fungicide fluazinam applied in
furrow. While the BCA was less effective than the synthetic
fungicide, the suppression was statistically significant.

Another approach was taken by Nielsen and Larsen (2004)
who used tomato as a model to examine the efficacy of com-
mercially available biocontrol products to reduce the infection
of root hairs by primary zoospores of Sss. Each agent was
assessed in two experiments. The commercially produced bio-
control products TRI 002 and Binab TF (both containing
Trichoderma harzianum) gave a statistically significant reduc-
tion in root colonization in both experiments. By contrast the
biocontrol product TRI 003 (also containing 7richoderma
harzianum) gave no significant reduction in either experiment.
The product FZB24, containing Bacillus subtilis, gave a re-
duced infection in only one of the two experiments. In each
experiment, all plant growth parameters examined were mark-
edly lower in the infected controls than the uninfected con-
trols. While some of the control agents increased the plant
growth parameters above that in the infected control, these
increases were not consistent.

In the experiments of Nielsen and Larsen (2004) a very
high inoculum concentration of the pathogen was used; much
greater than could be expected in field soil or in soil adhering
to the surface of seed tubers (e.g. 0—148 sporosori/g of soil;
(Brierley et al. 2013)). It is possible that more effective and
more consistent control could be obtained with more typical
disease pressures; biological control of Plasmodiophora
brassicae has been found to be more effective at lower

pathogen pressure (Narisawa et al. 2005; Peng et al. 2011).
It was not known whether the BCAs tested by Nielsen and
Larsen (2004) were inhibitory to Sss. In contrast, in the study
by Nakayama and Sayama (2013) soil fungi were initially
screened for inhibition of Sss infectivity using a bioassay.

Although research on biocontrol of Sss is limited, biocon-
trol of Plasmodiophora brassicae, has been studied more ex-
tensively. A number of studies have identified endophytes
with the ability to suppress this pathogen. These include
Bacillus subtilis, Gliocladium catenulatum, Heteroconium
chaetospira, Microbispora rosea ssp. rosea, Streptomyces
griseoruber, S. griseoviridis, S. lydicus, S. olivochromogenes
and Trichoderma atroviride, T. harzianum and T. viride.
(Lahlali et al. 2014; Lee et al. 2008; Narisawa et al. 1998;
Peng et al. 2014; Peng et al. 2011; Wang et al. 2012; Wang
et al. 2011). In some studies a number of these potential bio-
control agents have shown levels of suppression of clubroot
greater than 85% and approaching the level of effectiveness
observed from synthetic fungicides.

The evidence from the limited studies that have been car-
ried out suggests that developing biocontrol strategies for
plasmodiophorid diseases is possible. However a problem
common to all biocontrol strategies is the lack of consistency
of disease reduction. Several researchers have reported that
using mixtures of BCAs has increased the consistency of bio-
control across sites with different conditions. Slininger et al.
(2001) in their investigation into postharvest dry rot of potato
found that formulations of mixed BCAs performed more con-
sistently across 32 storage environments varying in cultivar,
washing procedure, temperature, harvest year, and storage
time. Enhanced biocontrol using mixtures of BCAs has been
reported for control of late blight in potato (Slininger et al.
2007), diseases of poplar (Gyenis et al. 2003), chilli
(Muthukumar et al. 2011), and cucumber (Raupach and
Kloepper 1998; Roberts et al. 2005). It is also possible that
different mixtures may need to be used in different climatic
areas. Thus there is a need to identify a number of potential
biocontrol agents. Mixtures do not always give increased con-
trol. In some cases there may be antagonism between the
BCAs that results in reduced control compared to single
strains. In evaluating agents for control of fire blight in pear,
Stockwell et al. (2011) found that mixtures of Pseudomonas
fluorescens A506, Pantoea vagus C9—1 and Pantoea
agglomerans Eh252 were less effective than the individual
strains. The Pantoea strains exert their effects through the
production of peptide antibiotics. In the mixture these were
degraded by an extracellular protease produced by
P, fluorescens A506. Roberts et al. (2005) also reported antag-
onism between BCA strains. They observed that populations
of Trichoderma virens GL3 or GL321 were both substantially
reduced after co-incubation with Bacillus cepacia BC-1 or
Serratia marcescens isolates N1-14 or N2—4 in cucumber
rhizospheres. These reports highlight the importance of
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considering possible antagonism between strains when devel-
oping biocontrol formulations. Co-cultivation in vitro can
sometimes reveal inhibitory effects (Roberts et al. 2005) but
not always. In the study by Stockwell et al. (2011) the antag-
onistic effects would not have been detected by co-cultivation
as the BCAs themselves were not affected, only their potential
action on the pathogen was disrupted.

BCAs are typically identified by screening rhizospheric or
endophytic bacteria and fungi for inhibition of pathogen
growth in vitro, followed by greenhouse trials of growth
inhibiting isolates and finally field trials. The use of in vitro
screening as an initial step has a number of significant limita-
tions; most notably, it only identifies organism which act on
the pathogen through a specific subset of mechanisms.
Control of disease by a BCA occurs through a variety of
mechanisms and in many cases direct contact with the patho-
gen is not necessary. Mechanisms of control include: detoxi-
fication of toxins produced by the pathogen (Newman et al.
2008), degradation of the pathogen cell wall leading to lysis
(mycoparasitism) (Jan et al. 2011), production of antibiotics
(Raaijmakers et al. 2002), antimicrobial surfactants
(Raaijmakers et al. 2010), siderophores and volatiles
(Santoyo et al. 2012) by the BCA, induction of plant defenses
(Ting et al. 2012), stimulation of plant growth (van der Lelie
et al. 2009), physical occlusion of the pathogen by occupying
sites on root surfaces that the pathogen would use for entry
(Blumenstein et al. 2015), and biofilm formation (Newman
etal. 2008). A given BCA may use more than one mechanism
of inhibition, and different BCAs may exert their effects at
different times during the crop growing season. In vitro
screening only identifies those BCAs acting through the pro-
duction of antibiotics or cell lysis. Further, in the specific case
of Sss, in vitro screening is not possible as the species is an
obligate biotroph. Thus initial screening would need to em-
ploy in planta methods similar to those used by Nakayama
and Sayama (2013).

In vitro inhibition or inhibition of disease development in
greenhouse trials does not always translate to effective disease
management in the field where weather, soil and biological
variability are likely to be much greater. Ultimately, the only
realistic evaluation is by field trials. Given the range of edaphic
and environmental factors that can influence the effectiveness
of BCAs (as noted in the following section), the number and
location of evaluation sites needs to be selected to appropriately
reflect the anticipated range of usage. As the production of
potato expands geographically into Mediterranean, sub-
tropical and even high altitude tropical areas, this aspect be-
comes more significant. Further, given that soil microbial com-
munities can vary dramatically with soil type and land manage-
ment, variation in these factors needs to be captured also.

Sss, impacts potato very early in crop development
(Hughes 1980; Taylor et al. 1986). Screening methodology
must reflect the need for protection to be established by the
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time of plant emergence. With a focus solely on reducing tuber
symptoms, protection would need to persist to beyond tuber
initiation; although longer protection would be preferable as
root damage continues to occur beyond that stage (Hughes
1980), impacting host nutrient and water uptake.

Stability across production environments

Studies on the influence of environment on the efficacy of
biological control of soil-borne diseases demonstrate the influ-
ence of temperature (Jang et al. 2011; Landa et al. 2001; Landa
et al. 2004; Schmidt et al. 2004), soil water status (Schmidt et al.
2004) and soil physical and chemical characteristics (Ownley
et al. 2003) on the levels of control achieved. Given the increas-
ingly diverse conditions and geographic locations under which
potato is now produced (Birch et al. 2012; Devaux et al. 2014),
this will be an important consideration.

No research has been reported that evaluates the influence
of environmental variables (either soil or weather) on the ef-
fectiveness of BCAs in supressing Sss and little has been
reported in relation to P. brassicae. Studying the control of
P brassicae by Heterconium chaetospira, Narisawa et al.
(2005) found effective suppression under low to moderate
moisture conditions but not at high water status. On the other
hand, Peng et al. (2011) found that periods of dry soil impeded
the effectiveness of a range of BCAs to varying degrees.
Bacillus subtilis and the synthetic fungicide, fluazinam were
particularly sensitive. Significantly, while the results of Zhou
et al. (2014) showed variation in the effectiveness of bacterial
isolates in suppressing P. brassicae in Chinese cabbage, the
effectiveness of the synthetic fungicide also varied.

Effective formulation of BCA

The form in which a BCA is applied to a crop may affect its
persistence and thus its effectiveness. Resistant propagules such
as bacterial endospores, fungal conidia, chlamydospores or oo-
spores are more persistent than vegetative bacterial cells or fun-
gal hyphal fragments (Schisler et al. 2004). For spore-forming
bacteria, yeasts, and fungi, the production system can be
optimised for the production of spores. Fermentation environ-
ments and culture age influence the efficacy, stability and desic-
cation tolerance of many BCAs including fungi, yeasts, and
bacteria (Schisler et al. 2004). The fungal biocontrol agent
Trichoderma harzianum developed mycelium after four days
at 28 °C and chlamydospores after 10 days in liquid medium
(potato dextrose broth) at 28 °C while on solid media (e.g., PDA,
grains, wheat bran, ) it produced conidia (Mishra et al. 2012).
Persistence can be enhanced by mixing the BCA with ad-
ditives that supply nutrients, protect it from desiccation, from
UV, and antagonistic organisms, and increase its ability to
stick to the surface of plants. The different types of additives
were reviewed by Schisler et al. (2004). The addition of
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calcium carbonate to rice grain cultures of 7richoderma
martiale stimulated conidia production and enhanced the per-
sistence of the BCA in the field and during storage (Hanada
et al. 2009). Formulation of strains of fluorescent
Pseudomonas with talc has been reported to enhance efficacy
in control of Fusarium wilt in banana (Saravanan et al. 2004)
and tomato (Sarma et al. 2011). Inclusion of chitin in the
growth medium for the production of chitinolytic strains of
Serratia has been found to be effective and it is postulated that
the chitin may also stimulate the growth of other chitinolytic
species in rhizospheres which would help to prevent fungal
infection (Kim et al. 2008).

Encapsulation of the BCA within a biodegradable matrix of
protein (whey, poly-Lysine) polysaccharide (e.g., cellulose, algi-
nates, chitosan, pectin), or other polymers such as lignin, protects
the BCA from biotic and abiotic stress factors and promotes shelf
life and persistence in the environment. Overall encapsulation
results in greater disease control. The topic of encapsulation,
including the types of materials and how to make capsules, is
reviewed by Vemmer and Patel (2013).

Methods of application of BCA

A major factor in the efficacy of biocontrol agents is the meth-
od of application. BCAs can be applied as seed (tuber) dress-
ings, as soil-drenches or as a foliar spray. For rhizospheric
organisms that will encounter the pathogen before it enters
the host plant, and prevents entry either by occlusion or killing
the pathogen it is essential that the BCA is able to colonize
root s as they develop.

For soil-borne diseases, soil drenches are most effective as
they allow extensive colonization of roots (Gossen et al.
2013). In-furrow applications or seed dressings are alterna-
tives although they may not be as effective in providing high
levels of inoculation. McLean et al. (2005) compared methods
of introducing Trichoderma atroviridae as a BCA for
Sclerotium cepivorum (white rot) in onions. In a glasshouse
trial, they found that a pellet formulation maintained greater
levels of the BCA in the soil compared to solid-substrate or
seed-coating formulations. Pellets also gave more extensive
colonization of root systems of the onion seedlings. In a sub-
sequent field trial a pellet formulation resulted in a greater
number of CFU/g of soil than a solid substrate form. The
pellet formulation also gave a more persistent inoculum.

Timing of the application may also have an important im-
pact. In a trial of suppression of the related clubroot pathogen
P, brassica by the fungal BCA H. chaetospira, it was found
that soil application of a granular formulation of the fungus
reduced clubroot severity by >80% relative to the control.
However, applying H. chaetospira at seeding was much less
effective than earlier soil application. More extensive root
colonization by H. chaetospira resulted in greater suppression
of P. brassicae infection and subsequent clubroot

development (Lahlali et al. 2014) Thus, the greater suppres-
sion by the earlier application may have resulted from more
extensive root colonization.

In the case of Sss, protection is required from about the time
of plant emergence (Hughes 1980; Taylor et al. 1986). Thus,
for any BCA to be effective, early colonization of the below
ground plant parts will be critical.

Incorporation into disease management systems

Falloon (2008) reviewed the development of integrated man-
agement systems for Sss. There is currently no single manage-
ment practice available that provides full and reliable control
of'the disease. Effective management relies on the coordinated
use of a number of approaches. The main components listed
by Falloon (2008) were crop rotation, field selection, resistant
cultivars, pathogen-free planting material, appropriate pesti-
cide use and sound crop management. The use of biological
control is compatible with the majority of these components;
however compatibility with agro-chemicals (fungicides and or
pesticides) is an obvious challenge.

Potato producers use a wide range of agro-chemicals as
dressings for seed tubers, applied either before or after storage,
or as in-furrow applications at plantings in bands up to 20 cm
wide. Fungicides which are used against a range of possible
pathogens, are a particular issue. These vary from broad spec-
trum treatments to products targeting specific disease organ-
isms. Their mobility within potato plants also ranges from con-
tact to fully systemic. This will be a major consideration for the
incorporation of BCAs into the production system. Clearly, the
significance will depend on the particular chemical in use and
its mode of application on the one hand and the identity of the
BCA and the mode of inoculation on the other. For example, in-
furrow application of fungicides may interfere with the success-
ful establishment of BCAs applied in-furrow or to the seed
piece depending on the identity of the BCA and the fungicide
applied. On the other hand broad-spectrum soil fumigants such
as metam-sodium (sodium salt of methyl dithiocarbamate) are
still in use in some regions as a means of reducing soil-borne
diseases prior to planting potatoes. Although these treatments
are broad spectrum (Xie et al. 2015), there is likely to be limited
interference with BCAs applied to the seed potato or at planting
as the fumigants are released from the soil some weeks prior to
planting. However, questions have been raised regarding the
impact of such fumigants on the size and structure of soil mi-
crobial communities (De Cal et al. 2005; Macalady et al. 1998).
Significant alterations in community structure may have un-
foreseen consequences for the success of the BCA, the patho-
gen, or soil functions.

Approaches to combining biocontrol agents and agrochem-
icals for use against the target pathogen are important for [PM.
Levels of disease suppression achieved by combining the con-
trol methods are typically equal or superior to the use of BCA
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alone (Deberdt et al. 2008; Hidalgo et al. 2003) (see discus-
sion in Hanada et al. (2009)).

Given that potato is vegetatively propagated, introducing
an endophyte into potato tubers via the parent seed crop may
provide a level of protection from non-systemic agrochemi-
cals. This may provide a novel method of combining biocon-
trol with seed-tuber dressings or in-furrow pesticide applica-
tions in an integrated system. If feasible, this approach would
also provide a degree of protection for the BCA from environ-
mental and soil variability, as well as providing the earliest
possible introduction of the BCA which is important given
the early impact of Sss on potato plants and tuber quality. A
structured experimental investigation is required.

Is successful biological control of Sss possible?

The limited work available suggests that efforts to identify
organisms capable of successfully suppressing disease devel-
opment by Sss are likely to be successful. To achieve this, a
high throughput in planta assay will be required for screening
endophytic and rhizospheric organisms. The method
described by Nakayama and Sayama (2013) could be used
for this purpose as could the procedure of Nielsen and
Larsen (2004). In this regard Andrea Ramirez et al. (2013)
have described a stem cutting assay to screen cultivars for
resistance to Sss that could be adapted to screen for disease
control by microbial isolates. Another possibility described by
Merz et al. (2004) is a procedure to screen potato cultivars for
resistance using tissue culture plantlets.

However, identifying biological antagonists would appear
to be the more straightforward aspect of the research. The
greater challenge lies in developing a formulation and method
of application that will provide adequate protection consistent-
ly across production systems and geographic locations within
the intended range of use. Mixtures of BCAs may prove valu-
able in this respect. Importantly, the formulation and mode of
use will need to allow integration with other disease control
methods, especially the use of fungicides and pesticides.

Given the commercial significance of the disease processes
caused by Sss and the persistent challenge of effective control, a
focused effort to explore the potential to develop practical biolog-
ical control systems for this pathogen would appear warranted.
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