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Abstract
Alzheimer’s disease (AD) is an irreversible, progressive disease that slowly destroys cognitive function, such as thinking,
remembering, and reasoning, to a level that one cannot carry out a daily living. As people live longer, the risk of developing
AD has increased to 1 in 10 among people who are older than 65 and to almost 1 in 2 among those who are older than 85
according to a 2019 Alzheimer’s Association report. As a most common cause of dementia, AD accounts for 60–80% of all
dementia cases. AD is characterized by amyloid plaques and neurofibrillary tangles, composed of extracellular aggregates of
amyloid-β peptides and intracellular aggregates of hyperphosphorylated tau, respectively. Besides plaques and tangles, AD
pathology includes synaptic dysfunction including loss of synapses, inflammation, brain atrophy, and brain hypometabolism,
all of which contribute to progressive cognitive decline. Recent genetic studies of sporadic cases of AD have identified a score of
risk factors, as reported by Hollingworth et al. (Nat Genet 43:429–435, 2001) and Lambert et al. (Nat Genet 45:1452–1458,
2013). Of all these genes, apolipoprotein E4 (APOE4) still presents the biggest risk factor for sporadic cases of AD, as stated in
Saunders et al. (Neurology 43:1467–1472, 1993): depending on whether you have 1 or 2 copies of APOE4 allele, the risk
increases from 3- to 12-fold, respectively, in line with Genin et al. (Mol Psychiatry 16:903–907, 2011). Besides these genetic risk
factors, having type 2 diabetes (T2D), a chronic metabolic disease, is known to increase the AD risk by at least 2-fold when these
individuals age, conforming to Sims-Robinson et al. (Nat Rev Neurol 6:551–559, 2010). Diabetes is reaching a pandemic scale
with over 422 million people diagnosed worldwide in 2014 according to World Health Organization. Although what proportion
of these diabetic patients develop AD is not known, even if 10% of diabetic patients develop AD later in their life, it would double
the number of AD patients in the world. Better understanding between T2D and AD is of paramount of importance for the future.
The goal of this review is to examine our current understanding on metabolic dysfunction in AD, so that a potential target can be
identified in the near future.
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Glucose Hypometabolism in AD

ApoE4 homozygote individuals exhibit reduced cerebral glu-
cose metabolism in areas classicaly associated with AD [50,
104]. Although the extent of glucose hypometabolism was
significantly less in ApoE4 individuals than AD patients, it
is noteworthy because these individuals were cognitively nor-
mal at the time and were a decade younger than typical age
when AD-like symptoms appear. T2D patients also exhibit
abberant [18F]-fluoro-2-deoxy-2-D-glucose positron emission
tomography (FDG-PET) uptake patterns at prediabetic and
cognitively normal stages [4, 6, 11]. Alterations of glucose
uptake at presymptomatice stages in both AD and T2D sub-
jects suggest that metabolic disruption in the brain occurs
early in the development of AD and T2D, and likely to
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contribute to disease progression or pathology. If metabolic
disruption plays a disease-modifying role, it can potentially
render room for altering diet as a way to influence the disease
progression. InDrosophila, increasing energy flux by regulat-
ing mitochondrial activity in mushroom bodies that are in-
volved in learning and memory led to improvement in long-
term memory [96], suggesting energy metabolism can posi-
tively influence memory. Similarly, although the number of
patients enrolled was small, individuals diagnosed with MCI
and early stages of AD showed improvement when given
special diet that included an increase in ketogenesis [14].
Albeit the fact that the science behind the influcence on brain
function of a healthy lifestyle that includes regular exercise
and healthier diet is yet to come, these data may be interpreted
as suggesting that peripheral energymetabolism can potential-
ly influence higher brain function.

FDG-PET Imaging to Detect Glucose
Hypometabolism in AD

For several decades, FDG-PET imaging has been employed
for examining the brains of various dementia and AD patients
to study glucose metabolism in the brain. FDG is a short half-
life radioactive analog of glucose that is transported into cells
but not metabolized beyond the first step of the glycolysis
generating FDG-6-phosphate inside the cell. The accumula-
tion of radioactive signals thus reveals the areas in the tissue of
interests that are active in glucose metabolism. AD patients
present widespread FDG hypometabolism in brain region in-
cluding parieto-temporal, posterior cingulate, and frontal cor-
tices [22, 85, 86, 88] (Fig. 1A). By contrast, other regions,
such as the visual cortex, thalamus, and cerebellum, seem to
be preserved [83, 84, 111, 114, 115]. Indeed, FDG-PET
hypometabolic signature is highly conserved in typical AD
cases [114] as well as in early-onset AD patients [37]. In
atypical presentations of AD, this “metabolic signature” is
diluted in varied hypometabolic topographical patterns [100].

Since an abnormal reduction in FDG uptake in the brain is
detectable decades before symptoms appear [50], efforts have
been made to develop it as a predictable “preclinical phase”
biomarker [64]. Indeed, APOE4 homozygote individuals ex-
hibited glucose hypometabolism in the same areas that
showed a FDG reduction long before they showed symp-
toms, albeit to a less extent [104]. APOE is a lipid-binding
protein that transports cholesterol across different tissues and
cells [65], and 1 of its alleles, APOE4, has been identified as a
major genetic risk factor for late-onset AD [75]. Having 1 or
2 copies of APOE4 increases the risk of developing AD 3- to
12-fold [69]. Although the use of “preclinical phase” to de-
fine this period is gaining acceptance, routine use of FDG-
PET appears limited in diagnosing asymptomatic individuals
as being at risk to develop AD. For instance, representative

areas of FDG hypometabolism remains to be determined in
amyloid-positive asymptomatic subjects, autosomal-
dominant Alzheimer’s disease individuals, and in subjects
presenting subjective cognitive decline [25]. In addition, cor-
tical FDG hypermetabolism in the superior temporal gyrus
was reported in cognitively unimpaired (CU) subjects with
significant amyloid deposition in superior temporal gyrus
[38]. The same pattern of hypermetabolism was also identi-
fied in APOE4 carriers in an amyloid status-independent
manner [140]. This could be a compensatory mechanism as-
sociated with early toxic species of Aβ, such as Aβ oligo-
mers that are produced from amyloid precursor protein (APP)
following 2-step proteolytic processing at its extracellular and
interamembrane domains [112].

Abnormalities in glucose metabolism are, however, not
restricted to AD [49]. As such, the National Institutes on
Aging (NIA) and the Alzheimer’s Association (AA) incor-
porated FDG-PET as a biomarker of “neurodegeneration”
in the recent research framework, the NIA-AA 2018. FDG-
PET is in fact being used for differential diagnosis,
distinguishing AD from frontotemporal dementias (FTDs)
with high sensitivity and specificity [101]. In addition, a
systematic review indicates that FDG-PET can discriminate
AD from CU individuals with a pooled sensitivity of 90%
and specificity of 89%. The inclusion of mild cognitive
impairment (MCI) subjects, a more heterogeneous group,
surprisingly produced only slight variation, modifying sen-
sitivity and specificity values to 92% and 78%, respectively
[10]. These findings indicate that in a large group of sub-
jects, FDG-PET is indeed a good biomarker for discrimi-
nating CU, MCI, and AD dementia individuals. In smaller
groups or at the individual level, the validity of FDG to
discriminate MCI patients remains to be determined.

Many in the field are applying FDG-PET to AD mouse
models. The miniaturized version of PET, which is termed
micro-PET, allows high-resolution noninvasive imaging in
small animals, such as rats and mice [34, 63]. Transgenic
animal models with pathological mutations in human APP
exhibit progressive deposition of Aβ in parallel with cognitive
abnormalities and are highly suited for longitudinal assess-
ment with micro-PET [35]. Currently, several studies have
used FDG imaging to investigate glucose metabolism in these
animal models (for review, see [146]). The FDG patterns in
APP mutant mice, however, do not appear to follow exactly
what is observed in human cases. For instance, Tg2576 mice
that express human APPswe under the Prp promoter exhibit
early hypermetabolism at 7 months, but normal FDG patterns
at 9–15 months [58, 74, 78]. APPswe/PS1Δ9 mice under the
Prp promoter also show early hypometabolism at 6 months
coinciding with the beginning of amyloid plaque deposition,
but normal metabolism at later stages at 13–15 months [103,
143]. These differences may be due to technical challenges
that are associated with micro-PET and the small size of the
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mouse brain [146], or the nature of APP overexpression asso-
ciated with transgenic mice. If it is due to technical challenges,
transgenic rats may be better animal models for micro-PET
imaging, due to a larger brain size than mice, such as McGill-
R-Thy1-APP that expresses humanAPP751swe/ind [92] (Fig.
1B).

FDG-PET studies in T2D patients are not numerous,
althougth it is well recognized that type 2 diabetes (T2D)
patients exhibit regional brain atrophy and cognitive impair-
ment even if they are not necessarily diagnosed as having AD
[1, 67, 80]. The reason for the cognitive deficits in T2D pa-
tients is unclear, but it is believed to be due to insulin resis-
tance in the brain [70]. Whether glucose metabolism is also
reduced in T2D patients is unclear since some studies reported
a reduction in FDG uptake [4], while some reported an in-
crease [11]. Also in rodent models, the results are inconsitent:
brain glucose metabolism in db/db mice was reduced based on
[3H]-2-deoxy-D-glucose or [14C]-2-deoxy-D-glucose uptake
[31, 133], while FDG-PET imaging of T2D rat brains showed
an increase [6].

Since both AD and T2D exhibit alterations in glucose
metabolism, a hypothesis was proposed that there might be
a defect in glucose-sensing machinery of the brain in both
AD and T2D [102]. Glucose-sensing neurons and

astrocytes in the brain are found in many regions, but they
are mostly enriched in the hypothalamus and brain stem
[30, 122]. Regardless of the regions involved, glucose-
sensing neurons are divided into glucose-excited (GE)
ones that increase and glucose-inhibited (GI) ones that de-
crease their firing rate under hyperglycemic or hypoglyce-
mic conditions, respectively. The mechanisms by which
GE neurons sense glucose are diverse, which depends on
the type of glucose transporters expressed as well as the
presence or absence of ATP-sensitive K channels and glu-
cokinase, the major glucose sensor [122]. For GI neurons,
on the other hand, activation of AMP-activated protein
kinase (AMPK) appears to play a critical role [18]. Cells
of another type in the hypothalamus that are involved in
glucose sensing are tanycytes in the medial eminence.
Tanycytes are a unique type of ependymal radial glia that
participate in the fenestrated capillary barrier, and whose
processes traverse various hypothalamic nuclei and sur-
round ventrally located capillaries [26]. Like pancreatic
beta cells, tanycytes express Glut1 and 2 and ATP-
sensitive K channels, and respond to glucose puffs [8].
They also express glucokinase that couples the extracellu-
lar glucose levels to insulin secretion [79, 127]. But,
whether there are significant changes in glucose

Fig. 1 FDG metabolism in
Alzheimer’s disease continuum
and transgenic rats. (A) Axial
FDG images of cognitive
unimpaired (CU), mild cognitive
impaired (MCI), and Alzheimer’s
disease (AD) individuals.
Standardized uptake value ratio
(SUVR) was calculated using the
pons as the reference area. (B)
Sagittal and coronal FDG images
in 11- and 19-month-old McGill-
R-Thy1-APP transgenic rats.
SUVR was calculated using the
pons as the reference area
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transporter expression or their function among glucose-
sensing cells of the brain in AD and T2D mouse models
are currently unknown.

What is the significance of the reduction in glucose uptake
in the brain? Since glucose is taken up by neurons and astro-
cytes [24, 30, 73, 147], a general hypometabolism of glucose
in the brain is believed to represent reduced activities at syn-
apses in these cells. Indeed, when brain glucose levels were
increased acutely for 4 h by approximately 2-fold via a micro-
dialysis techique coupled to glucose clamps, interstial fluid
(ISF) Aβ levels increased by 25 to 39% during the hypergly-
cemic challenge at presymptomatic and symptomatic ages,
respectively, in Appswe/PS1ΔE9 mice [76]. Under the same
setting, ISF lactate levels increased during hyperglycemic
challenge. Since lactate released by astrocytes is shuttled to
neurons, the increase in ISF lactate suggests that higher glu-
cose levels in the brain increased neuronal activity [136], al-
though recent studies demonstrated that neurons themselves
take up glucose as well [24, 73].

Connection Between AD and T2D

Insulin Resistance

In addition to the fact that T2D increases the risk of develop-
ing AD later in life at least 2-fold [116], epidemiological stud-
ies also indicate a strong connection between AD and T2D
both of which exhibit vascular lesions, hyperglycemia,
hyperinsulinemia, atherosclerosis, and hypertension [116].
The underlying mechanism linking the 2 chronic diseases,
however, remains unknown.

Insulin resistance is 1 of the 2 major cellular and physio-
logical phenotypes characterizing T2D. It was demonstrated
that the greater the extent of peripheral insulin resistance was,
the lower the glucose uptake was in the brain when a late
middle-aged individual cohort that has AD parental history
was examined [134]. Contrary to the periphery, however,
where glucose uptake is largely insulin dependent, the brain
uses nearly 20% of all glucose in the body in a process that is
largely insulin independent: when rats were rendered insulin
deficient with streptozotocin treatment that destroys insulin-
producing pancreas, intracerebral delivery of leptin restored
glucose sensitivity [33]. These results also suggest that leptin
in the brain can control blood glucose levels in insulin-
independent manner.

Insulin receptor (IR) and insulin-like growth factor (IGF) 1
and 2 receptors are widely expressed in the brain [129, 130]
(Allen Brain Atlas). IR and IGF receptors can form heterodi-
mers with each other, which gives them different affinity to
different types of ligands, such as insulin, IGF-1, and IGF-2
[57]. When IR was deleted in neurons or astrocytes, insulin
resistance ensued suggesting IR is involved in insulin

resistance. A neuron-specific knockout of IR study using
nestin-cre line demonstrates that mice developed obesity, mild
insulin resistance, and demonstrated elevated levels of insulin
and leptin in plasma [15]. On the other hand, when IR was
deleted in astrocytes using hGFAP-creERT2 and GLAST-
creERT2 mice, not only insulin signaling was attenuated, but
also glucose uptake [30]. These results suggest that astrocytic
IR may participate in developing insulin resistance, but more
importantly, it plays a critical role in glucose uptake. It should
be noted that hypothalamic tanycytes also express GFAP
[106] and become labeled in GLAST-creERT2 mice [105],
suggesting it is plausible that tanycyte-mediated glucose up-
take contributed to the phenotype.

In AD mouse background, the role of IR signaling appears
mixed. When nestin-cre-derived IR null mice were crossed
with Tg2576, Aβ peptide levels were reduced with an atten-
uation in p-AKT and p-GSK3 levels [124], suggesting IR
signaling contributed positively to amyloid deposition.
When IGF-1 receptor was deleted fromAPPswe/PS1Δ9 mice,
however, it resulted in modestly higher scores in cognitive
tests, a reduction in astroglyosis and synaptic loss, but in-
creased Aβ aggregation [21], suggesting unlike IR, IGF-1
receptor contributes negatively to the development of AD pa-
thology. The authors argued that IGF-1 signaling is also in-
volved in defibrillation of Aβ plaques, but the mechanisms
remain to be investigated.

Like the receptor knockout studies, a clear consensus has
not been reached as to whether brain insulin levels are indeed
elevated and whether insulin resistance is being detected in the
brain from AD mouse models as well as in human AD brain
samples [120]. For instance, some reported a reduction in p-
AKT and p-GSK3 levels [70, 121], downstream effectors of
insulin signaling, while others reported an increase [36, 94,
139]. A complicating issue in these studies is that the kinases
tested can also be modulated by signals other than insulin/
IGFs, rendering it difficult to assign the observed changes to
insulin exclusively. Perhaps most convincing report came
from the study that measured direct phosphorylation of IR
and its associated IRS-1/2, after stimulating human postmor-
tem tissue explants from AD and control subjects with insulin
[126]. Similarly, Bomfim et al. also reported an increase in p-
IRS-1 in cynomolgus monkeys following direct infusion of
oligomeric Aβ into their brains for 24 days [12]. The latter
report suggests that Aβ peptides themselves signal to activate
IR, perhaps initiating insulin resistance as Aβ peptides accu-
mulate. Aβ peptides also appear to influence metabolic
dysruption in a different ADmouse model of 3XTG mice that
expresses APPswe, tauP301L under the Thy1.2 promoter in
PS1M146V knockin background. Only the female and not
male mice developed glucose intolerance and insulin resis-
tance that worsened progressively in correlation with pro-
nounced Aβ deposits [132], suggesting insulin resistance de-
velops with amyloid pathology.
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Leptin Resistance

Leptin resistance is another cellular and physiological pheno-
type of T2D that can potentially influence AD pathology [48].
Leptin is a hormone produced by white adipocytes [40] but
signals in the hypothalamus after crossing the blood-brain
barrier [40]. With obesity, circulating leptin levels increase
resulting in hyperleptinemia, which can elicit leptin resistance
[28]. When APP23 mice that express APPswe under the
mouse Thy1 promoter were crossed with leptin mutant ob/
ob mice, the mice exhibited glucose intolerance that is worse
than ob/ob mice, and also developed insulin resistance at
3 months, well before Aβ begins to accumulate, while ob/ob
mice did not [125]. Already at 2 months, mice exhibited se-
vere cognitive deficits although there was very little Aβ de-
tectable. The authors also crossed the AD mice with NSY
mice that develop T2D-like symptoms [113], and a similar
phenotype was observed albeit at much attenuated levels.
Although the phenotype of premature cognitive deficit can
be attributed to obesity-associated pathology, these data clear-
ly highlight the role of leptin in cognition. It also implicates
defective leptin metabolism in the development of AD
pathology.

Defective leptin metabolism has actually been shown in
Tg2576, which had lower serum leptin levels at 3 months
compared to the wild-type controls [48]. This is in part due
to a significant reduction in total body fat, detectable at ages
younger than 2 months old in Tg2576 mice. Since Tg2576
mice do not show plaques until they are 11–13 months old,
these data illustrate the presence of an early metabolic disrup-
tion in the mice. Correlative to low serum leptin levels,
Tg2576 mice appear to have a functional defect in the hypo-
thalamus; their fasting glucose levels are higher than in the
wild-type mice, and fasting-induced increase in NPY and
AgRP RNAs was completely lost in Tg2576 mice. NPY-
positive arcuate neurons from Tg2576 mice also failed to re-
spond to leptin electrophysiologically, and the authors dem-
onstrated this was likely due to Aβ42 interfering with leptin
action. In line with these data, we found that 5XFAD mice
exhibit leptin resistance at 6 months even on normal chow but
not insulin resistance, unless fed with 60% high-fat diet (HFD,
Fig. 2, insulin resistance not shown). Whether leptin levels are
altered in human AD cases, on the other hand, is not conclu-
sive: higher cerebrospinal fluid (CSF) leptin levels were re-
ported in AD subjects without any correlation with BMI [13],
but serum leptin levels were lower in AD cases compared to
control individuals [97].

If Aβ42 indeed interferes with leptin signaling, the mech-
anism by which Aβ42 inhibiting leptin signaling needs to be
elucidated. If the phenotype is due to an inhibitory crosstalk
between the Aβ42 and leptin signaling pathways, potential
targets should be those that are modulated by both Aβ42
and leptin. A candidate is AMP-activated protein kinase

(AMPK), since Aβ42 activates AMPK [77, 128, 142], while
leptin inhibits it [82]. Indeed, AMPK phosphorylation was
increased in APP/PS2 mice that express hAPPswe and
hPS2-N141I under the Thy1 and Prp promoters, respectively
[71], as well as in APPsw/PS1ΔE9 mice under the Prp pro-
moter [118]. We have also found that AMPK activity is sig-
nificantly increased in 5XFAD mice (data not shown), which
increases further with HFD. Although the fact that an increase
in AMPK activity is observed in multiple AD models is en-
couraging in placing the focus on AMPK as the putative target
of leptin resistance, the role of AMPK activation and leptin
resistance itself in overall AD pathology needs to be fully
examined.

The transport of leptin into the brain constitutes an impor-
tant part of leptin metabolism since leptin acts mostly in the
brain. Leptin is produced from adipocytes and transported into
the brain through microvessles and the fenestrated barrier in
the medial eminence. Studies that utilized targeted leptin re-
ceptor knockout mice suggest that the leptin receptor itself is
involved in leptin uptake. When leptin receptor was deleted in
endothelial cells using Slco1c1-creERT2 line, 125I-leptin up-
take was reduced by 60% in the cortex and ventral tegmental
area, and ~ 40% in the hypothalamus, reflecting 50% reduc-
tion in leptin receptor RNA detected in the brain [23]. In the
global leptin receptor knockout mice, however, leptin uptake
was reduced only by 40% [43]. It is possible that the discrep-
ancy is due to some leptin molecules crossing the blood-brain
barrier that does not rely on endothelial cells, such as the
fenestrated barrier of the arcuate and medial eminence.
Tanycytes in the medial eminence were shown to take up
leptin both in vitro and in vivo [5], which were not targeted
in endothelial deletion of the leptin receptor.

Whether leptin levels are altered in human AD subjects is
not completely settled. In a 9-year follow-up study of elderly
patients, it was found that the higher the serum leptin levels
were, the lower the risk of developing dementia and AD [68].
Similar results were also reported by others [9, 44, 51, 56]. In
contrast, other groups reported that lower serum leptin levels
were associated with cognitive impairment in T2D patients,
and that leptin levels in the CSF and plasma were higher in
AD and dementia patients [141] and a significant increase in
CSF leptin levels among AD cases [13]. The reasons for the
opposite results are not clear at the present time.

Disruption in Circadian Rhythm

It has been reported since the early 1980s that AD patients
experience disturbed sleep, which is now being called as
“sundowning” behavior [98, 99]. Disruption in circadian
rhythm (CR) can have significant influence in overall meta-
bolic balance [27]. There is a strong correlation between cir-
cadian disruption and cardiovascular disease, obesity, and
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hyperglycemia, as observed among individuals who work on
the night shift [54, 55, 93, 131]. In addition, expression levels
of many metabolic enzymes as well as proteins involved in
detoxification and stress responses cycle according to CR.
Some of these include glucose transporter, glucokinase, glu-
cagon, pyruvate kinase, acyl CoA dehydrogenase, aldehyde
dehydrogenase, fatty acid synthase, glycogen phosphorylase,
nicotinamide phosphoribosyltransferase, and AMPK [19, 29,
59, 60, 66, 91]. Levels of Aβ peptides and tau in the brain also
fluctuate according to CR, suggesting CR influences APP and
tau metabolism.

Recent research demonstrates a clear link between dis-
turbed sleep and accumulation of Aβ peptides and tau. For
instance, disrupting normal sleep in mice led to a 2-fold in-
crease in ISF tau [46]. An increase in tau in CSF was also
observed in humans by sleep intervention. Similarly to tau
release, Aβ peptide levels increased upon sleep deprivation
both in mouse ISF and human CSF upon sleep perturbation
[53, 72, 107].

ISF and CSFAβ peptides are known to cycle according to
diurnal patterns both in rodents and humans [53]. Since ad-
ministration of tetrodotoxin (TTX) that blocks sodium chan-
nel reverses the increase in ISF Aβ, it is hypothesized that
neuronal activity is responsible for the increased release of
Aβ peptide at nighttime. The link between neuronal activity
and an increase in ISFAβ and APP processing has been dem-
onstrated [20, 52]. What would be the basis for increased
neuronal activity in synaptopathic diseases such as AD? It
was reported that although there were general depression in
excitatory Ca2+ transients in APP23:PS45 mice compared to
the wild-type controls, a group of neurons that were located
within 60 μm from amyloid plaques exhibited a surprising
hyperactivity [16]. The hyperactivity was attributed to defec-
tive GABAnergic synaptic inhibition based on pharmacolog-
ical studies [16]. These results may lend support for the ob-
servation that epileptic seizures are more common among AD
patients [2, 41, 42, 81, 90, 108, 110]. If abberrant seizure-like
activity is prevalent in AD brains, one can envision that such
activity can deliver stimuli that ultimately leads to

accumulation of Aβ peptides. Whether ISF Aβ peptides are
released preferentially from plaque-associated ones is un-
known, and so is the question whether Aβ released upon
neuronal activity is in some way related to hyperactive neu-
rons: increasing neuronal activity facilitates cleavage of APP
[52]. Could sleep deprivation increase perhaps aberrant or
excessive neuronal activity like epileptic seizures at night? It
is noteworthy that when mice were optogenetically stimulated
in the perforant pathway to provide chronic neuronal activa-
tion, they exhibited seizure soon after each optogenetic stim-
ulation [138]. These data suggest that the intensity of neuronal
activity evoked by experimental stimulation paradigm is
higher than normal neuronal activity. Whether seizure occur-
rences are higher at night in AD patients is currently not
known.

An alternative explanation for the link between sleep dep-
rivation and increased Aβ and tau release in ISF and CSFmay
be that sleep deprivation inhibits efficient disposal of Aβ pep-
tides, since glymphatic system becomes more efficient during
sleep by creating convective fluxes in periarterial space [137].
Decreased disposal of Aβ peptides upon sleep disturbances
also provide explanation to the observed correlation between
lower CSFAβ 42 and rapid progression of dementia [117]. It
is unlikely, however, that reduced ISF tau disposal underlies
the increased CSF tau levels, since the higher CSF tau corre-
lates with more severe dementia in humans [117].

When sleep is disturbed, it also disrupts our normal CR. It
is well known that there is a strong connection between the
CR and metabolism. The central clock in suprachiasmatic
nucleus (SCN) is influenced by internal metabolite levels in-
cluding blood glucose and lipids [7, 89]. The identity of met-
abolic nutrient sensors that are coupled to the CR is currently
unknown, but the focus is on AMPK and the pathway involv-
ing NAD+/Sirt1 metabolism, since both AMPK and Sirt1 ac-
tivities are regulated by the clock as well as nutritional status
[7]. AMPK phosphorylates crytochorme, Cry, directly [62].
Accordingly, the CR in the liver of LKB1 knockout mice is
disrupted. LKB1 is not the upstream kinase for AMPK in the
brain [135], but the identity of a kinase that phosphorylates

6

5

4

3

2

1

0
Saline Leptin

n=7
n=9

1 month old

p<0.01

n=6
n=8

6

5

4

3

2

1

0 Saline Leptin

6 months old

WT
FAD

n=8
n=11

6

5

4

3

2

1

0
Saline Leptin

3 months old

Fig. 2 5XFAD mice develop leptin resistance at 6 months on normal chow. 5XFAD mice were subjected to leptin sensitivity assay by measuring 24-h
food consumption after 5 mg/kg of human leptin injection
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and activates AMPK in the brain in a CR-dependent manner is
yet to be deterimined. Sirtuins are part of a feedback loop with
the core clock in NAD-dependent manner [3, 87]. Clock-
BMal1 in turn activates the genes involved in NAD+ synthe-
sis, whose cellular concentration cycles in alignment with the
CR.

It should be added here that AD transgenic mice are known
to exhibit a disrupted CR. 5XFAD mice exhibited dramatic
alterations in the CR at 8 months of age, but even at 2 months,
BMal1 and Per2 RNA levels in the SCN began to lose daily
oscillations [119]. The difference was attributed to Aβ induc-
ing degradation of BMal1 in the nucleus, thereby inhibiting
Per2 induction. Also in 3xTg-AD mice, CR was disrupted
[123]. Whether Aβ is responsible in disrupting the CR is
unclear, and neither the mechanism by which Aβ signals to
induce degradation of clock proteins, especially because
APOE null mice also exhibited a defect in the CR [145].
Nonetheless, these studies suggest that restoration of normal
CR can certainly be a way to improve metabolic imbalances,
which would have positive impact on certain aspects of AD
pathology.

Metabolic Disruption in AD Brains

The literature clearly suggests a metabolic dysfunction exists
in AD brains, and it begins long before syptoms appear. But,
there are many outstanding questions that need to be ad-
dressed. What cellular processes or molecules are responsible
for initiatingmetabolic disruption?What are the consequences
of metabolic disruption in AD brains? Does peripheral meta-
bolic dysfunction influence the brain metabolism? If so, what
is the underlying mechanism? Can we reverse the metabolic
defect with diet?

Of the mutations that confer increased susceptability for
developing AD [61], ApoE and perhaps clusterin, may be
more relevant to understanding metabolic dysfunction in
AD, since both are lipid-binding proteins. ApoE4 homozygos-
ity in particular presents the greatest genetic risk for late-onset
AD, and 50–60% of AD cases harbor either 1 or 2 copies of
ApoE4 alleles [47]. Individuals who are homozygous for E4
alleles are 12 times more likely to develop AD, and those who
are heterozygotes, 3.7 times [120]. Glucose hypometabolism
in their brain is detectable very early long before cognitive
impairment surfaces [104]. The risk of developing cerebral
amyloid angiopathy (CAA) is also much higher among
ApoE4 carriers with T2D than those with diabetes or E4 alone
[95]. ApoE4 is also hypothesized to be the critical molecule
that could relay the peripheral insulin metabolism to the CNS:
when ApoE3 and ApoE4 knockin mice were rendered insulin
resistant in the periphery by HFD, there was a reduction in p-
AKT and p-GSK3 in the hippocampus and cortex from
ApoE4- but not in ApoE3-KI mice, suggesting that ApoE4

may be involved in conveying peripheral insulin resistance to
the brain [144]. Insulin-mediated AKT activation via infusion
with reverse microdialysis was also attenuated in greater ex-
tent in ApoE4 compared to ApoE3 knockin mice, mainly due
to ApoE4 interfering with recycling of the IR to the neuronal
surface. Whether there exists a crosstalk between ApoE4 and
leptin signaling has not been tested. Of note, clusterin was
shown to augment leptin signaling in the hypothalamus [17].

Concluding Remarks

Recent analyses of human AD brain samples revealed that AD
is a complex disease with many comorbities associated with it
[39]. To better combat AD, we need a greater understanding of
the disease progression in human cases not only in AD but
also other diseases that exhibit similar comorbidities that are
linked to AD. For instance, although some in the field begin to
name AD a type 3 diabetes due to metabolic disruption ob-
served in the AD brain [121], only limited data are currently
available on FDG-PET from T2D patients at presymptomatic
stages. Progress in therapy will be much greater in close com-
munication between clinical scientists who examine the pa-
thology and basic scientists who study the underlying mech-
anisms or the effect of a particular etiology in animal models.

Required Author Forms Disclosure forms provided by the au-
thors are available with the online version of this article.
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