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Abstract
Alzheimer’s disease (AD) is a neurodegenerative disease characterized by β-amyloid (Aβ) protein deposition, neurofibrillary tangle
(NFT) formation, and neuronal loss in the brain. The current study was designed to investigate the potential mechanisms by which
levistolide A affects the pathogenesis of AD in an amyloid precursor protein/presenilin 1 (APP/PS1) transgenic (Tg) mouse model of
AD and N2a/APP695swe cells. Specifically, behavioral changes in levistolide A–treated APP/PS1 Tg mice were assessed by the
nest-building and Morris water maze (MWM) tests. Levistolide A treatment clearly ameliorated memory deficits and cognitive
decline in APP/PS1 Tg mice. Aβ generation and the inflammatory response in APP/PS1 Tg mouse brains were clearly reduced after
long-term levistolide A application. Mechanistically, levistolide A concurrently stimulated the expression of α-secretase and de-
creased the generation of β- and γ-secretases. In addition, levistolide A inhibited the phosphorylation of tau in the brains of the Tg
mice. Furthermore, in vitro and in vivo experiments suggested that peroxisome proliferator–activated receptor γ (PPARγ) is the key
transcription factor that mediates the regulatory effects of levistolide A on the expression of α-, β-, and γ-secretases and phosphor-
ylation of tau. Collectively, these findings show that levistolide A may be a candidate for the treatment of AD.
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Introduction

Alzheimer’s disease (AD) is becoming a severe financial, so-
cial, and healthcare burden throughout the world. A progres-
sive neurodegenerative disease, AD is characterized by the ab-
normal production and deposition of the peptide β-amyloid
(Aβ) and the hyperphosphorylation of tau [1–3]. Consequent
Aβ accumulation can cause multiple types of neuronal injury
by initiating oxidative stress and inflammation, resulting in the
cognitive decline observed in AD [4, 5]. Similarly, the tau
protein is another key regulator of AD whose phosphorylation

and proteolysis are closely associated with the disease [6]. In
addition, hyperphosphorylated tau can assemble to form paired
helical filaments, which are deposited in the form of neurofi-
brillary tangles (NFTs). The formation of NFTs can induce
neuronal apoptosis or death. Therefore, reducing the formation
and aggregation of Aβ and phosphorylated tau may be benefi-
cial for improving the symptoms of AD.

Peroxisome proliferator–activated receptor γ (PPARγ)
plays a protective role in the central nervous system (CNS)
[7]. For example, PPARγ agonists have been observed to
reduce the level of Aβ, by either reducing the production of
Aβ or enhancing Aβ clearance [8]. Aβ is derived from the
amyloidogenic pathway by the sequential cleavage of amyloid
precursor protein (APP) with β-secretase (BACE-1) and γ-
secretase [9–11]. In contrast, in the nonamyloidogenic path-
way, the production of Aβ is inhibited due to the cleavage of
APP with α-secretase, producing soluble amyloid precursor
protein α (sAPPα) [12]. Regarding the regulation of these
pathways, evidence shows that PPARγ can suppress the ex-
pression ofβ-site APP cleaving enzyme 1 (BACE1), resulting
in the production of Aβ [13]. In addition, thiazolidinedione, a
PPARγ agonist, has been shown to inhibit the production of
Aβ by reducing the release of γ-secretase [14], although the
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mechanism by which PPARγ downregulates the expression
of γ-secretase has not been clearly revealed.

Involved in the phosphorylation of tau, glycogen synthase
kinase-3β (GSK-3β) is one of the main tau kinases during the
course of AD development and progression [12]. GSK-3β can
phosphorylate tau at the sites Thr181 and Ser396 [15, 16].
Moreover, PPARγ has been proven to mitigate the activity
of GSK-3β in stimulating the hyperphosphorylation of tau,
consequently improving the progression of AD [17–19].

In addition to Aβ and tau, neuroinflammation plays a sig-
nificant role in the pathogenesis of dementia [20]. By activat-
ing astrocytes and microglia, aggregated forms of Aβ and tau
can increase the expression of inflammatory cytokines, such
as interleukin-6 (IL-6), interleukin-1β (IL-1β), and tumor ne-
crosis factor alpha (TNF-α) [21–24], which slows the progres-
sion of AD. During the course of this process, PPARγ
downregulates the synthesis of cyclooxygenase-2 (COX-2),
inducible nitric oxide synthase (iNOS), and proinflammatory
cytokines through nuclear factor (NF)-κB. Treatment with
PPARγ agonists has been proven to deactivate glial cells by
decreasing the production of inflammatory cytokines [25].

Levistolide A is a characteristic phthalide constituent of the
Umbelliferae family of medicinal plants, including Angelicae
sinensis and Ligusticum chuanxiong [26, 27]. Previous studies
have shown that levistolide A has multiple biological activi-
ties, such as its induction of olfactory neuron regeneration and
anti-inflammatory effects [28–31]. When screening bioactive
compounds from a traditional Chinese medicine for the treat-
ment of AD, we found that levistolide A improved the learn-
ing ability of APP/PS1 transgenic (Tg) mice. Based on these
observations, the effect of levistolide A on the production and
deposition of Aβ and the hyperphosphorylation of tau and the
underlying mechanisms of levistolide A were investigated
in vitro and in vivo.

Materials and Methods

Animals and Treatments

APP/PS1 Tgmice were obtained from the Jackson Laboratory
(Bar Harbor, ME, USA). Twelve 6-month-old female mice
were randomly divided into two groups (6 in the vehicle-
treated group, and 6 in the levistolide A-treated group). The
levistolide A used in this study was isolated from Ligusticum
chuanxiong in our laboratory. The purity of the isolated
levistolide A was greater than 98.0%, as determined by
high-pressure liquid chromatography (HPLC). Mice from
the levistolide A–treated group received an intraperitoneal in-
jection of levistolide A (2 mg kg−1) every other day, and those
from the control group were treated with vehicle (sterile water
with 60% v/v 1,2-propanediol). After 4 months, the mice were
subjected to behavioral experiments. Then, the brains of the

mice in different groups were collected after anesthetization
and perfusion. Just before sacrifice, sera were collected from
the retrobulbar venous plexus for subsequent assessment.

Morris Water Maze Test

The effect of levistolide A on the spatial learning and memory
abilities of the mice was assessed using the Morris water maze
(MWM) test. First, the mice underwent visible platform train-
ing for 2 consecutive days (four trials per day). Then, the
platform was submerged 1 cm below the surface of the water,
and milk was added to the water to hide the platform. The
mice were permitted a maximum time of 60 s to find and
15 s to stay on the hidden platform, starting from their release
in a randomly chosen quadrant. If the mouse failed to locate
the platform within 60 s, it was guided to the platform and
allowed to stay on the platform for 15 s. This navigation test
was carried out over 5 days. On each testing day, the animals
performed 4 trials separated by 30-min intervals. The latency
time and path length to find the hidden platformwere recorded
to calculate their spatial learning scores. After the navigation
test, the platform was removed, and a probe trial was per-
formed to assess the memory abilities of the mice. The mice
were permitted to swim freely for 60 s, and the number of
times that the mice crossed the location of the platform was
recorded. All of the data were analyzed with a computer pro-
gram (SMART 3.0, Panlab, Barcelona, Spain).

Nest-Building Test

To assess the social behavior of the animals, the nest-building
test was carried out. Briefly, the mice were individually fed in
each cage. Eight square pieces of A4 paper (5 × 5 cm2) were
placed in each cage. Changes in the pieces of paper were
simultaneously observed for 6 days through photographic re-
cording. Nest-building ability was assessed based on the fol-
lowing 4-point system: (1) no biting/tearing of the paper with
random dispersion of the paper; (2) no biting/tearing of the
paper with gathering of the paper in a corner/side of the cage;
(3) moderate biting/tearing of the paper with gathering of the
paper in a corner/side of the cage; and (4) extensive biting/
tearing of the paper with gathering of the paper in a corner/side
of the cage.

Immunofluorescence Staining

Double immunofluorescence staining was carried out to ob-
serve the colocalization of Aβ, glial fibrillary acidic protein
(GFAP), and ionized calcium-binding adaptor molecule 1
(Iba-1) in brain tissue. Frozen brain sections (10 μm) were
incubated with mouse anti-Aβ (1:200, Santa Cruz
Biotechnology, sc-28365) and rabbit anti-GFAP (1:100,
Abcam, ab7260) primary antibodies or mouse anti-Aβ (1:
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200, Santa Cruz Biotechnology, sc-28365) and rabbit anti-
Iba-1 (1:100, Abcam, 153696) primary antibodies overnight
at 4 °C. Fluorescein isothiocyanate-conjugated goat anti-
mouse IgG (1:200, Thermo Fisher Scientific, A32723) and
goat anti-rabbit IgG (1:200, Thermo Fisher Scientific,
A32732) secondary antibodies were used to incubate the sec-
tions for 2 h at room temperature. The nuclei were counter-
stained by incubation in 1 μg/mL 4′,6-diamidino-2-
phenylindole (DAPI) for 5 min, followed by extensive wash-
ing in distilled water. Images were acquired using a confocal
laser scanning microscope (SP8, Leica).

Immunofluorescence staining was used to analyze the nu-
clear translocation of PPARγ in cells. N2a/APP695swe cells
were plated on a coverslip at a density of 1 × 106 cells/mL.
After the indicated treatment, the cells were washed with
phosphate-buffered saline (PBS, 0.01 M, pH = 7.2–7.4), fixed
with 4% paraformaldehyde at 37 °C for 15 min and then pre-
incubated with 5% BSA in PBS with 0.3% v/v Tween-20
(PBST) at 37 °C for 60 min. After preincubation, the cells were
incubated with anti-PPARγ antibody (1:200 in Tris-buffered
saline (TBS, 1 ×, pH = 7.6)) at 4 °C overnight. They were then
further incubated with an Alexa Fluor 488–conjugated goat
anti-rabbit antibody (1:500, Beyotime Biotechnology,
Shanghai, China) for 1 h. The cell nuclei were counterstained
with Hoechst 33342 (Beyotime Biotechnology, Shanghai,
China) for 3 min in the dark. Images were captured using a
confocal laser scanning microscope (SP8, Leica); green fluo-
rescence indicates PPARγ, and blue fluorescence indicates nu-
clei. The fluorescence intensities were analyzed by using
ImageJ software.

Immunohistochemical Staining

Standard avidin-biotinylated complex immunohistochemical
(IHC) staining was performed to analyze the distribution of
Aβ plaques in the brains of APP/PS1 Tg mice. Briefly,
paraffin-embedded brain tissue samples were sectioned into
5-μm-thick slices that were then successively dewaxed,
rehydrated, and stained as previously described [32]. Mouse
anti-Aβ primary antibody (1:500; Sigma) and biotinylated goat
anti-mouse IgG (1:200) were used for staining. Quantitative
analysis of Aβ plaques was performed by using Image-Pro
Plus 6.0 software. The numbers and areas of Aβ-positive
plaques in the cortex and hippocampus were analyzed.

N2a/APP695swe Cell Culture and Treatment

N2a/APP695swe cells stably expressing the Swedish mutant
human APP695 gene were provided as a gift from the labora-
tory of Prof. Hua-Xi Xu (Xiamen University). Cells were
cultured in high-glucose Dulbecco’s modified Eagle’s medi-
um (DMEM, Gibco, Carlsbad, CA, USA) supplemented with
10% (v/v) fetal bovine serum (FBS, Gibco), 1% (v/v)

glutamine (Biological Industries), 1% (v/v) penicillin-
streptomycin (Biological Industries), and 2 mg/mL (m/v)
G418 (Sigma, St. Louis, MO, USA) at 37 °C under an atmo-
sphere of 5% CO2. To assess cell viability during prolonged
incubation with levistolide A, the 3-(4,5-dimethylthiazol-2-
yl)-2,5-diphenyltetrazolium bromide (MTT) assay was per-
formed. Cells were treated with serial dilutions of levistolide
A ranging in concentration from 0 to 10 μg/mL for 24 h prior
to lysis with ice-cold radioimmunoprecipitation assay (RIPA)
buffer (Beyotime Biotechnology, Shanghai, China) contain-
ing a protease inhibitor cocktail (Promega Corporation,
Madison, Wisconsin, USA) and phosphatase inhibitor cock-
tail (CWBIO, Beijing, China). In addition, the cells were ex-
posed to GW9662 (2-chloro-5-nitro-N-phenylbenzamide,
30 μM, GW, MedChem Express, Princeton, New Jersey,
USA) for 1 h prior to levistolide A treatment (0–10 μg/mL)
for 24 h to determine whether the PPARγ pathway is involved
in the effects of levistolide A on AD.

Sandwich Enzyme-Linked Immunosorbent Assay

To detect Aβ1–40 and Aβ1–42, homogenates of cerebral cortex
tissues and the sera of APP/PS1 Tg mice were prepared, and
the supernatants of N2a/APP695swe cells and lysed N2a/
APP695swe cells were collected. The samples were diluted
with dilution buffer at the appropriate ratio, immediately
added to 96-well plates, and analyzed using enzyme-linked
immunosorbent assay (ELISA) kits (MSKBIO, China; Aβ1–

40, kt99164; Aβ1–42, cx20056) according to the manufac-
turer’s instructions. The absorbance at a wavelength of
450 nm was recorded using a microplate reader.

Western Blot Analysis

Western blot analysis was used to evaluate protein expression
in protein extracts from the mouse brains and cultured cells.
The cerebral cortical tissues of the mice were immersed in ice-
cold RIPA lysis buffer containing protease and phosphatase
inhibitor cocktail. After homogenization by sonication, the
mixtures were centrifuged at 13000 rpm for 30 min at 4 °C,
and the supernatants were collected. Cells were washed twice
with ice-cold PBS and then lysed in 80 μL of RIPA buffer
containing protease and phosphatase inhibitors. Cells were
homogenized in RIPA buffer at 4 °C before centrifugation at
13000 rpm for 30 min to collect the supernatants. The super-
natants were used for western blotting. Equal amounts of pro-
tein were loaded in each well for sodium dodecyl sulfate-
polyacrylamide gel electrophoresis (SDS-PAGE), and the
separated proteins were then blotted onto polyvinylidene fluo-
ride (PVDF) membranes (Millipore, Temecula, CA, USA).
After blocking with 2.5% nonfat milk in TBS (1 ×) with
0.1% v/v Tween-20 (TBST) buffer for 30 min at room tem-
perature, each membrane was probed overnight at 4 °C with
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the following specific primary antibodies: mouse anti-Aβ
(1:1000, Santa Cruz Biotechnology, sc-28365), rabbit anti-A
disintegrin and metalloproteinase 10 (ADAM10, 1:1000,
CST, 14194), rabbit anti-TNF-α-converting enzyme (TACE
orADAM17, 1:1000, Abcam, ab2051), rabbit anti-BACE1
(1:1000, Abcam, ab183612), rabbit anti-Presenilin 1 (PS1,
1:1000, CST, 5643), rabbit anti-Presenilin 2 (PS2, 1:1000,
CST, 9979), rabbit anti- Nicastrin (NCT, 1:1000, CST,
5665), mouse anti-sAPPα (1:1000, Immuno-Biological
Laboratories (IBL), 11088), mouse anti-soluble amyloid pre-
cursor β (sAPPβ, 1:1000, IBL, 10321), mouse anti-tau
(1:2000, CST, 4019), rabbit anti-phospho-tau (Thr181)
(1:2000, CST, 12885), rabbit anti-phospho-tau (Ser416)
(1:2000, CST, 15013), mouse anti-phospho-tau (Ser396)
(1:1000, CST, 9632), rabbit anti-phospho-GSK 3α/β
(Ser21/Ser9) (1:2000, CST, 9327), rabbit anti-GSK3α/β
(1:2000, CST, 5676), rabbit anti-GFAP (1:1000, CST,
80788), rabbit anti-Iba1 (1:1000, CST, 17198), rabbit anti-
IL-1β (1:1000, Santa Cruz, sc-7884), rabbit anti-IL-6
(1:1000, CST, 12153), mouse anti-TNF-α (1:1000, Santa
Cruz, sc-52,746), rabbit anti-postsynaptic density proteins 95
(PSD95, 1:1000, CST, 3409), mouse anti-synaptophysin

(SYP, 1:1000, Santa Cruz, sc-365488), rabbit anti-PPARγ
(1:2000, CST, 2443), rabbit anti-GAPDH (1:3000, CST,
5174), and rabbit anti-β-actin (1:3000, CST, 4970). Themem-
branes were then incubated with horseradish peroxidase–
conjugated secondary antibody (1:10000 in TBST) for 1 h at
room temperature. Visualization of the immunoreactive bands
was performed using a Bio-Rad system with enhanced chemi-
luminescence (ECL), and grayscale analysis was performed
using ImageJ software. The intensity of each protein band was
normalized to that of the corresponding band for β-actin or
GAPDH, and the relative value was then normalized to that of
the vehicle group.

Statistical Analyses

All values are presented as the mean ± standard deviation
(S.D.). One-way analysis of variance (ANOVA) or
Student’s t test was used to evaluate differences among more
than three groups or differences between two groups, respec-
tively. All data were analyzed using GraphPad Prism soft-
ware, and differences were assumed to be highly statistically
significant at p < 0.01 and statistically significant at p < 0.05.

Fig. 1 Levistolide A treatment
rescued the memory deficits and
cognitive disorders in APP/PS1
Tg mice. (a) Results of the nest-
building test in the APP/PS1 Tg
mice. (b) Statistical analysis of
nest score for each group of mice.
(c) Escape latency in the visible
platform and hidden platform test.
(d) Path length in the visible plat-
form and hidden platform test. (e)
Representative escape routes on
the last day of the hidden platform
test are shown. (f) Number of
times crossing the center region
without the platform in 1 min.
Data represent the mean ± SD
(n > 3), *p < 0.05 compared with
the vehicle-treated APP/PS1 Tg
mice
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Results

Levistolide A Treatment RescuedMemory Deficits and
Cognitive Disorders in APP/PS1 Tg Mice

APP/PS1 Tg mice are widely used in AD-related studies, in-
cluding pharmacodynamic evaluations and evaluations of un-
derlying mechanisms. To investigate the effects of levistolide
A on AD, we first determined its effects on the learning ability
of APP/PS1 Tg mice with the nest-building and MWM tests.
The results of the nest-building test demonstrated that the
nesting scores of the levistolide A–treated mice were signifi-
cantly higher than those of the vehicle-treated controls

(Fig. 1a, b), suggesting the ability of levistolide A to rescue
the impairment of social behavior in APP/PS1 Tg mice. To
further validate the above observation, the MWM test was
carried out to determine the learning ability of APP/PS1 Tg
mice. The results demonstrated significant difference in learn-
ing ability between the levistolide A– and vehicle-treated mice
over the first 2 days of training tests. In contrast, levistolide A
clearly shortened the time taken and distance traveled for the
mice to find the hidden platform in subsequent experiments
(Fig. 1c, d). In the spatial probe trial, the time taken to cross
the original platform was clearly elevated in the levistolide A–
treated group compared to that of the control group (Fig. 1e, f).
Based on these observations, the spatial learning and memory

Fig. 2 Levistolide A decreased the Aβ generation and deposition and
reduced the expression of phosphorylation of tau protein and loss of
synapses in APP/PS1 Tg mice. (a, b) Quantitative analysis of Aβ immu-
nohistochemistry staining in the brains of APP/PS1 Tg mice. (c, d)
Expression levels of Aβ oligomer protein in the cortex tissue of APP/
PS1 Tg mice. β-actin was used as internal control. (e, f) Expression levels
of Aβ1–40 and Aβ1–42 in the serum of APP/PS1 Tg mice. (g, h)

Expression levels of Aβ1–40 and Aβ1–42 in the cortex tissue of APP/
PS1 Tg mice. (i) Western blots showing the protein levels, including total
tau, p-tau (Thr181, Ser396, Ser416), SYP, and PSD95. GAPDHwas used
as internal control. (j–o) Quantitative analysis of the results shown in i.
Data represent the mean ± SD (n > 3), *p < 0.05, **p < 0.01, compared
with the vehicle-treated APP/PS1 Tg mice
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abilities of the mice were improved by treatment with
levistolide A.

Levistolide A Treatment Decreased the Aggregation
of Aβ in APP/PS1 Tg Mice

In view of the essential roles of Aβ in AD, IHC staining was
carried out to reveal the effect of levistolide A on the genera-
tion and aggregation of Aβ in the brains of APP/PS1 Tgmice.
The results showed that the numbers of immunoreactive am-
yloid plaques (APs) in the hippocampus and cerebral cortices
of levistolide A–treated mice were significantly decreased
compared to those of vehicle-treated mice (Fig. 2a, b). The
effect of levistolide A on Aβ production and the levels of
Aβ oligomers were simultaneously assessed using ELISA
and western blotting, respectively. The results showed that
the level of Aβ oligomers was dramatically reduced in
levistolide A–treated mice compared to vehicle-treated mice
(Fig. 2c, d). Similarly, levistolide A treatment dramatically
reduced the production of soluble Aβ1–40 and Aβ1–42 in the
sera and cortical tissues of APP/PS1 Tg mice (Fig. 2e–h).
Taken together, our results revealed that levistolide A effi-
ciently suppressed the production and aggregation of Aβ in
APP/PS1 Tg mice.

Levistolide A Reduced the Phosphorylation of Tau
and the Loss of Synapses in APP/PS1 Tg Mice

As the predominant pathological characteristics of AD, the
hyperphosphorylation and aggregation of tau were next
assessed in the current study. By western blot analysis, we
determined that levistolide A treatment decreased the level
of tau phosphorylated at Ser396, Ser416, and Thr181 and
even the total tau protein level in the cerebral cortices of
APP/PS1 Tg mice (Fig. 2i–m). As levistolide A can attenuate
the production of Aβ and phosphorylated tau, we then

Fig. 3 Levistolide A mitigated
activation of Aβ-accompanied
glial cells in APP/PS1 Tg mice.
(a) Double immunofluorescence
staining analyzed the distribution
and expression of Aβ with GFAP
and Iba-1 in cortex and hippo-
campus of APP/PS1 Tg mice
brains. (b) Western blot detection
of GFAP, Iba-1, IL-6, IL-1β, and
TNF-α in the cortex of APP/PS1
Tg mice. β-actin was used as in-
ternal control. (c–g) Quantitative
analysis of the immunoreactiv-
ities to the antibodies presented in
the previous panel. Data represent
the mean ± SD (n > 3), *p < 0.05,
**p < 0.01, compared with the
vehicle-treated APP/PS1 Tg mice

�Fig. 4 Levistolide A treatment accelerated the nonamyloidogenic APP
pathway in APP/PS1 Tg mice and in N2a/APP695swe cells. (a) Western
blots showing the protein levels associated with APPmetabolism, includ-
ing sAPPα, ADAM10, TACE, sAPPβ, BACE1, PS1, PS2, and NCT. β-
actin and GAPDH were used as internal control. (b–i) Quantitative anal-
ysis of the results shown in (a). (j) Cell viability was measured by MTT
assay and expressed relative to the vehicle. (k, l) Expression levels of
Aβ1–40 and Aβ1–42 in the supernatant and lysis of N2a/APP695swe cells.
(m) Western blots showing the protein levels associated with APP me-
tabolism, including Aβ oligomer, sAPPα, ADAM10, TACE, sAPPβ,
BACE1, PS1, PS2, and NCT. β-actin and GAPDH were used as internal
control. (n–v) Quantitative analysis of the results shown in (m). Data
represent the mean ± SD (n > 3), *, #p < 0.05, **, ##p < 0.01, ***,
###p < 0.001, compared with the vehicle
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measured its effects on the functions of synapses. By western
blot analysis, we found that the levels of SYP and PSD95,
characteristic proteins on the membranes of synapses, were
increased in the cerebral cortices of APP/PS1 Tg mice by
treatment with levistolide A (Fig. 2i, n, o). These results dem-
onstrated that levistolide A could prevent the loss of SYP and
PSD95 in the brains of APP/PS1 Tg mice.

Levistolide A Mitigated the Stimulatory Effects of Aβ
on Glial Cells in APP/PS1 Tg Mice

Given the critical roles of neuroinflammation in AD [33, 34],
immunofluorescence staining experiments were carried out to
evaluate the effect of levistolide A on the activities of microg-
lia and astrocytes. The results showed that positive staining for
GFAP and Iba-1 was clearly attenuated in levistolide A–
treated mice, especially positive staining for GFAP and Iba-
1 associated with APs (Fig. 3a). Additionally, the protein
levels of GFAP and Iba-1 were further verified by western
blot analysis (Fig. 3b–d). As expected, the levels of GFAP
and Iba-1 were decreased in levistolide A–treated mice com-
pared to control mice. Furthermore, as activated glial cells can
accelerate the process of neuroinflammation by releasing pro-
inflammatory cytokines and other toxic mediators, we carried
out experiments to analyze the production of the proinflam-
matory cytokines TNF-α, IL-1β, and IL-6. As shown in Fig.
3b and e–g, treatment with levistolide A attenuated the protein
expression of TNF-α, IL-6, and IL-1β in APP/PS1 Tg mice.
These observations revealed that levistolide A effectively at-
tenuated the inflammatory response by suppressing the activ-
ities of microglial cells and astrocytes in APP/PS1 Tg mice.

Levistolide A Accelerated the Nonamyloidogenic
Metabolism of APP In Vitro and In Vivo

To determine how levistolide A suppresses the production of
Aβ, we next determined the expression of secretases.
Levistolide A significantly increased the expression of
ADAM10 (Fig. 4a, c), which resulted in the elevated produc-
tion of sAPPα (Fig. 4a, b). In contrast, the expression level of
BACE1 was noticeably decreased in levistolide A–treated
APP/PS1 Tg mice compared to control mice (Fig. 4a, f), but
the production of sAPPβ was not significantly affected (Fig.
4a, e). Notably, the average production of sAPPβ was attenu-
ated by treatment with levistolide A in APP/PS1 Tg mice (Fig.
4a, e). In addition, the expression of PS1, PS2, and NCT was
downregulated by levistolide A, which suggests that levistolide
A can suppress the production of Aβ (Fig. 4a, g–i). To validate
the above observations, similar experiments were performed in
N2a/APP695swe cells. First, the toxicity of levistolide A was
measured by MTT assay, the results of which demonstrated
that levistolide A did not induce obvious toxicity to neuronal
cells when its concentration was lower than 11μg/mL, whereas

33 μg/mL levistolide A was extremely highly toxic to the neu-
rons (Fig. 4j). On the basis of this observation, we treated N2a/
APP695swe cells with 0–10 μg/mL levistolide A for 24 h. The
results demonstrated that levistolide A treatment clearly de-
creased the production of Aβ1–40 and Aβ1–42, which is similar
to the effects of rosiglitazone (Rosi, Sigma-Aldrich, St. Louis,
Missouri, USA), a PPARγ agonist (Fig. 4k, l). Similar to these
in vivo results, results obtained in vitro also demonstrated that
levistolide A suppressed the production and aggregation of Aβ
by concurrently activating α-secretases, including ADAM10
and TACE as well as decreasing the activity of β-secretase,
BACE1, and γ-secretases, such as PS1, PS2, and NCT (Fig.
4m, n, p, q, s, v). These actions of levistolide A resulted in the
elevated production of sAPPα and reduced the cleavage prod-
uct sAPPβ in N2a/APP695swe cells (Fig. 4m, o, r).

The Inhibitory Effects of Levistolide A on the
Phosphorylation of Tau Occur via a GSK-Dependent
Mechanism

In light of the critical roles of GSK-3α/β in the phosphorylation
of tau [35, 36], we investigated its effects on levistolide A–
mediated tau phosphorylation. The phosphorylation of GSK-
3α/β, an inactive form of the enzyme, was dramatically elevat-
ed in the levistolide A–treated group compared to the vehicle-
treated group (Fig. 5a, b). To confirm this in vivo observation,
the effect of levistolide A on the phosphorylation of GSK-3α/β
was investigated in N2a/APP695swe cells. As expected, the
results revealed that the degree of GSK-3α/β phosphorylation
in N2a/APP695swe cells was dose-dependently increased after
levistolide A treatment (Fig. 5c, d). Moreover, the phosphory-
lation of tau Ser396, Ser416, and Thr181 was significantly
decreased in levistolide A–treated N2a/APP695swe cells com-
pared to control cells (Fig. 5e–i). Based on these findings,
levistolide A can attenuate the phosphorylation of tau via
GSK-3α/β pathways both in vivo and in vitro.

Levistolide A Regulates the Processing of APP
Through Promoting the Activity of PPARγ

To reveal the involvement of PPARγ in APP processing, we
first detected the expression of PPARγ in both APP/PS1 Tg

�Fig. 5 The effects of levistolide A on reducing Tau phosphorylation via
GSK signaling pathway. (a, b) Expression levels of GSK-3α/β and p-
GSK-3α/β protein in the cortex tissue of APP/PS1 Tgmice. GAPDHwas
used as internal control. Data represent the mean ± SD (n > 3), *p < 0.05,
**p < 0.01, ***p < 0.001, comparedwith the vehicle-treated APP/PS1 Tg
mice. (c, d)Western blots showing the protein levels of GSK-3α/β and p-
GSK-3α/β protein in the N2a/APP695swe cells. (e) Western blots show-
ing the protein levels including total-Tau, p-Tau (Thr181, Ser396,
Ser416). GAPDHwas used as internal control. (f–i). Quantitative analysis
of the results shown in (e). Data represent the mean ± SD (n > 3),
*p < 0.05, **p < 0.01, ***p < 0.001, compared with the vehicle
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mice and N2a/APP695swe cells. As shown in Fig. 6a and b,
the protein level of PPARγ in APP/PS1 Tg mice was elevated

by treatment with levistolide A. Similarly, levistolide A also
enhanced the protein expression of PPARγ in N2a/
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Fig. 6 Levistolide A promoted the activation of PPARγ to regulate APP
processing. (a, b)Western blot showing the protein level of PPARγ in the
cortex of APP/PS1 Tg mice. β-actin was used as internal control. (c, d)
Western blot showing the protein level of PPARγ in the N2a/APP695swe
cells. GAPDH was used as internal control. (e) Double-stained immuno-
fluorescence of PPARγ and nuclei in N2a/APP695swe cells, the green

fluorescence stands for PPARγ and the blue represents the nuclei. (f)
Western blots showing the protein levels including ADAM10, TACE,
BACE1, PS1, PS2, NCT, PPARγ, GSK-3α/β, and p-GSK-3α/β.
GAPDH was used as internal control. (g–n) Quantitative analysis of the
results shown in (f). Data represent the mean ± SD (n > 3), *, #p < 0.05,
**, ##p < 0.01, ***, ###p < 0.001, compared with the vehicle control
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APP695swe cells (Fig. 6c, d). These observations were further
confirmed by immunofluorescence staining (Fig. 6e).

To determine whether levistolide A functions in a PPARγ-
dependent manner, GW, a selective PPARγ antagonist, was
used to treat N2a/APP695swe cells. After 1 h, 30 μM GW
treatment partially restored the effects of levistolide A in si-
multaneously activating α-secretase and suppressing the ex-
pression of β- and γ-secretases (Fig. 6f, g–m). In addition,
GW reduced the effects of levistolide A on GSK-3α/β phos-
phorylation, suggesting its role in the phosphorylation of tau.

Overall, we found that levistolide A improved cognitive
decline in AD by inhibiting the production and aggregation
of Aβ as well as the hyperphosphorylation of tau.
Furthermore, PPARγ plays key roles in mediating the effects
of levistolide A on the pathogenesis of AD.

Discussion

Neuroprotection is widely accepted as a prospective therapeu-
tic strategy for AD, and increasing evidence has shown that
Aβ carries out multiple pathological functions in neurons
[12]. As monomeric Aβ can aggregate, the consequent solu-
ble Aβ oligomers showed extreme toxicity to neurons. In fact,
a series of studies showed that Aβ oligomer treatment could
induce the apoptosis of astrocytes and neurons [37, 38].
Moreover, soluble Aβ plays multiple roles in AD, as for ex-
ample, it affects oxidative stress, neuroinflammation, and neu-
rotoxicity and inhibits neurogenesis [39, 40]. All of these roles
contribute to accelerating the progression of AD. The inhibi-
tory effect of levistolide A on the production of Aβmonomers
and oligomers shown based on these clues has revealed its
potential therapeutic effect on AD.

Generally, Aβ is produced by the abnormal cleavage of
APP by β- and γ-secretases [41]. In contrast, the cleavage
of APP by α-secretase is beneficial to for AD [10].
ADAM10 and TACE (or ADAM-17), two α-secretases,
cleaveAPP and play a crucial role in inhibiting Aβ production
[42–44]. Increasing evidence has suggested that increased α-
secretase contributes to reducing Aβ generation as well as
inhibiting tau hyperphosphorylation and synaptic dysfunction
[45, 46]. The current investigation expanded upon prior works
to reveal the suppressive effect of levistolide A on the forma-
tion of APs by increasing the expression of α-secretase.
BACE1 and γ-secretases (PS1, PS2, and NCT) play essential
roles in producing Aβ via the amyloidogenic metabolism of
APP. The downregulation of β- and γ-secretases reduced the
production and deposition of Aβ in the brains of AD Tg mice
[9, 47, 48]. By these mechanisms, we found that levistolide A
decreased the activity of β- and γ-secretases, potentially con-
tributing to the production of Aβ.

Tau functions in stabilizing microtubules, whose
hyperphosphorylation is closely related to neuronal loss and

cognitive impairment in patients with AD [49–51]. Tau can be
phosphorylated at numerous sites, including Ser396, Ser416,
and Thr181 [52], resulting in the microtubule disability, lead-
ing to the onset of AD [53, 54]. Reciprocally, reducing the
phosphorylation of tau may be an effective strategy for AD
treatment. The results of our current study demonstrated that
the levels of tau phosphorylated at Thr181, Ser396, and
Ser416 were decreased in both N2a/APP695swe cells and
the cerebral cortices of APP/PS1 Tg mice after exposure to
levistolide A. Furthermore, GSK3α/β has been verified to be
critical for the phosphorylation of tau [12]. In addition, GSK-
3α/β could be activated by sAPPα in an insulin receptor (IR)–
activating pathway [55]. The current study demonstrates that
levistolide A treatment could increase the production of
sAPPα and phosphorylated GSK. Furthermore, levistolide A
decreased the hyperphosphorylation of tau, which was possi-
bly related to sAPPα-IR-GSK-3α/β signaling.

Additionally, the deposition of Aβ in APs and phosphory-
lated tau in NFTs can trigger the inflammatory response dur-
ing the course of AD development and progression [56].
Furthermore, anti-inflammatory drugs can reduce the patho-
genesis of AD [20]. Functional alterations in microglia and
astrocytes, the main glial cells in the CNS, contribute to the
neuroinflammatory process. On the one hand, microglia, a
specific macrophage-like cell type in the CNS, serve as the
main immune effector cells in the brain [57, 58]. Under phys-
iological conditions, microglia can eliminate the toxic sub-
stances released from damaged cells. However, overactivated
microglial cells can induce the neuroinflammatory response
by releasing proinflammatory cytokines, which results in cell
death, leading to the deposition of Aβ [59, 60]. On the other
hand, astrocytes, the most widespread glial cells, exert neuro-
protective effects [61, 62]. Overactivated astrocytes can in-
crease the expression of BACE1 and PS1, which generate
and deposit Aβ during the course of AD development and
progression [63, 64]. In turn, Aβ can activate astrocytes,
which produce various cytokines, thus exacerbating
neuroinflammatory responses [65]. Therefore, disrupting the
crosstalk between Aβ and proinflammatory cytokines might
serve as a potential therapeutic strategy to treat AD. Based on
this hypothesis, levistolide A treatment effectively inhibited
the activation of glial cells and decreased the expression of IL-
1β, IL-6, and TNF-α at the protein level in the cerebral cor-
tices of APP/PS1 Tg mice.

PPARγ serves as a transcription factor that regulates the
expression of BACE1 [13]. Additionally, PPARγ has been
reported to inhibit the accumulation of Aβ by decreasing the
release of cytokines by deactivating glial cells [66]. For exam-
ple, Rosi, a thiazolidinedione (TZD), has neuroprotective ef-
fects against Aβ-induced neurodegeneration by inhibiting
neuroinflammation [67]. Furthermore, the administration of
TZDs can effectively inhibit the deposition of Aβ by down-
regulating the expression of BACE1 and reducing the
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phosphorylation of tau through inhibiting the activity of GSK
[68, 69]. In agreement with these results, GW, an antagonist of
PPARγ, suppressed the effects of levistolide A in deactivating
β- and γ-secretases. To further explore the neuroprotective
roles of PPARγ, GW was used to block PPARγ, which clear-
ly decreased the phosphorylation of GSK-3α/β in levistolide
A–stimulated N2a/APP695swe cells.

In summary, the present study reveals that treatment with
levistolide A can activate PPARγ, which results in the de-
creased production and aggregation of Aβ by concurrently
activating the nonamyloidogenic pathway and deactivating
the amyloidogenic pathway as well as reducing the
hyperphosphorylation of tau via the GSK3α/β pathway. In
addition, neuroinflammation was inhibited by levistolide A.
Indeed, AD is a severe neurodegenerative disease caused by
multiple etiologies. Many preclinical and experimental studies
have demonstrated that the “one-molecule, one-target”
(OMOT) strategy has a positive effect in delaying the progres-
sion of AD [70, 71]. By targeting multiple AD etiologies,
combinatory therapy consisting of more than one drug has
shown better therapeutic effects than single drug treatment
in clinical practice [72–75]. Considering the multiple targets
of levistolide A, it could be a potential and effective drug
candidate for rescuing cognitive decline in AD.
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