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Abstract
Spinocerebellar ataxia type 3 (SCA3), also known asMachado–Joseph disease (MJD), is a neurodegenerative disorder caused by
a polyglutamine expansion in the ATXN3 gene. In spite of the identification of a clear monogenic cause 25 years ago, the
pathological process still puzzles researchers, impairing prospects for an effective therapy. Here, we propose the disruption of
protein homeostasis as the hub of SCA3 pathogenesis, being the molecular mechanisms and cellular pathways that are
deregulated in SCA3 downstream consequences of the misfolding and aggregation of ATXN3. Moreover, we attempt to provide
a realistic perspective on how the translational/clinical research in SCA3 should evolve. This was based on molecular findings,
clinical and epidemiological characteristics, studies of proposed treatments in other conditions, and how that information is
essential for their (re-)application in SCA3. This review thus aims i) to critically evaluate the current state of research on SCA3,
from fundamental to translational and clinical perspectives; ii) to bring up the current key questions that remain unanswered in
this disorder; and iii) to provide a frame on how those answers should be pursued.

Keywords Spinocerebellar ataxia type 3 . Machado-Joseph disease . Ataxin-3 . Neurodegeneration . Molecular pathogenesis .

Therapeutic advances

Spinocerebellar Ataxia Type 3
or Machado–Joseph Disease: Etiology,
Clinical, and Neuropathological features

Spinocerebellar ataxia type 3 (SCA3) or Machado–Joseph
disease (MJD) is a hereditary neurodegenerative disease, with
autosomal dominant transmission [1]. SCA3 is caused by an
unstable expansion of the cytosine-adenine-guanidine (CAG)
trinucleotide within the coding region of the ATXN3 gene,
mapped to chromosome 14q32.1 [2, 3]. The CAG repeat num-
ber ranges from 10 to 44 in normal individuals, whereas in
SCA3 patients, the CAG size repeat is described to vary from

61 to 87; repeats between 45 and 60 are associated with in-
complete phenotype penetrance [3]. In patients, there is a neg-
ative correlation between the age at disease onset and the
number of CAG repeats [4]. The mutated ATXN3 gene is
translated into an abnormal polyglutamine (polyQ) tract with-
in the ataxin-3 (ATXN3) protein, which has normal expres-
sion levels even in the presence of this mutation [5].

There is clinical heterogeneity among SCA3 patients,
which resulted in the definition of at least 4 disease subtypes,
according to their phenotypic presentation [6, 7]. The main
clinical hallmark of SCA3 is progressive ataxia, a motor co-
ordination dysfunction that affects gait, balance, speech, and
gaze. SCA3 is also characterized by dysfunction of the pyra-
midal tract, manifesting as spasticity and hyperreflexia, which
is variably associated with peripheral muscular atrophy and/or
other motor-related clinical manifestations such as parkinson-
ism, dysarthria, nystagmus, dystonia, and external progressive
ophthalmoplegia. Nonmotor symptoms are less severe but
include sleep, cognitive, and psychiatric disturbances [1, 6,
8–13].

The diversity of symptoms and clinical heterogeneity of
SCA3 patients reflects the pattern of central nervous system
(CNS) cell degeneration. Multiple neuronal systems are
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affected, including the cerebellum, the brainstem and some
cranial nerves, the basal ganglia, and the spinal cord [11,
14]. Neurodegeneration occurs within the dentate nucleus of
the cerebellum with relative preservation of the Purkinje cells
of the cerebellar cortex when compared to other ataxias.
However, the loss of granule and of Purkinje cells was report-
ed in the cerebellar vermis. Neurodegeneration also targets the
vestibular, pontine, and motor nuclei of the brainstem, as well
as subregions of the basal ganglia including the globus
pallidus, subthalamic nuclei, and the substantia nigra. The
nerve motor nuclei, Clarke’s column nuclei, and the anterior
horn of the spinal cord are also affected. No significant degen-
eration has classically been described in the cerebral cortex
and in the striatum, although more recent findings gainsay the
first neuropathological descriptions [8, 11, 15–20]. Magnetic
resonance imaging (MRI) studies most commonly detect ab-
normalities of the basal ganglia (such as atrophy of the globus
pallidus), pontocerebellar atrophy (of the pons and superior
and middle cerebellar peduncles), and dilation of the 4th ven-
tricle [21, 22].

The most relevant neuropathological feature of SCA3 is the
presence of intraneuronal inclusions of mutant ATXN3 proteins
in postmortem patient brains, as a consequence of the change in
conformation of ATXN3 due to the expanded polyQ tract.
Intriguingly, these inclusions were detectedwithin brain regions
described to be affected by neurodegeneration but also in re-
gions that are typically spared in this disease [23–25]. In addi-
tion, thalamic neurodegeneration was reported to occur inde-
pendent of the detection of mutant ATXN3 immunopositive
neuronal intranuclear inclusions [26]. At first, these findings
may appear contradictory as they seem to point to a pleiotropic
role of these inclusions: either unspecific, pathognomonic, or
even protective role, as theymay serve as a cellular reservoir for
retaining the pathogenic expanded protein. In the latter concep-
tual model, the observed toxicity is attributed to soluble oligo-
mers that precede inclusion body formation in the aggregation
process [27, 28]. However, it could be just that there is a
cellular- and temporal-specific regulation of the aggregation
process in which the appearance of the visible inclusions of
mutant ATXN3 precedes toxicity and neuronal death in some
cells, whereas in others, the bigger aggregates are never formed
as toxicity surpasses aggregation. In addition, it is possible that
in spared brain regions, the aggregation process is assisted and
controlled by cellular-specific quality control mechanisms in
such a way that toxicity is maintained subthreshold, avoiding
cell dysfunction and death.

The cell-specific toxic outcome of the ubiquitously
expressed aggregation-prone expanded protein could also be a
reflex of its subcellular localization. Mutant ataxin-3 aggregates
are mostly described to be intranuclear. However, they were
also found in the cytoplasm and within the axons of the fiber
tracts known to undergo neurodegeneration in this disease
[29–31]. Similar to neuronal nuclear inclusions, the axonal

ATXN3 aggregates were ubiquitinated and immunopositive
for the proteasome and autophagy-associated shuttle protein
p62 [23, 30], strengthening the involvement of neuronal protein
quality control (PQC) mechanisms in the management of this
mutant protein.

In the next section, we will explore the mechanisms of
SCA3 pathogenesis, placing the aggregation features of
ATXN3 as the initiating factors of disease. We will first de-
scribe how the polyQ expansion impacts not only the function
of ATXN3 but also neuronal PQC mechanisms. Then, we
provide extensive descriptions of the various cellular process-
es that are consequently affected by the mutation. Finally, we
detail how ATXN3 aggregation can also have an important
non-cell autonomous impact.

Mechanism of SCA3 Pathogenesis

Many molecular mechanisms and cellular pathways have
been implicated in SCA3 pathogenesis. Here, we propose
the misfolding of the mutant ATXN3 protein and the subse-
quent aggregation process, with eventual deposition of insol-
uble intracellular aggregates, to be the hub of the pathogenic
process, and discuss how protein dyshomeostasis impacts key
cellular pathways causing dysfunction and disease (Fig. 1).

Disruption of Protein Homeostasis Is the Initiating
Factor of Pathogenesis

Proteins are the main cellular effectors, with native protein con-
formation and proper dynamic responses being critical for their
biological function. Moreover, the abundance of each protein
within the proteome of each cell must be tightly controlled to
avoid abnormal (self-) interactions and protein aggregation. In

�Fig. 1 Overview of the molecular pathogenesis of SCA3. An expansion
of CAG repeats (above 60) in exon 10 of the ATXN3 gene is the
underlying cause of SCA3. The translated protein therefore harbors an
expanded polyglutamine stretch, between 2 UIMs. This expansion leads
to misfolding of ATXN3, consequent oligomerization and accumulation
of the abnormal protein in amorphous aggregates or amyloid fibers,
which can be vi sua l i zed as in t r ace l lu la r inc lus ions by
immunohistochemistry. These changes consequently affect protein
homeostasis, through a probable loss of deubiquitylase activity, impact
in aggresomes, autophagy, the ERAD, and the proteasome. The loss of
proteostasis has several consequences in cellular physiology, impacting
the nucleus (namely misfolding of nuclear proteins, DNA damage, and
changes in transcription), the mitochondria (through abnormal interaction
with several mitochondrial proteins, stress of misfolded proteins, as well
as a decrease in mitochondrial DNA), the ER (through the ERAD and
induction of intracellular Ca2+ release), and cellular communication
(through potential impairment of axonal transport and synaptic vesicle
release). ATXN3 = ataxin-3; ER = endoplasmic reticulum; ERAD =
endoplasmic reticulum–associated protein degradation; NES = nuclear
export signal; NLS = nuclear localization sequence; TF = transcription
factors; Ub = ubiquitin; UIM = ubiquitin-interacting motives
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fact, this state of a balanced proteome or of protein homeostasis
(a.k.a. proteostasis) is ensured by an extensive network of mo-
lecular chaperones, proteolytic systems, and their regulators,

which include approximately 2000 proteins in a human cell
[32, 33], which composes the PQC network. This network i)
assists in the folding of newly synthetized proteins; ii) serves to
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safeguard that correctly folded proteins are generated at the
correct time, cellular location, and stoichiometry to allow as-
sembly of oligomeric protein complexes; iii) prevents proteins
from misfolding and aggregating; and (iv) orchestrates folding,
disaggregation, and degradation machineries (autophagy or
proteasome-mediated degradation) to ensure that misfolded
proteins are either refolded or removed, if permanently
misfolded or superfluous. These mechanisms avoid the accu-
mulation of damaged/dysfunctional proteins and of protein ag-
gregates, which can reach a toxicity thresholdwhen proteostasis
is impaired [34, 35].

The presence of mutations within the genome which in-
creases aggregation propensity constitutes an endogenous
stress to neuronal cells and challenges their homeostasis.
During the aggregation process, folding intermediates and
misfolded states of the proteins likely accumulate, and the
intermolecular contacts between non-native states result in
the formation of various aggregate species, including oligo-
mers, amorphous aggregates, and amyloid fibrils. Amyloid
fibrils are often thermodynamically more stable than the na-
tive state, favoring their formation. Components of the PQC
network, including molecular chaperones, contribute to en-
hance on-pathway reactions that support progression of the
misfolded intermediates towards the native state and block
off-pathway reactions that lead to misfolding and aggregation
[36]. The current understanding of ATXN3 folding, self-as-
sembly, and aggregation comes mainly from in vitro studies
(reviewed in [37]). A 2-stepmodel has been proposed: the first
step of ATXN3 self-assembly, common to WT and polyQ-
expanded ATXN3, is centered on the N-terminal Josephin
domain. The oligomers and small protofibrils formed are sen-
sitive to SDS and can be recognized by the anti-oligomer-
specific antibody A11. Importantly, however, this step occurs
faster in expanded forms of ATXN3. The second step in
ATXN3 aggregation, exclusively dependent on the polyQ ex-
pansion, leads to the generation of mature and SDS-resistant
ATXN3 fibrils [38–41].

It has been proposed that a toxic C-terminal fragment con-
taining the polyQ segment of ATXN3 would be required for
pathology and constitutes the trigger of the aggregation pro-
cess [42–44]. Accordingly, mutant ATXN3 was shown to be a
substrate of caspases. However, caspase inhibitors were un-
able to stop fragment formation, suggesting the involvement
of other enzymes [44–47]. Calpains were also found to play a
role in ATXN3 proteolysis in cell culture, including in L-glu-
tamate-induced excitation of patient-specific induced pluripo-
tent stem cell (iPSC)–derived neurons [48–50]. In these
models, the formation of SDS-insoluble aggregates was in-
duced by calcium-dependent proteolysis of ATXN3, a process
abolished by calpain inhibition (reviewed in [51]). This evi-
dence was strengthened by studies in vivo in which manipu-
lation of calpastatin levels, an endogenous calpain inhibitor,
led to modulation of the neurological phenotype seen in a

SCA3mouse model, as well as of mutant ATXN3 aggregation
and neurodegeneration, consistent with a role for calpain ac-
tivation in pathogenesis [50, 52]. Calpastatin depletion in the
postmortem dentate nucleus of SCA3 patients [52] further
supported these observations. In addition to their role in
ATXN3 cleavage, it is possible that the downstream conse-
quences of ATXN3 aggregation, such as activation of cell
death processes, are also mitigated by calpain inhibition. If
this is the case, the toxicity caused by the expression of mutant
ATXN3 fragment proteins should also be mitigated by calpain
inhibition or calpastatin overexpression. In contrast, if the
calpain inhibitors are targeting mainly ATXN3 cleavage, they
should be ineffective in SCA3 disease models expressing
cleaved ATXN3 to start with. In order to distinguish
cleavage-dependent and independent effects in SCA3 pathol-
ogy, there is an urgent need for novel methodologies that
enable the visualization of protein aggregates in living brains
and allow effective discrimination of the triggers of nucle-
ation, which could be achieved by developing radiotracers
for positron emission tomography (PET) or similar procedure.

Independent of the species that triggers aggregation, it is
generally accepted that a gain-of-function toxicity of the ex-
panded ATXN3 protein contributes highly to SCA3 pathology.
This toxicity is largely attributed to the aberrant association of
PQC network components and other metastable proteins with
these aggregates, including molecular chaperones, ubiquitin
conjugates, proteasome subunits, the transcription coactivator
cAMP response element–binding protein (CREB)–binding
protein (CBP), the ATPase valosin–containing protein (VCP)/
p97, and nonexpanded wild-type ATXN3 [53–58]. Some of
these interactions, such as those between polyQ-containing pro-
tein aggregates and proteasomal subunits, appear irreversible,
suggesting a permanent sequestration of these proteins. On the
other hand, the association with molecular chaperones seems to
be transient, suggesting that chaperones may be functionally
recognizing aggregates as substrates for potential disaggrega-
tion and/or refolding [59, 60]. Beyond refolding of toxic
misfolded proteins, chaperones are also essential for the folding
of a large number of so-called “client” proteins, regulating a
wide range of essential cellular processes, including gene ex-
pression, vesicular trafficking, and signal transduction [61–63].
This led some authors to propose a chaperone competition
model, in which aggregates, client, and metastable proteins
(polyQ, huntingtin, ATXN1, and superoxide dismutase-1) rival
for finite chaperone resources [64]. Two examples are the im-
pairment of clathrin-mediated endocytosis and of nuclear pro-
tein degradation, due to polyQ-mediated sequestration of the
highly abundant major chaperone heat shock cognate protein
70 (HSC70) and of a low-abundance cochaperone, Sis1p/
DNAJB1, respectively [64, 65]. This shortcoming in folding
resources may trigger neuronal dysfunction and disease onset
[66]. In vivo corroboration of these findings is still missing for
ATXN3 and for other metastable proteins.
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Beyond the recruitment of proteasome subunits into the
aggregates, ATXN3 misfolding can also impact protein deg-
radation due to its direct role in the ubiquitin proteasome sys-
tem (UPS) [57, 67, 68]. The protein domains of ATXN3 in-
clude an N-terminal Josephin domain with deubiquitylase ac-
tivity and a C-terminal region bearing 2 or 3 ubiquitin-
interacting motifs (UIMs) neighboring the polyQ tract, of still
unknown function. It has been proposed that ATXN3 contrib-
utes to facilitate the proteasomal degradation of ubiquitylated
proteins by editing polyubiquitin chains of a subset of sub-
strates prior to digestion [69] and to protect others from deg-
radation [70–72]. Although in vitro studies with artificial sub-
strates failed to show an impact of the expansion of the polyQ
segment of ATXN3 on its DUB activity [37, 73, 74], the
insolubility and immobile nature of the inclusions in vivo
[75] may make mutant ATXN3 less prompt to locate at the
sites at which editing of Ub chains is needed. Moreover, the
expanded polyQ of ATXN3 can differentially interact with
UPS components and interfere with the degradation of its
proteolytic substrates [67, 76, 77]. On the other hand, accu-
mulation of misfolded proteins per se was shown to directly
inhibit the proteasome activity [78], exacerbating these toxic
effects. In fact, ATXN3 itself can be degraded by the protea-
some and its polyQ expansion was proposed to inhibit the
proteasome [79]. Some chaperones and UPS components
were reported to modulate ATXN3 degradation, including
the ubiquitin E3 ligase parkin, Hsp70, the ubiquitin assembly
factor E4B, the cochaperone C-terminus of Hsp70-interacting
protein (CHIP), and the Rad23A/B proteins [79–82], consis-
tent with a positive role of facilitating mutant ATXN3 degra-
dation in pathogenesis.

It has been proposed that ATXN3 is also degraded through
autophagy [83], being the mutant (soluble) protein more prone
to autophagic degradation, as no changes in endogenous wild-
type ATXN3 levels were observed in drug-induced autophagy
activation in vivo [84]. This, however, somehow contradicts
the similar steady-state levels of WT and mutant ATXN3 pro-
teins that are usually found across different model systems.
Importantly, a normal function for polyQ tracts in autophagy
was suggested. The polyQ domain enables wild-type ATXN3
to interact with beclin-1, a key initiator of autophagy, allowing
ATXN3 to protect beclin-1 from proteasome-mediated degra-
dation and thereby enabling autophagy. The presence of an
expanded polyQ tract in proteins leads to a self-association
that competes with polyQ-mediated interaction with beclin-1
and impairs autophagy in vitro (as observed for ATXN3) and
in vivo (as observed for huntingtin), at least in conditions of
starvation [85]. If this is the case in aging, SCA3 and other
diseases awaits investigation. Indeed, a strong dysregulation
of autophagy was described in postmortem brains of SCA3
patients, namely the accumulation of autophagy-related gene
(Atg) proteins (e.g., ATG-7) and of autophagosomal
microtubule-associated protein light chain 3 (LC3), in parallel

with reduced beclin-1 levels [86, 87]. However, what happens
during the course of the disease remains to be elucidated, as
contradictory studies in rodent models of the disease either
show an abnormal expression of endogenous autophagic
markers, accumulation of autophagosomes, and decreased
levels of beclin-1 [86] or show no changes in these and in
additional autophagy markers [88]. This could be explained
by differences in disease severity and progression rates among
distinct models. In addition, while some studies showed that
genetic and pharmacological activation of autophagy sup-
pressed pathogenesis in a subset of disease models [84, 86,
89–93], others showed very limited impact on animals’ ataxic
phenotypes, highlighting that autophagy activating drugs
should be used with caution due to possible toxicity issues
that may occur during chronic administration [94, 95].

ATXN3 also facilitates the clearance of misfolded proteins
by autophagy through its role in aggresome formation.
Aggresomes are a cytoplasmic juxtanuclear structure to which
misfolded proteins are actively transported in cellular states in
which the capacity of the chaperone-refolding system and of
the UPS is exceeded. Aggresome formation is therefore rec-
ognized as a cytoprotective response serving to sequester po-
tentially toxic misfolded proteins and facilitate their clearance
by autophagy. ATXN3 colocalizes with aggresomes and
preaggresome particles of the misfolded cystic fibrosis trans-
membrane regulator (CFTR) mutant CFTRΔF508 and inter-
acts with proteins involved in their formation and regulation,
such as dynein and histone deacetylase 6 (HDAC6). Small
interfering RNA (siRNA) knockdown of ATXN3 greatly re-
duces aggresomes formed by CFTRΔF508, demonstrating a
critical role of ATXN3 in this process [96, 97].

Overall, these findings suggest that ATXN3 aggregation
may target directly or indirectly a metastable subproteome,
thereby causing an increased susceptibility to multifactorial
toxicity and, eventually, the collapse of many essential cellular
functions, and this may help to explain the phenotypic com-
plexities displayed in SCA3. The impact of the ATXN3 ag-
gregation process in the different housekeeping cellular func-
tions will be described in the following sections.

Impact of ATXN3 Misfolding on DNA Repair,
Transcription, and Translation

Quality control studies in the nucleus have traditionally focused
on how the cell maintains the integrity of the nuclear genome
and the quality of messenger RNA (mRNA) prior to export
from the nucleus. Initial studies found that ATXN3 interacts
with 2 proteins: HHR23A and HHR23B that are both homo-
logs of the DNA repair protein Rad23 [98] and with ubiquilin
(UBQLN)-2 [99]. The fact that mutant ATXN3 sequesters en-
dogenous Ub adaptors into inclusions caused a reduction in the
available quantity of HHR23B, which failed to stabilize the
xeroderma pigmentosum group C (XPC), a protein involved
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in nucleotide excisionDNA repair mechanisms [99].Moreover,
the interaction of ATXN3 and Rad23 proteins was found to
regulate toxicity of pathogenic ATXN3 in vivo [100, 101].
The discovery of the interaction of ATXN3 with the DNA
end–processing enzyme polynucleotide kinase 3′-phosphatase
(PNKP) renewed the interest on the interplay between protein
aggregation and DNA repair. A model has been proposed in
which the ATXN3–PNKP interaction coordinately promotes
DNA repair. However, mutant ATXN3 can either sequester
PNKP in aggregates or inhibit PNKP on its native complex,
therefore preventing PNKP-mediated DNA repair activity in a
dominant manner [102]. Although no hypersensitivity to DNA-
damaging agents has yet been reported in SCA3 patients, a
dramatic increase in DNA damage in mutant ATXN3 cells,
SCA3 mouse brains, and brain sections from SCA3 patients
further supported the impact of ATXN3 aggregation and toxic-
ity in DNA repair [103, 104]. Importantly, this increase in DNA
damage was linked to an activation of the ataxia telangiectasia–
mutated (ATM) signaling pathway [103], corroborating previ-
ous work that showed that mutant ATXN3 expression resulted
in p53 activation and apoptotic cell death [105]. Of notice, loss-
of-function mutations of PNKP in humans are also a cause of
ataxia [106, 107], reinforcing the link between the ATXN3-
related networks and cerebellar dysfunction.

On the other hand, the nucleus has a unique proteome due
to the abundancy of positively charged proteins that interact
with the DNA (such as histones); it is enriched in proteins that
present low complexity and intrinsic disorder regions, sug-
gesting conformational flexibility, and there is a permanent
remodeling of the chromatin which involves continuous as-
sembly and disassembly of DNA–RNA–protein complexes.
This may constitute a considerable source of protein
misfolding and aggregation specific to the nucleus. In addi-
tion, it is thought that the mechanisms that ensure PQC in the
nucleus are distinct from those of other organelles [108, 109],
an example being the exclusive use of K48-linked ubiquitin
chains required for proteasomal degradation of misfolded pro-
teins, and thus independency of K11-specific ligases and
chaperones [110]. Unlike the cytoplasm, the PQC of the nu-
cleus does not handle significant misfolding of nascent pro-
teins. Nuclear PQC is therefore primarily focused on proteins
that become misfolded via damage during or after nuclear
import, and it is thought that it may have evolved to target
specific features of damage-induced misfolding that are par-
ticularly harmful in the nuclear environment. In addition to the
local effects, failures in cytoplasmic PQC can subsequently
burden nuclear PQC pathways by decreasing the levels of
correctly folded and functional nuclear proteins. Conversely,
dysfunction of nuclear proteins has potential impact in all
cellular functions. These factors may explain the increased
toxicity when mutant ATXN3 proteins are artificially targeted
onto the nucleus in comparison with the cytoplasm, both
in vitro and in vivo [111, 112].

In addition, expandedATXN3 proteins tend to accumulate in
the nucleus, where the high protein concentration facilitates its
abnormal interactions with transcription factors and cofactors,
with histone deacetylases and with regulatory sequences of the
DNA [55, 111, 113–116]. The expansion of the polyQ tract and
change in conformation of ATXN3 was reported to alter tran-
scriptional activity in cells by impairing repressor activity, when
compared with wild-type ATXN3, of theMMP-2 gene promot-
er [115], and by reducing capability to activate FOXO-mediated
SOD2 expression during oxidative stress [116]. The fact that
wild-type ATXN3 binds to components of the transcriptional
machinery in cells, as well as the transcriptional changes report-
ed in animal models of SCA3 in the presymptomatic phase,
favors the theory of a general transcriptional dysregulation as
an initiating factor of SCA3 [117–119]. However, more recent
reports fail to detect histone hypoacetylation [120], or causative
transcriptional changes in the brain of young pre-symptomatic
mouse [121], or even report minor gene expression alterations in
key brain regions of SCA3 pathology [122]. Consistently, the
therapeutic effect reported for the distinct histone deacetylase
inhibitors tested, which are expected to activate transcriptional
activity in cells, is highly variable among different SCA3
models [118, 120, 123–126].

Mutant ATXN3 aggregation has been also associated to
dysregulation of the microRNA (miRNA) machinery
[127–129]. Such an alteration in miRNA-mediated post-tran-
scriptional regulation of gene expression could have a broad
impact in cells, including in the negative regulation of ATXN3
expression itself, as the 3′ UTR of human ATXN3 is targeted
by miRNAs. The mechanism behind these observations re-
mains to be further elucidated.

Similarly, changes in expression levels of proteins responsi-
ble for translation, including Pabpc1, Eif3f, and Eif5a, among
other factors, have been associated to SCA3 pathology.
However, there is still very little mechanistic insight on these
findings [121]. Post-translation modifications of ATXN3 in-
clude phosphorylation [130–132], ubiquitylation [133–135],
and SUMOylation [136, 137]. Their impact in the disease ini-
tiation and progression needs further investigation in vivo, but
in general, these modifications in mutant ATXN3 were shown
to modulate its stability, subcellular localization, enzymatic ac-
tivity, neuroprotective function, self-assembly, its interaction
affinity with molecular partners, and/or pathogenicity.

Impact of ATXN3 Misfolding on the Subcellular
Compartments: Mitochondria and ER

Wild-type and mutant ATXN3 proteins have also been identified
in the mitochondrial protein fraction of cells [138, 139], suggest-
ing that mitochondrial function may be impaired as a result of
ATXN3 misfolding and aggregation. In fact, mitochondrial resi-
dent proteins were described as ATXN3 interaction partners
[139], like the mitochondrial genome maintenance exonuclease
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1 (MGME1), which is linked to mitochondrial DNA (mtDNA)
repair. Interestingly, a subset of those mitochondrial proteins,
namely the cytochrome C oxidase subunit NDUFA4
(NDUFA4), the complex II succinate dehydrogenase
(ubiquinone) iron–sulfur subunit (SDHB), and cytochrome C
oxidase assembly factor 7 (COA7), was found to be enriched
in the expanded polyQ ATXN3 samples compared to wild-type,
suggesting a stronger interaction [139]. Although much of the
evidence described above come from cellular fractionation stud-
ies that will need validation, these findings may explain the mi-
tochondrial dysfunction reported in in vitro and in vivo SCA3
models, namelymtDNAdeletions and reduced copy number that
are often found in SCA3 cells, transgenic mice, and patients; the
reduced complex II activity in SCA3 patient lymphoblast cell
lines and cerebellar granule cells from transgenicmice; the altered
mitochondrial morphology and respiration; the increased oxida-
tive stress and mutant ATXN3-mediated cell death; as well as the
metabolic disruption detected in the cerebrospinal fluid of SCA3
patients [140–147]. Consistent with this, creatine administration,
which increases the concentration of the energy buffer phospho-
creatine exerting protective effects in the brain, slowed disease
progression and improved motor dysfunction and neuropatholo-
gy of SCA3 mice [148].

Mutant ATXN3 misfolding also disrupts the homeostasis
of the endoplasmic reticulum (ER) likely by affecting the deg-
radation of proteins of the secretory pathway [149]. ER-
associated degradation (ERAD) is a quality control system
responsible for degrading misfolded proteins and unassem-
bled polypeptides of protein complexes [150–152]. ERAD is
a multistep mechanism that uses VCP/p97, which extracts
proteins from the ER and delivers them to proteasomes for
degradation in the cytosol [153–155]. Mutant ATXN3 binds
excessively to VCP [156], decreasing ER retrotranslocation
and degradation of ERAD substrates [76]. The accumulation
of misfolded proteins in the ER may contribute to a further
disruption of proteostasis and to SCA3 pathogenesis.
Chemical modulation of the unfolded protein response of the
ER therefore contributed to a suppression in ATXN3 aggre-
gation and toxicity in nematode models of the disease [157].

Intracellular calcium (Ca2+) levels have also been shown to
be modulated by the presence of mutant ATXN3 proteins.
Mutant ATXN3 specifically binds and activates the type 1
inositol 1,4,5-trisphosphate receptor (IP3R1), potentiating
Ca2+ release from ER storages [158]. Moreover, exposure of
neuronal cell cultures to exogenous ATXN3 oligomers in-
duced intracellular Ca2+ influx [159]. Ca2+ overload can be
detrimental and culminate in cell death through mitochondrial
permeabilization, oxidative stress, disruption of cytoskeleton
organization, and/or calpain activation [160]. Chronic admin-
istration of a Ca2+ stabilizer, dantrolene, reduced neurological
symptoms of SCA3 transgenic mice [158], suggesting that
mutant ATXN3-mediated dysregulation of Ca2+ signaling
plays a role in pathogenesis.

Contributions to Non-cell Autonomous Impact
of ATXN3 Misfolding: Axonal Transport
and Neurotransmission

Proper neuronal function, survival, and communication require
axonal transport as well as intact neurotransmission. The fact
that mutant ATXN3 aggregates are also found in axons and that
components that ensure protein homeostasis are in close prox-
imity led to the hypothesis that the aggregation process occur-
ring within axons may affect mechanisms of axonal transport of
mRNA, proteins, and organelles and thereby contribute to a
wider neuronal dysfunction in SCA3 [30]. Age-related axonal
neuropathy and metabolic abnormalities in a subset of SCA3
patients further support this hypothesis [161, 162].

The aggregation of mutant ATXN3 proteins in vivo was
associated to interrupted synaptic transmission. This was in-
ferred by administrating drugs that target acetylcholine neuro-
transmission to SCA3 nematodes. Susceptibility to modula-
tors of acetylcholine signaling combined with in vivo imaging
suggested an impairment in acetylcholine release from presyn-
aptic neurons, through trapping of vesicles into mutant
ATXN3 aggregates [163]. In addition, transcriptomic analysis
of brains of 2 independent SCA3 transgenic mouse models
reported downregulation of genes involved in glutamatergic
and alpha-adrenergic neurotransmission and alterations in
CREB pathways, as well as in axon guidancemolecules, some
of these alterations being already present at presymptomatic
ages [117, 122]. Defects in glutamatergic signaling were fur-
ther explored at the functional level through electrophysiology
[94, 119]. Despite all this evidence suggesting that disruption
of protein homeostasis may impair interneuronal communica-
tion, the specific mechanisms linking ATXN3 to these effects
remain to be investigated. Interestingly, 2 unbiased drug
repurposing screens of SCA3 cellular and animal models
identified compounds that modulated neurotransmission as
suppressors of mutant ATXN3 pathogenesis [164, 165].
Citalopram, a selective serotonin reuptake inhibitor that en-
hances serotonergic neurotransmission by blocking serotonin
reuptake at the presynapse, restored motor coordination, ag-
gregation, and neuronal survival in mice, and aripiprazole, an
antipsychotic whose efficacy mainly reflects a combined ac-
tion on dopaminergic and serotonergic signaling, reduced
abundance, aggregation, and toxicity of mutant ATXN3
in vivo. However, it is possible that these compounds are in-
deed correcting protein homeostasis, rather than a pre-existing
defect in neurotransmission.

Towards Cellular Targets for Therapy in SCA3:
Lessons from Preclinical Models

So far, we have proposed that the primary pathogenic mech-
anism in SCA3 is indeed the loss of normal quality control of
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protein folding and interactions, therefore compromising their
function. While there is a multitude of affected cellular pro-
cesses, these are likely a consequence of the initial insult, as
the cause of SCA3 is uniquely a mutation in the ATXN3 gene.
This observation should move researchers to focus on the
targeting of protein homeostasis when aiming to develop
new treatments. Nevertheless, improving the overall cellular
function can also be beneficial for patients, independent of the
targeted alterations being primary or consequential. While
SCA3 has an adult onset, alterations in the CNS precede
symptom appearance [166, 167]: therefore, correcting the mu-
tation in ATXN3 in the disease state might not be fully bene-
ficial, as neurons could already have irreversible changes. If
this is the case, complementary therapies that tackle different
modalities of neuron dysfunction can be important, as well as
the initiation of treatment as early as possible.

As expected, with the increasing knowledge of SCA3 path-
ophysiology, researchers have tested multiple drugs that target
previously identified abnormal processes. Several of these
compounds have been tested in preclinical trials in rodent
models of disease (Tables 1 and 2; previously reviewed in
detail [174]). Improving the folding/aggregation changes ob-
served with mutant ATXN3 has been successful with com-
pounds such as 17-DMAG (an Hsp90 inhibitor and autophagy
inducer), temsirolimus (a rapamycin analog that increases au-
tophagy), cordycepin (autophagy inducer), and H1152 (a
ROCK inhibitor shown to decrease levels of mutant
ATXN3) [84, 90, 92, 172]. On the other hand, treatment with
lithium chloride, an autophagy inducer, had negative results in
a preclinical mouse model [88] and in patients [175], which
may raise questions on the likelihood of autophagy as a prom-
ising target. Importantly, small molecules or biological
proteostasis regulators should aim for the enhancement and/
or adaptation of protein homeostasis capacity in such a way
that they prolong the time period in which cells are able to
adequately handle aberrant protein species and not to contin-
uously activate a cellular stress response, as that can be highly
toxic.

Regarding nonprimarily affected processes, several com-
pounds also had promising outcomes: dantrolene (targeting
calcium-signaling dysregulation), sodium butyrate (modulat-
ing transcription through HDAC inhibition), creatine (improv-
ing defective energy production), and several modulators of
neurotransmission (such as citalopram and riluzole) [118, 148,
158, 170, 171, 176]. Nevertheless, it cannot be ruled out that
the positive effect of these compounds does not arise from
directly targeting protein homeostasis and/or mutant ATXN3
itself [171].

We will now proceed to briefly review the current clinical
management and therapeutic perspectives for SCA3, and
more importantly, we will provide a critical view on how
specific characteristics of this disease should guide the evolu-
tion of translational research and clinical trials (Fig. 2).

Current Status of the Management of SCA3
Patients

As for all SCAs, the current treatment options for SCA3 are
purely symptom-directed [174, 177, 178]. Recent guidelines
for the diagnosis and management of progressive ataxias have
been published and updated [179]: these encompass treat-
ments for individual symptoms based on grading of recom-
mendations, without specification for each disease. It is inter-
esting to note that 52 out of the 62 lines of treatment are based
on a Good Practice Point (GPP) grade of recommendation
which, despite being very helpful and important for patients,
does not rely on a structured body of evidence [180]. A con-
sensus on the management of chronic ataxias in adulthood has
also outlined recommendations [181], proposing varenicline,
a partial agonist of the α4β2 nicotinic acetylcholine receptor,
for the treatment of ataxia in SCA3 (grade B recommendation)
[180, 182]. Besides this, as well as the non-SCA3-specific
recommendations in the guidelines for the management of
progressive ataxias [179], clinicians are left to themselves to
work out the best solutions for each patient. The clear lack of
clinical trials and therapeutic follow-up studies for SCA3 has
not allowed the establishment of a pipeline that standardizes
patient management and provides the best evidence-based
care. Moreover, the small sample size and short duration of
the trials completed to date have also been a strong limitation
in the identification of effective therapeutic strategies.

The type of treatment currently offered to each SCA3 pa-
tient depends on 1) the clinical subtype of the disease, 2)
presenting symptoms, and 3) associated comorbidities [12,
183, 184]. Treatment response is variable, with continuous
monitoring of patients’ symptoms being necessary to adjust
it accordingly [12, 181]. A symptom-based list on the current-
ly available pharmacological and non-pharmacological thera-
pies is detailed in Tables 3 and 4, respectively.

Surgery is also available as an end-stage option, when other
treatments have failed or are no longer sufficient to ensure
quality of life for patients. Neurosurgery with deep brain stim-
ulation is an option for unmanageable dystonia or tremor [230,
231], rhizotomy for severe spasticity with associated deformi-
ties [232], and percutaneous gastrostomy to ensure adequate
nutrition when dysphagia is severe [233]. In conclusion, while
targeted therapies do not reach the clinic, a multimodal and
dynamic approach is essential to ensure quality of life for
patients, with each receiving personalized care according to
the most debilitating symptoms.

Clinical Trials in SCA3: Advances
and Challenges

Several clinical trials have been carried out for SCA3, but
none has yet provided a robust and impactful treatment for
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patients [234]. Table 2 summarizes information on trials that
are ongoing or have been completed recently. Currently, there
are 4 active interventional studies for SCAs that include SCA3
patients: 2 with drugs (troriluzole and BHV-4157, a prodrug
of riluzole; NCT03701399 and NCT03408080, respectively),
1 with umbilical cord mesenchymal stem cell therapy
(NCT03378414), and 1 with cerebello-spinal transcranial di-
rect current stimulation (NCT03120013). To date, there have
been a total of 15 interventional studies in SCA3 or that in-
cluded SCA3 patients [234]. While multiple compounds and
approaches have been suggested in the preclinical setting as
potential treatments for SCA3 [174, 178], little has translated

to clinical studies, which is clear by the small number of in-
terventional trials carried out so far.

Despite all efforts, no treatment has proven to be robustly
efficient. It is important to attempt to understand the reasons
underlying this lack of efficacy, in order to improve future
trials. One hypothesis is that most drugs that were tested in
patients to date lack proper preclinical evidence supporting
their beneficial effect. In fact, the rationale for their use was
the promising evidence from trials in other neurological dis-
eases, rather than mechanistic information to support their use
in SCA3. Moreover, most of the tested compounds do not
target primary ATXN3-related PQC mechanisms,

Table 1 List of compounds, and respective characteristics, with a positive result on a preclinical trial in rodent models of SCA3 that have not been
tested in a clinical setting

Treatment Current clinical use Chronic
administration
formally tested
in humans?

Described side effects Preclinical study Remarks

17-DMAG None No Several gastrointestinal,
ocular and liver side
effects

[90] In study for several types of
cancer

Butylidenephthalide None No Unknown [168] Compound isolated from
Angelica sinensis

Caffeine • Prematurity lung
disease

• Orthostatic hypotension

No Insomnia, tremor,
tachycardia, dyspepsia

[169] Chronic intake decreases
effects (habituation)

Calpastatin O/E None No Unknown [50] Gene therapy

Citalopram • Major depression
• Panic disorder

Yes Headache, gastrointestinal
and ocular effects

[164, 170, 171]

Cordycepin None No Unknown [92] Compound isolated from
Cordyceps fungi; clinical
studies only performed
with the combination of
cordycepin and pentostatin
in hematological malignancies

Creatine None Yes Gastrointestinal effects [148] Available as a supplement

Dantrolene • Malignant hyperthermia
• Neuroleptic malignant

syndrome

Yes Muscle weakness and
gastrointestinal effects

[158] Also indicated for spasticity
(possible confounding
effects in clinical trials)

H1152 None No Unknown [172] ROCK inhibitor

Resveratrol None Yes Gastrointestinal effects
(acute)

[91] Poor pharmacokinetic profile
has hindered its clinical use

Sodium butyrate None Yes Unknown [118] Available as a supplement; in
study for intestinal disorders
(enema formulation)

T1-11/JMF1907 None No No clinical studies [173] Compound isolated from
Gastrodia elata (T1–11)
and respective synthetic
analog (JMF1907)

Temsirolimus • Renal cell carcinoma
• Mantle cell lymphoma

Yes Increased susceptibility
to infection, blood
dyscrasias, metabolic
changes, gastrointestinal
and respiratory effects

[84] Clinical studies were carried
out with IV injection

O/E = overexpression
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counteracting instead one of the many downstream conse-
quences of this insult [174]. Therefore, it is understandable
that most drugs had moderate effects at best. For example,
several neurotransmission modulators have been tested (such
as tandospirone, riluzole, fluoxetine, varenicline, and
valproate), with mild to no efficacy in improving ataxic symp-
toms [182, 187, 189, 190, 193, 235]; while neuroprotection
and synaptic transmission improvement might have been
achieved, the other processes that are affected due to the
ATXN3 mutation most likely remained unaddressed. A simi-
lar reasoning can be used for autophagy modulation with
lithium-based compounds, which was of no benefit in mouse
models and had limited impact in human trials [88].
Interestingly, preclinical data has suggested that compounds
thought to target downstream processes of ATXN3 aggrega-
tion have also an effect on the primary loss of PQC mecha-
nisms, namely citalopram, creatine, and trehalose, making
them great contenders for translation [148, 164, 236]. In sum-
mary, efforts to uncover disease-modifying treatments in
SCA3 should have a robust mechanistic background and,
more importantly, sufficient preclinical data to support their
reliability and efficacy prior to a potential clinical trial.

Clinical trials in rare diseases face several challenges and
are usually harder to carry out than for more common disor-
ders [237]. Therefore, studies for this type of disorders are
endowed with regulatory flexibility from consumer protection
agencies [238]. Rare diseases are defined as having a preva-
lence of 4 to 5 cases per 10,000 or lower [239]. Autosomal
dominant SCAs make part of this group, having a prevalence
of 2.7 cases per 100,000 [240], SCA3 being the most preva-
lent autosomal dominant SCA [240]. This disease is in a rel-
atively privileged position when it comes to clinical trials: it
can benefit from special regulations while having studies with
sufficient sample size to have more powerful, reliable, and
replicable results. Among all the special regulations that exist
for rare diseases, the most important for SCA3 are 1) the
possibility of orphan drug status [241], 2) the financial breaks
on approved drugs and devices [242], and 3) the possibility of
combining trial phases [237]. This can motivate researchers to
pursue the translational of therapeutics to the patient setting.

Interestingly, while clinical trials are lacking, there are sev-
eral disadvantages of these studies in rare diseases that can be
easily overcome in the case of SCA3. First, the poor under-
standing of the natural history of rare diseases hinders the

Table 2 List of registered clinical trials for SCA3 (or that include SCA3 patients) that have been completed until 2011

Intervention Phase Characteristics Participants Primary outcome Identifier

Deep repetitive transcranial
magnetic stimulation

II • Open label
• No placebo arm

20 SARA score NCT02039206*

Weight in lower limbs NA • Investigator-blind
• No placebo arm

20 Gait speed NCT02906046*

Trehalose (intravenous) II • Double-blind
• Random allocation (15 mg vs 30 mg dose)
• Parallel groups
• No placebo arm

15 Adverse events, physical
examination, 12-lead ECG,
vital signs, and safety
laboratory evaluations

NCT02147886*

Lithium carbonate (oral) II–III • Double-blind
• Random allocation (treated vs placebo)
• Parallel groups

62 II (safety and tolerability);
III (NESSCA)

NCT01096082*

Varenicline (oral) II • Double-blind
• Random allocation (treated vs placebo)
• Parallel groups

20 SARA score and adverse
effects

NCT00992771*

Umbilical cord MSCs
(intrathecal)

II • Open label
• Random allocation (single injection

vs continuous infusion vs untreated)
• Parallel groups
• No placebo arm

45 SARA score NCT03378414†

Dalfampridine (oral) NA • Double-blind
• Random allocation (treated vs placebo)
• Crossover groups

20 T25FW, BAG, and
BT scores

NCT01811706†*

BHV-4157 (riluzole
prodrug, oral)

III • Open label
• No placebo arm

24 SARA score NCT03408080†

Troriluzole (oral) III • Double-blind
• Random allocation (treated vs placebo)
• Parallel groups

230 SARA score NCT03701399†

Cerebellar transcranial
direct current stimulation

NA • Double-blind
• Random allocation (treated vs sham)
• Parallel groups

21 SARA and ICARS scores NCT03120013†

*Completed
† Includes diseases other than SCA3
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establishment of proper endpoints, interventional window,
and primary outcomes [237]. For SCA3, 2 longitudinal cohort
studies (follow-up visits after 1 year and 2 years for the first;
median observation time of 49 months for the second) were
able to provide valuable information on its natural history,
estimate the sample size needed for statistically powerful clin-
ical trials, and conclude on the patients/disease’s characteris-
tics that correlate more with disease progression [243, 244].

On the other hand, the evaluated population was based on
European centers only, which limits the confidence for extrap-
olation to other cohorts, because SCA3 patients show high
clinical heterogeneity [245]. Nevertheless, data on the natural
history of disease can also be drawn from patients in clinical
trials which are not engaged in treatment [175, 246].

Second, the establishment of clinical meaningful readouts
is also a problem for disorders with such low prevalence [234,

Fig. 2 Pipeline for therapeutic
advances in SCA3. Based on the
molecular pathogenesis of SCA3,
several drugs that target various
aspects of dysfunction have been
tested in preclinical models of the
disease. Drugs with promising
preclinical trial results should be
evaluated for their potential
translation, namely to be acutely
safe, chronically tolerated, have
long-term efficacy without loss of
effects, and be accompanied by
drug-specific biomarkers and
measures of drug target engage-
ment. These are the drugs that
should reach clinical trials first; if
a drug is repurposable, a regula-
tory fast track can be used to reach
the clinical trials more easily.
Clinical studies in SCA3 also
hold some particularities that are
essential for their planning and
design. Novel drugs or interven-
tions that reach the clinical setting
have to be integrated in the patient
hub, which also includes
symptom-directed treatments
(pharmacological and
nonpharmacological) and the pa-
tient associations and support
groups. ASO = antisense oligo-
nucleotide; ICARS =
International Cooperative Ataxia
Rating Scale; polyQ =
polyglutamine; SARA = scale for
the assessment and rating of
ataxia; SCA = spinocerebellar
ataxia
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237]. In the case of ataxic syndromes, 2 scales are commonly
used: the scale for the assessment and rating of ataxia (SARA)
[247] and the international cooperative ataxia rating scale
(ICARS) [248]. While small changes in the scores of these
scales might be statistically significant in trials, the impact of
such in patient’s symptoms and quality of life can be mean-
ingless, being important to thoroughly define which score
changes are, in fact, impactful [249]. Despite this, several
studies have proposed these scores as the best qualitative mea-
sure for ataxic symptoms and these have been validated in
several populations [250–254]. Since consensus on the best
scale to use is hard to achieve with current evidence, clinical
researchers should report several different scores, as this al-
lows direct comparison with other studies, which are likely to
have used at least one of the same scales. Natural history was
also assessed with the SARA score, allowing the standardiza-
tion of future studies [243, 244]. Finally, noncerebellar symp-
toms have been also evaluated in the natural history of SCA3
and should be reported thoroughly, as these can also be ex-
tremely debilitating for patients [255].

While the gold standard for interventional studies is a pla-
cebo-controlled, double-blind, randomized trial, this is often
impractical for rare diseases, mostly due to the extremely low
prevalence and geographical scattering of patients [256]. In

fact, 10 out of the total 15 clinical trials performed to date in
SCA3 are either open label or lack a placebo arm (Table 2)
[174]. This is a common practice in genetic diseases because
these are often extremely severe, and it is best conduct to treat
all patients in the trial with the experimental intervention
[257]. However, the conclusions that can be drawn are weaker
and more biased [258]. In SCA3, progression is slow and the
disease does not affect development (contrary to several pedi-
atric genetic disorders) [183]: ethically, this supports the fea-
sibility of a robust clinical trial. Furthermore, having already
knowledge on natural history and validated tools for outcome
assessment, placebo-controlled trials can be designed in a way
that conclusions are provided much faster and with less inse-
curity, enabling all patients to undergo treatment quickly
[259].

The final aspect regarding clinical trials in SCA3 is the
inclusion of this disease in a group of disorders based on
similar clinical presentation (spinocerebellar ataxia) and path-
ogenesis (triplet repeat expansions) [260]. Researchers have
been studying the commonalities between all polyQ SCAs
(SCA1, SCA2, SCA3, SCA6, SCA7, and SCA17) to uncover
similar mechanisms of pathophysiology that are targetable as
treatments [31, 261, 262]. In fact, 5 out of the 15 clinical
studies in SCA3 have also included patients with other

Table 3 List of available symptomatic pharmacological treatments for SCA3

Symptoms Pharmacological treatments

Ataxia Only varenicline is recommended to improve gait [181, 182]. Clinical studies with tetrahydrobiopterin
[185, 186], riluzole [187, 188], tandospirone [189, 190], IGF-1 [261], and valproate [191] have had
mixed results or provided insufficient evidence to support their use. Lithium [175],
trimethoprim/sulfamethoxazole [192], fluoxetine [193], and lamotrigine [194] did not improve ataxic
symptoms. Since most trials have important limitations, as previously mentioned, these results on
efficacy should be interpreted with caution

Spasticity Botulinum toxin administration can be effective [195]. Alternative and/or complementary
pharmacological therapies available are phenol blocks [196], baclofen [197], benzodiazepines [198],
or gabapentin [199]

Dystonia Options include trihexyphenidyl [200], baclofen [201], tetrabenazine [202], dopaminergic drugs [203],
or botulinum toxin (for focal dystonia) [204]

Muscle cramps These can be addressed with mexiletine [205] or carbamazepine [206]

Parkinsonism (bradykinesia, rigidity,
and tremor)

When present, these symptoms are usually responsive to levodopa or dopaminergic agonists [207, 208]

Ophthalmological symptoms
(diplopia, nystagmus,
blurry vision)

Gabapentin [209] or baclofen [210] are recommended drugs for reduction of abnormal eye movements

Vestibular dysfunction Patients may momentaneously benefit from antihistamines, benzodiazepines, and/or antiemetic drugs
[211–213]

Chronic pain Drugs should be selected according to the characteristics of pain, the most common being musculoskeletal
(anti-inflammatory or opioid drugs) [214] and neuropathic pain (tricyclic antidepressants,
carbamazepine, pregabalin, or gabapentin) [215]

Autonomic bladder dysfunction Several antimuscarinic agents are available and should be tailored in accordance with the comorbidities
of each patient [216]

Sleep disturbances Benzodiazepines are useful to improve sleep quality [217]. Associated daytime fatigue may also be treated
with modafinil [218]

Depression While its relationship with SCA3 pathophysiology is unclear, there is a high prevalence of this
symptom/disorder in patients, which should be addressed with common antidepressant drugs [219]
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polyQ SCAs (Table 2) [174]. This strategy has the obvious
disadvantage of leaning away from disease-specific changes
that could also be interesting therapeutic targets, but can very
significantly increase the sample size of clinical trials. In con-
clusion, clinical trials for SCA3 have been sparse and
underwhelming in terms of their power to detect change, yet
there are several advances and opportunities that should allow
for a sorely needed increase in the number of interventional
studies that can be performed.

Translational Potential of Current
Experimental Therapies: Key Aspects
to Consider

Extensive research in vitro and in animal models has provided
important clues on the pathogenesis of SCA3 and proposed
strategies for treatment [178]. Moreover, numerous preclinical
trials in different mouse models have been carried out, creat-
ing a long list of compounds and therapeutic approaches that
have proven efficiency preclinically [174] (Fig. 2). Since it is
not likely that all treatments will be used in interventional
studies, it is important to select those with higher efficiency
potential and which adapt to the characteristics of the disease.
In the specific case of SCA3, one of the most important as-
pects of a potential treatment is that it likely needs to be ad-
ministered in a lifelong manner [179, 181]. For example,
drugs with side effects that eventually lead to disability should
be avoided in such a chronic setting. Moreover, the treatment
should be able to reach the central nervous system, which is a
difficulty for both drugs (must cross the blood–brain barrier or

be administered intrathecally) [263] and devices (surgical ac-
cess to the CNS might be required). While in some extremely
severe and rapid progressing rare diseases it is feasible to
overlook these problems, SCA3 has an adult onset and slow
progression, making these issues important barriers to over-
come. Despite all, one advantage for SCA3 patients is the
possibility of initiating treatment presymptomatically, because
genetic testing can be performed [6]. In fact, previous work
has highlighted that patients would be more likely to undergo
presymptomatic genetic testing if treatment was available
[264]. Therefore, drugs and devices that translate to patients
should be thoroughly selected based not only on their efficien-
cy but also on how realistic their use can be.

Pharmacological treatment options which had positive re-
sults in preclinical trials but have never translated to human
studies have their characteristics summarized in Table 1.
Clinical trials with drugs that are already actively used in the
clinic have several advantages, because drug repurposing can
undergo a fast track regarding regulations [265]. These com-
pounds have already been tested for their pharmacokinetic and
pharmacodynamic properties, have well-established side ef-
fects, and often have available information regarding chronic
administration [266]. While no prediction is a guarantee of
success, this information can help in the choice of which drugs
to test first in patients, as well as which are the least likely to
succeed.

Regarding the repurposing of drugs for SCA3 that have
positive preclinical data, caffeine likely has a benign course
with chronic administration, but can eventually lose effect due
to desensitization as previously reported [267]. Citalopram is
a good contender because chronic administration has been

Table 4 List of available
symptomatic non-
pharmacological treatments for
SCA3

Symptoms Non-pharmacological treatments

Physical therapy While it has been shown to improve spasticity and dystonia, but not delay the
progression of other motor symptoms [220, 221], physical therapy is essential to
maintain a sense of independence and to provide strategies to cope with daily life
activities [12]. Exercising is complementary to this approach and should be
encouraged. Moreover, a novel exergaming strategy was shown to improve ataxic
symptoms [222]

Mobility aids As the disease progresses, mobility aids (such as canes, crutches, walkers, rollators,
wheelchairs, andmotorized scooters) are essential to allow for independent activity
and prevent social isolation [223]

Speech therapy This is extremely important for the treatment of dysarthria, dysphagia, and sialorrhea,
because pharmacological therapies are very limited to address these symptoms
[224, 225].When dysphagia is limiting, nutritional supplementation is important to
prevent insufficient caloric intake and metabolic imbalances [226]

Occupational therapy Because depression is one of the most common comorbidities of SCA3, occupational
therapy plays an essential role in the management of mood disturbances and
maintenance of motivation in patients [227]. Counseling and psychotherapy can
also be important measures of care [228]

Lifestyle and home
adaptations

Preserving a sense of independence and the routine of the patients’ lives is 1 of the
most important aspects of the management of SCA3 [12]. There are multiple
possibilities such as home modifications, adapted eating utensils, and electronic
communication devices [229]
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thoroughly shown to be mostly benign [268], and no long-
term loss of effect has been reported in patients. Dantrolene
has little side effects, but its muscle-relaxing effect can be
overwhelming for patients and might increase bias in clinical
studies [269]. Temsirolimus is unlikely to reach the clinic
because it has devastating side effects even with acute admin-
istration, having its use likely restricted to the oncology field
[270]. All other drugs with a positive effect in neurological
symptoms in a preclinical trial in SCA3 rodent models (and
which have not been tested in SCA3 patients) are not used in
the clinic for other disorders.

Drugs which are available as over-the-counter supplements
have the advantage of having a good safety profile [271], yet
face one of the largest difficulties in translating to patients: the
lack of financial support from commercial sponsors [272,
273]. This makes the possibility of a large, well-designed trial
very small. In SCA3, creatine is a potentially beneficial sup-
plement with little side effects and extensive information on
its characteristics [274]. Resveratrol has also shown very in-
teresting properties in several disorders, including SCA3, but
its pharmacokinetic properties have negatively impacted its
entrance in the clinical setting [275]. Finally, regarding exper-
imental drugs which have never been tested in patients and are
not commercialized, prediction of their success is very hard
and is only based on their described mechanism of action
in vitro and in animal models. Drugs that target essential cel-
lular processes or pleiotropic pathways must be assessed with
caution in patients. Regarding SCA3, compounds such as 17-
DMAG (HSP90 inhibitor), sodium butyrate (histone
deacetylase inhibitor), and H1152 (ROCK inhibitor) must
have their symptom reduction vs side effect profile carefully
evaluated, because they target processes that are ubiquitous
[276, 277].

Gene therapy is another highlight of potential approaches
for SCA3. With the enormous growth of techniques for gene
editing, the elimination of the underlying cause of the disease
is a highly attractive possibility [278]. The use of antisense
oligonucleotides (ASOs) established one of the major steps
towards gene therapy, with nusinersen (an ASO that increases
levels of full-length SMN protein) being the first clinically
approved therapy for spinal muscular atrophy [279]. In
SCA3, ASOs have been used either to decrease overall
ATXN3 levels or to generate a truncated ATXN3 which lacks
the polyQ expansion [280, 281]. While these are promising
strategies, it is essential that the suggested effects of loss-of-
function ATXN3 [71] are well studied in order to evaluate if
the beneficial effects outweigh the risks, particularly because
ATXN3 gene silencing in some cell types has been shown to
cause accumulation of DNA damage, increased proliferation,
and loss of adhesion and of differentiation, all of which are
hallmarks of cancer [71, 282]. Furthermore, the need for in-
trathecal administration of ASOs is also a downside of this
approach. Another gene-directed strategy that has been tested

with positive results is the use of short hairpin RNAs
(shRNAs) targeting mutant ATXN3 [283]. Moreover, the
safety profile of lentiviral-mediated delivery of shRNAs has
also been established, making a step towards translation [284].
However, the challenges for viral-mediated approaches are
some of the largest in the clinical trial setting: the inflamma-
tory response to viral particles, the tissue-unspecific uptake of
the content, the lack of entry in target cells, oncogenic side
effects, and the overall absence of effect in most clinical trials
carried out are some of the aspects that make these types of
approaches hard to implement [285–288]. Finally, while
CRISPR/Cas9 technology has been employed to remove the
polyQ tract of ATXN3 in iPSCs [289], no preclinical trials in
rodents have been published. In summary, while there is a
significant number of contender approaches for clinical trials,
we should privilege those with a higher chance of not only
being efficient, but also having a realistic potential of being
established as a treatment for SCA3.

Managing Patients’ Expectations
Regarding Therapy Development

Patients that suffer from rare diseases, for which little treat-
ment options are available, tend to be more aware of progress
in research [290, 291]. Since the concept of a genetic disorder
is usually harder to grasp for patients, it is important that
clinicians take time to properly explain essential concepts
[291]. This not only empowers patients but also avoids false
judgment regarding new therapeutic developments, because
research databases are also available to the general public
[292]. Hence, it is extremely important that SCA3 patients
are appropriately informed not only at the time of diagnosis
but also in follow-up visits when it comes to progresses in
research.

One of the most important interfaces that bridge patients
and research is the supporting organizations [293]. Several
organizations for patients with ataxic syndromes exist
throughout the world, and patients should be encouraged to
become part of them [294]. A central aspect of these organi-
zations is that they are a platform for the transmission of in-
formation to patients, creating a privileged setting to “trans-
late” newly published research into lay language, therefore
informing while ensuring scientific reliability [295].
Furthermore, organizations are also an important mean of
recruiting patients to clinical trials, because a direct contact
is easily made [296].

Finally, it is crucial that clinicians manage patient’s expec-
tations towards the development of treatments [297].
Professionals should consistently and reliably inform patients
but also explain the difficulty and challenges of therapy de-
velopment in the context of rare disorders. These approaches
should provide the patient with a realistic expectation on its
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condition while maintaining hope for the possibility of a new
treatment being developed and translated into practice.

Conclusion

In this review, we have provided an extensive overview of the
main questions that remain unanswered regarding the molec-
ular pathogenesis of SCA3, and what does the extensive and
high-quality research so far teach us on the more likely initial
events that compromise cellular function. We also addressed
the translational/clinical research development and provided a
realistic perspective of what can be expected from future in-
terventional studies. While research for rare diseases faces
harder challenges than more common disorders, SCA3 has a
privileged setting regarding clinical trials, and its epidemio-
logical, clinical, and molecular specificities should be the
main drivers of research. Therefore, scientists should work
for realistic goals in the hope of optimizing the research pro-
cess, ensuring that it will help improve the quality of patients’
lives in the end.
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