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Abstract Magnetic resonance imaging has been crucial in the
development of anti-inflammatory disease-modifying treat-
ments. The current landscape of multiple sclerosis clinical
trials is currently expanding to include testing not only of
anti-inflammatory agents, but also neuroprotective,
remyelinating, neuromodulating, and restorative therapies.
This is especially true of therapies targeting progressive forms
of the disease where neurodegeneration is a prominent feature.
Imaging techniques of the brain and spinal cord have rapidly
evolved in the last decade to permit in vivo characterization of
tissue microstructural changes, connectivity, metabolic chang-
es, neuronal loss, glial activity, and demyelination. Advanced
magnetic resonance imaging techniques hold significant
promise for accelerating the development of different treat-
ment modalities targeting a variety of pathways in MS.
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Conventional Imaging

In clinical trials, conventional magnetic resonance imaging
(MRI) has been used to confirm the diagnosis and determine
efficacy of disease-modifying treatments (DMTs) through

measurement of new lesion counts and volumes. A very
strong correlation between the effect on new lesion formation
and the effect on relapses has been found with DMTs and
allowed for screening of novel therapeutics in phase II trials
[1]. The term Bno evidence of disease activity ,̂ referring to a
composite of a lack of 1) clinical relapses; 2) Expanded
Disability Status Scale (EDSS) progression; and 3) MRI ac-
tivity [new/enlarging T2 or gadolinium-enhancing (GdE) le-
sions and possibly brain atrophy] was based on outcomes
routinely collected in contemporary clinical trials, but may
be applied in clinical practice [2]. Furthermore, the presence
of T1 hypointensities (Bblack holes^), has been characterized
as the hypointensities indicate more significant axonal loss [3]
and correlate with increased disability [4]. More diffuse mea-
sures of tissue injury, including measurement of whole-brain
or gray-matter volumes, have been used extensively in clinical
trials as secondary outcomes. There are ongoing improve-
ments in acquisition methods [5], increased field strengths
for superior signal or contrast to noise ratio [6], and contrast
agents [7] to improve lesion identification.

There are noteworthy limitations with conventional imaging
that contribute to the so-called clinicoradiological paradox.
BNormal-appearing^ white and gray matter (NAWM and
NAGM, respectively) by conventional standards retain signifi-
cant abnormalities detectable only by more advanced tech-
niques. Even the canon that white matter (WM) T2/fluid-
attenuation inversion recovery (FLAIR) lesions depict demye-
lination has been challenged with findings of normal myelin
content in up to 30% of T2 hyperintense/T1 hypointense/low
magnetization transfer ratio (T2/T1/MTR) lesions [8].
Developments in imaging methodology with histopathologic
and clinical correlations will greatly improve our ability to test
specific pathogenic mechanisms and therapeutic targets.

Whole-brain atrophy (WBA) in multiple sclerosis (MS)
occurs at a rate approximately 3 times faster than healthy
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controls [9] early in the course [10], can limit brain grown in
pediatric-onset MS [11], correlates with disability progression
[12], and is associated with cerebrospinal fluid (CSF) levels of
neurofilament light chain and tau [13]. Evaluating brain vol-
ume as a secondary outcome in trials is feasible and has dem-
onstrated effects for nearly all approved MS DMTs and has
been used as a primary outcome in secondary progressive MS
[14]. WBA, however, has been criticized as it changes slowly,
and there is considerable variability within subjects and across
different atrophy software algorithms.

Advanced Imaging

Techniques discussed here strive to provide greater in vivo
insight into the neurodegenerative and inflammatory aspects
of MS otherwise unrecognized using conventional imaging.
These methods may provide improved sensitivity as bio-
markers of disease activity and progression, and may even
be used as surrogate outcome measures of efficacy in thera-
peutic clinical trials.

Cortical Lesions

Lesion detection is paramount for monitoring disease activity
and efficacy of DMTs [15, 16]. Cortical lesions (CLs), more
common in secondary progressive MS (SPMS) than in clini-
cally isolated syndrome (CIS) or relapsing remitting MS
(RRMS) [17], are nearly invisible by conventional techniques
but can be more readily identified using advanced methods.
Cortical and deep gray matter (GM) pathology surpasses WM
lesions in association with disability, progression [18], and
cognitive impairment [19, 20]. Use of ultra-high field 7
Tesla (T) MRI nearly doubles CL detection versus 3 T and is
able to detect 100% leukocortical, 11% intracortical, 32%
subpial, and 68% subpial extending entire width of the cortex
(types 1–4, respectively), with postmortem validation [21].
Three-dimensional (3D) double inversion recovery (DIR) al-
lows for suppression of the CSF and WM in FLAIR, detects
18% of CLs versus postmortem verification, and is 1.6-fold
superior to 3D-FLAIR [22]. Phase-sensitive inversion recov-
ery may be useful concomitantly with DIR to further improve
CL contrast [23]. GM juxtacortical lesions have been identi-
fied with phase difference-enhanced imaging [24], and 3D
magnetization-prepared rapid acquisition with gradient echo
can also help classify CL type [25].

CL volume may be an additional outcome measure to WM
lesion burden in clinical trials given its potential for correlat-
ing with EDSS. Trials that employ neuroprotective measures
or target cognition may specifically benefit from CL measure-
ment. Furthermore, distinguishing specific CL types, such as
leukocortical lesions, may improve correlations with cognitive
impairment [26].

Regional Atrophy

Regional measures in atrophy may provide improved specificity
for different pathogenic processes in MS and may be used as
candidate measures for clinical trials. Regional and deep GM
atrophy is noted early in MS and correlates with disability pro-
gression more than WBA or T2 lesion volume (T2LV) [27].
Evaluating GM fraction independently has unmasked its poten-
tial for predicting disability and risk of secondary progression
[28]. Thalamic atrophy, in particular, is present even in CIS
[29]; is associated with the risk of clinically definite MS; and
can be useful in discriminating MS from neuromyelitis optic
spectrum disorders (NMOSD) [30]. Thalamic volume is over-
whelmingly associated with cognitive impairment in MS [31],
and is a reflection of extrathalamic injury more significantly than
thalamic lesions [32].

Diffusion Tensor Imaging

Diffusion tensor imaging (DTI) is an imaging technique that
reflects microstructual changes in tissue by investigating the
Gaussian diffusivity of water. Each voxel represents a mea-
surement of multiple diffusion-weighted acquisitions that is
modeled mathematically as a diffusion tensor—a 3 × 3 matrix
comprised of 3 perpendicular eigenvectors with correspond-
ing eigenvalues. Diffusion in WM is anisotropic (not equally
restricted in all directions) and follows the direction of the
axon. DTI measures include fractional anisotropy (FA), mean
diffusivity (MD), axial diffusivity (AD) (sometimes referred
to as longitudinal diffusivity), and radial diffusivity (RD)
(sometimes referred to as transverse diffusivity).

RD is calculated as the mean of the 2 eigenvectors perpen-
dicular to the long axis of the diffusion ellipsoid and inversely
correlates with myelin content [33]. AD is the eigenvector
parallel to the direction of the ellipsoid and has been loosely
correlated with axonal content [34]. MD is calculated as the
mean of all 3 eigenvectors and increases with architectural
injury from increased isotropic water diffusion [35]. FA is an
index of the asymmetry or directional preference of diffusion
in a voxel and correlates with axonal counts and myelin con-
tent in MS [36]. While the degree of decrease in FA correlates
to decreased axons andmyelin [37], an increase in GM (cortex
and thalamus) is thought to be due to decreased dendritic
arborization [38]. These metrics are able to identify subtle
changes in prelesional NAWM and NAGM, and lesional tis-
sue that is otherwise unapparent or indistinguishable by con-
ventional imaging.

In acute MS lesions, a reproducible pattern of decreased
FA, increased MD, and increased RD is generally seen.
Changes in NAWM, such as decreased FA and increased
MD and RD, can be detected at baseline in CIS and progress
over time. [39]. Comparing progressive courses, the average
lesional, NAWM, and NAGM MD is higher in SPMS versus
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primary progressive MS (PPMS) [40]. DTI is also able to
detect changes in normal-appearing cortical and deep GM.
MD increases in NAGM of untreated patients with RRMS
over time independent of brain atrophy [41]. DTI measure-
ments in the thalamus also change in patients with MS versus
controls [42]. Increases in thalamic MD are relevant as they
correlate with global EDSS, as well as T1 and T2LV [43].
While reduction in thalamic FA correlates with thalamic atro-
phy, thalamic or WM lesions do not [44].

DTI changes are apparent in even in prelesional NAWM.
Increase in NAWMMD, suggestive of tissue injury, precedes
GdE by 6 weeks [45]. RD and MD increases also have been
noted 10months prior to GdE, suggesting tissue injury prior to
breakdown of the blood–brain barrier [46].

DTI has the potential to discriminate evolution of lesions,
as well as mechanistic differences. FA has been shown to
decrease in majorWM tracts following GdE, even in locations
distinct from the lesion location when tracked longitudinally
[47]. The majority of chronic T2 lesions have a T1
hypointensity (Bblack hole^) at their core characterized by
axonal loss [3] with higher AD and RD [48]. Active lesions
with increased RD in 1 study suggested more severe demye-
lination and predicted the development of T1 hypointensities
[49]. Another study found increased AD in active lesions, and
the authors speculated glial recruitment may have been re-
sponsible [50]. Interestingly, the T2 rim in the periphery of a
lesion has significantly higher RD compared with AD, sug-
gesting relative axonal preservation [48].

Other methods to characterize myelin injury or clinical dis-
ability corroborate DTI measurements. Changes in DTI met-
rics alongWM tracts correlate with quantitative T2*, a marker
of iron deposition due to myelin injury, in associated and
unrelated cortical projections. Associations between DTI met-
rics (e.g., AD and RD) also correlate with clinical measures
such as the pyramidal EDSS subscore and Symbol Digit
Modalities Test (SDMT) [51].

DTI has been used to identify the association between spe-
cific cognitive domain impairment and functional networks.
FAwas found to be decreased in the limbic pathway, particu-
larly the cingulum, fornix, and uncinate WM tracts, in relaps-
ing MS versus control [52]. Decreased FA and increased RD
correlated with SDMTmeasures in tracts associated with cog-
nition [53]. A decrease in hippocampal FA was present in
patients with CIS more than controls and an increased hippo-
campal MD was able to discriminate patients with CIS and
poor delayed recall [54].

DTI has been used to evaluate therapeutic effects in small
studies and clinical trials. A study evaluating walking perfor-
mance with patients withMS found correlations betweenMD,
AD, and RDwith clinical outcomes [55]. A longitudinal study
of patients with MS who underwent balance training with a
video game balance board (Nintendo Wii®), had transiently
increased FA and RD in the superior cerebellar peduncles

paralleling clinical balance improvement with static
posturography after 12 weeks [56].

There have been some promising findings in pilot studies
using DTI to investigate DMTs. A longitudinal study of 23
patients with various MS courses on dalfampridine for 2
weeks found 12 clinical responders who were also noted to
have reductions of MD and RD involving the corticospinal
tract and optic radiations among other tracts. [57]. The authors
speculated the changes were due to a sensitive pool of potas-
sium channels that changed the osmotic balance along the
axon upon closure. A short observational study of 4 patients
followed on fingolimod for 4 months with DTI noted wide-
spread increase in MD in NAWM and FLAIR lesions without
any clinical manifestations [58]. A 1-year longitudinal study
noted the differential effect on FA when comparing
natalizumab, interferon (IFN)-β, and glatiramer acetate [59].
These findings supported decreased severity of damage with
natalizumab, which correlated with cognitive performance
[59]. In an open-label phase IIA study of patients with pro-
gressive MS with oral methylprednisolone 1.5 g monthly, de-
creases in MD in NAWM and NAGM were found after 15
months [60]. The SPRINT-MS trial will be using DTI as an
outcomemeasure for neuroprotection in a study of ibudilast in
progressive MS [61].

Some limitations exist with DTI measures. The complexity
of MS pathology, including infiltrating cells and crossing fi-
bers, may interfere with DTI measurements. Equating AD
with axonal integrity may be an oversimplification of a com-
plex process. Increased RD appears to be a sensitive measure
of active lesions, but its utility in NAWM is less clear. Efforts
have been made to overcome some of these limitations. The
development of diffusion basis spectrum imaging, a novel
computational method to separate cellular edema (isotropic)
from axonal/myelin integrity (anisotropic), can potentially be
applied to progressive MS to follow neurodegeneration more
effectively [62]. Other advanced diffusion modeling methods,
such as neurite orientation dispersion and density imaging,
improve on DTI parameters to provide greater microstructual
specificity [63].

Despite these limitations, DTI can be a valuable metric to
evaluate microstructual changes in tissue and integrity of
tracts. These metrics could particularly serve as useful out-
come measures in clinical trials seeking to evaluate the extent
of neurodegeneration and evaluate the efficacy of neuropro-
tective strategies.

Functional MRI and Connectivity

Functional MRI (fMRI) exploits the diamagnetic and para-
m a g n e t i c p r o p e r t i e s o f o x y h emo g l o b i n a n d
deoxyhemoglobin, respectively, as a noninvasive blood oxy-
gen level-dependent endogenous contrast in a gradient-echo
(GRE) sequence [64]. The oxy/deoxyhemoglobin ratio in GM
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provides insight into activated areas in resting-state (rs-fMRI),
default mode network, and task-related recruitment fMRI.
These techniques provide a window into correlating clinical
metrics with reorganization, plasticity, and functional reserve
in MS phenotypes.

fMRI is a unique MRI modality as it allows detection of
functional changes in addition to anatomical and pathological
changes. Several early studies support the hypothesis that sub-
jects with MS have an increase in activation and functional
connectivity in several brain regions as a likely adaptive mech-
anism [65]. In multiple regions in CIS, rs-fMRI synchroniza-
tion increases initially but later declines in advanced stages of
MS, suggesting early adaptive increased connectivity with sub-
sequent reduced reorganization later in the course owing to
tissue injury [66]. Another method used to study rs-fMRI in
CIS found an initial decrease in activity in several brain regions
[67]. The precise timing and biology of these compensatory
changes is unclear. In radiologically isolated syndrome (RIS),
no differences between rs-fMRI and healthy controls are found,
despite the presence of brain and spinal cord lesions, CSF
oligoclonal bands, dissemination in time, and atrophy [68].
During the more manifest stages of RRMS most studies have
shown increased connectivity and activation. In the later stages
of disease, it appears that connectivity tends to decrease and
these changes are associated with cognitive manifestations
[69]. Functional connectivity decreases with disease progres-
sion [70] and disruption in thalamocortical connectivity occurs
independently of T2LVand thalamic volume [71].

Compared with healthy controls, task-related activation
fMRI in CIS exhibits increased recruitment in cortical and
thalamic regions [72]. Task-related fMRI can discriminate be-
tween CIS, relapsing MS without disability or with mild dis-
ability, and SPMS [69]. Increased recruitment may also ex-
plain favorable clinical outcomes, as a more Bbenign^ pheno-
type [73]. Patients with PPMS have increased nonmotor acti-
vation, suggesting an adaptive response [74]. Hyperactivation
is also noted in the cervical cord in PPMS following tactile
stimulation and correlates with disability [75].

Cognitive impairment has been evaluated along with several
fMRI methods. The Paced Auditory Serial Addition Task
(PASAT), a component of the MS Functional Composite, is a
validated tool to screen for cognitive impairment in MS and
correlates with rs-fMRI functional connectivity and task-
related activation differences in MS [76]. Other neuropsycho-
logical assessments evaluating processing speed and executive
function correlate with rs-fMRI [77] and activation [78] in cor-
tical and deep GM regions. Task-related activation is able to
identify patients with working memory impairment [79].
Default mode network, a state that is active at rest and
deactivated with goal-directed tasks, is aberrant in cognitive
impairment in MS [80]. Changes in functional connectivity pat-
terns are also present in MS using MRI with resting-state mag-
netoencephalography [81].

Fatigue is prevalent in MS and is associated with
unique hyperactivation of certain motor-attention net-
works during the performance of a simple task [82].
Cognitive fatigue, or impaired ability to sustain mental
effort, is associated with cortical and subcortical
hyperconnectivity following PASAT administration using
rs-fMRI [83] and with a modified SDMT during task-
activated fMRI [84].

Early recognition of functional connectivity changes inMS
with fMRI provides a window for intervention before signif-
icant cognitive impairment takes hold and adaptations are no
longer adequate. Many multicenter studies have been per-
formed by the MRI in MS group, demonstrating their feasi-
bility [85]. A few small trials have investigated connectivity
changes with task-related fMRI for cognitive rehabilitation
with transcranial magnetic stimulation [86], with rs-fMRI for
Nintendo® [87], and memory retraining (modified Story
Memory Technique) [88]. Given these findings and small
studies suggesting the between-scanner and between-subject
reproducibility of rs-fMRI [89, 90] and task-related fMRI [91]
measures, there exists a significant potential for their use as
key secondary outcomes in cognitive rehabilitation trials.

Magnetization Transfer

Magnetization transfer (MT) is a method to observe exchange
between unbound protons in a free water pool with protons
bound to macromolecules (myelin and cells) [92]. A MT
radio-frequency pulse transfers energy to the bound pool and
then to the unbound pool by dipole interactions. The MTR is
the difference in the signal before and after the MT pulse
divided by the signal before the pulse. Histopathologic studies
have confirmed MTR correlates with myelin content and ax-
onal density [93]. MTR can also distinguish remyelinated le-
sions from NAWM and demyelinated lesions [94].

MTR decreases 3 to 18 months prior to the appearance of a
new T2 or GdE lesion [95], possibly as a result of edema,
perivascular inflammation, demyelination, or activation of as-
trocytes/microglia, and predicts the likelihood of recovery. In
patients with CIS, MTR is noted to be decreased in NAWM
and NAGM [96]; the decrease is less prominent than in re-
lapsing MS but can predict progression to clinically definite
MS [97], and correlates with future disability [98]. MTR de-
creases in NAWM in MS correlate with disease duration [99]
and also predicts disability [100]. MTR decreases in GM oc-
cur early and are associated with disability and cognitive im-
pairment in MS. With ultra-high-field MRI, CLs have been
detected using MTR [101]. Global [102] and cortical [103]
MTR decreases correlate with cognitive impairment even
more than T2LV.

MTR has been proposed as a measure of remyelination for
therapeutic trials. MTR exhibits temporal changes with de-
crease in prelesional tissue and GdE lesions and recovery to

908 Mahajan and Ontaneda



baseline in subsequent months [104]. Improvement in MTR
was observed with IFN-β1α in RRMS [105] but not SPMS
[106]. Increase in MTR in acute and chronic black holes with
glatiramer acetate are also observed [107]. Variable results are
noted in trials involving dimethyl fumarate, either reaching
[108] or not reaching [109] statistical significance for increase
in MTR. Natalizumab shows increases in both NAWM and
cortical GM [110] and more robustly so than IFN-β1α [111].
Alemtuzumab treatments have been shown to stabilize MTR
in NAGM [112]. Ongoing phase II clinical trials have also
used MTR to evaluate for possible recovery or neuroprotec-
tive effects, including GSK239512, a histamine H3 receptor
antagonist [113], and ibudilast in progressive MS (SPRINT-
MS) [61]. These findings are promising for its use in future
clinical trials striving to detect improvement of microstructual
injury with protective strategies.

Proton magnetic resonance spectroscopy

Magnetic resonance spectroscopy (MRS) provides 3D quan-
titative information based on the properties of different nuclei
(e.g., 1H, 31P, 13C, 23Na) and their respective relaxation times.
Proton (1H) MRS, in particular, has been utilized for charac-
terizing MS pathology since the early 1990s and can typically
be acquired in < 20 min [114]. Using characteristic 1H shifts,
metabolites can be identified with a resonance signal intensity
proportional to its relative concentration. Novel methods over-
lying spectrographic maps on anatomic sequences (T1 and
FLAIR) have also improved resolution [115] and allowed
for global and local measurements [116]. Tracking metabolic
changes in lesional and normal-appearing tissue allows indi-
rect detection of neuronal, axonal, and glial differences.

Pathologic confirmations of MRS changes in human de-
myelinating lesions demonstrate significant correlations be-
tween N-acetylaspartate (NAA) and decreases in myelin and
axonal density. Increases in choline (Cho) and myo-inositol
(mIns) are associated with glial proliferation [117]. Animal
models, including a longitudinal model of demyelination
using cuprizone, have also detected decreases in NAA and
glutamate with demyelination and a return to normal follow-
ing near-complete remyelination [118].

NAA is synthesized in neuronal mitochondria and has been
extensively used as a surrogate for neuronal/axonal loss and
correlates with disability [119]. Correlations have been found
also in those with moderate disability (EDSS < 5) [120],
shorter disease duration [120], and in the cortex [121].
Although whole-brain NAA does not correlate with disability
or lesion load [122], reductions of NAA in patients with mild
symptoms suggests their lack of significant disability may be
due to fortuitous avoidance of eloquent cortex or compensa-
tory changes from plasticity. Decrease in NAWM NAA ap-
pears to occur independently to changes in NAGM [123].
Changes in NAA and other metabolites have been useful to

discriminate from healthy controls [124] or patients with
NMOSD [125]. Parallel reduction of NAAwith retinal nerve
fiber layer thinning over 1 year without EDSS changes [126]
further validates its utility for detecting subtle changes.

Other metabolites such as creatinine, Cho, mIns, γ-
aminobutyric acid, glutamate/glutamine, and glutathione have
been used to study non-neuronal changes, such as gliosis,
demyelination, inflammation in particular disease courses,
spatial tracts, degrees of disability, and symptoms such as pain
[127]. Table 1 summarizes metabolite patterns and their hy-
pothesized significance in lesional and normal-appearing
tissue.

1H-MRS may be a useful outcome in MS clinical trials
[137], and guidelines have been proposed for its use [138].
MRS has been studied with IFN-β, glatiramer acetate, biotin,
and natalizumab. With IFN-β, results have been mixed, with
NAA shown to increase [139] or decrease [140] while on
treatment,and with either an increase or no change in Cho
[141, 142]. In a cross-sectional study, an increase in NAA
was noted after 4 years of treatment with glatiramer acetate,
which correlated with EDSS [143]. No differences in NAA
and Cho were seen comparing glatiramer acetate with placebo
in patients with a primary progressive course [144]. Despite
treatment with natalizumab, increased creatinine and Cho
(measures of membrane phospholipid turnover) correlating
with increased levels with CSF inflammatory markers IL-1β
and CXCL8 may indicate persistent gliosis and inflammation
[145]. However, lesional levels of NAA, Cr, and phosphocre-
atine increase with natalizumab versus IFN-β or glatiramer
acetate, suggesting improved axonal metabolism [146].
Neuroprotective effects in pilot studies with high doses of
biotin show some normalization of Cho in NAWM [147].
Similarly, an increase in NAA after 2 weeks of fluoxetine
has been described [148].

Several challenges to the use of spectroscopy in MS re-
main. Changes in metabolite levels in MS are expressed as a
ratio rather than an absolute measure. Use of an external stan-
dard (phantom) with a defined amount of metabolite can be
used for quantification. Other limitations of MRS include par-
tial volume effects with small lesions and inability to perform
whole-brain acquisitions on clinical scanners. Although the
technique is becoming more refined, low reproducibility of
1H-MRS across centers may present a challenge for imple-
mentation in a multicenter study [128].

Sodium MRS

Sodium (23Na) MRS has been used in MS and is attractive as
an outcome measure as it may reflect several underlying path-
ological pathways. Elevated sodium concentrations in tissue
may reflect demyelinated axons that redistribute sodium (Na+)
channels from nodes of Ranvier to along the axon and Na+

channel upregulation in astrocytes and microglia/
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macrophages [149]. Additionally, mitochondrial dysfunction
in MS likely limits compensatory mechanisms, such as the
sodium/potassium pump and sodium/calcium exchanger in
injured tissue [150], causing accumulation of intracellular so-
dium [149] and serving as a potential biomarker. Despite the
1/5000th signal intensity compared with 1H-MRS [151], caus-
ing poorer signal-to-noise ratio, advances have permitted
23Na-MRS to detect total (TSC), intracellular (ISC), and indi-
rect extracellular sodium concentrations in tissue.

TSC is increased in the NAWM, NAGM, GdE lesions, and
T1 hypointense lesions in RRMS versus healthy controls
[152, 153]. TSC increases in NAWM with disease duration
and TSC levels in NAGM correlate with EDSS and T2LV
[154]. In both SPMS and PPMS, TSC is increased in
NAGM and T2 lesions versus healthy controls [155], and
patients with SPMS have elevated TSC in NAWM, cortical
GM, and deep GM versus those with RRMS [156]. TSC dis-
tribution is more restricted to motor regions in PPMS than in
SPMS [155] and associated with disability in particular motor
regions. Irrespective of the course, TSC in deep GM and T1
hypointense lesions correlate modestly with disability mea-
sures [156].

More recent adaptations can discriminate ISC from TSC.
With fluid-attenuated 23Na-MRS, ISC is increased in GdE
lesions versus chronic lesions in RRMS, and levels decrease
following intravenous methylprednisolone [157]. ISC is also
elevated in cortical, subcortical, and NAWM in patients with
RRMS versus healthy controls using triple-quantum-filtered
23Na-MRS at 7 T and indirect extracellular sodium concentra-
tion measures and TSC correlate with T2LV, T1LV, and EDSS
[158].

23Na-MRS may prove useful in future clinical trials with
therapeutics targeting neuroprotection and mitochondrial dys-
function. However, multicenter application of this technology
may pose challenges and remains to be tested. Preclinical
evidence in animal models of MS show promise and phenyt-
oin has shown protective effects in the optic nerve [159],
whereas lamotrigine did not seem to have an effect on atrophy
measurements [160]. Oxcarbazepine is currently being inves-
tigated in a clinical trial incorporating TSC as an outcome
(NCT02104661).

Positron Emission Tomography

Positron emission tomography (PET) has been used since the
1950s to localize brain tumors and has been used in MS since
the 1990s. Specific isotope-labeled tracers have been devel-
oped that target receptors, β-amyloid, and metabolites. These
targets putatively provide in vivo functional information about
axonal degeneration, demyelination/remyelination, microglial
activation, and astrogliosis. Differences have been observed in
CIS, early MS, and between relapsing and progressive MS.
Correlation of PET ligand uptake with other modalities such
as T2LV, T1 black holes, atrophy, and disability measures will
be reviewed below. PET ligands are also summarized in
Table 2.

11C-Flumazenil binds to the benzodiazepine site of the γ-
aminobutyric acid A receptor expressed on cortical and deep
GM neurons and reduction in its uptake correlates with neu-
ronal loss [186]. Correlation of its uptake with cognitive im-
pairment [186] is consistent with the loss of hippocampal

Table 1 Characteristics of 1H-magnetic resonance spectroscopy metabolites in multiple sclerosis

ppm Metabolite Pathologic correlate NAWM/
prelesional

CGM/
NAGM

Acute or GdE
lesion

Chronic lesion

0.9–1.4 Lipids Tissue destruction ↑ [128] ↑ [128] ↑ [128] –↓[128]

1.33 Lactate Anaerobic glycolysis Inflammatory
cell metabolism, neuronal
mitochondrial dysfunction,
ischemia

↑[129] –[128]

2.02 NAA* Present in neuronal/axons ↓ [130, 131] ↓ [128] ↓ [132] ↓ [133]

2.0–2.4 Glutamate, GABA Neuroexcitotoxicity ↑ [133] ↓ [128] ↑ –[133]

? Glutathione –[134] ↓ [134]

3.03 Creatine,
phosphocreatine

Energy metabolism in neurons and
glia

↑ [135] ↑ ↓ [128] ↓ ↑

3.22 Choline compounds*,† De-/remyelination, inflammation
Release of membrane
phospholipids

↑ [136] ↓ [128] ↑[129] ↓ [132], ↑ [128]

3.56 Myoinositol Glial marker, osmolyte ↑ [128] ↑ ↓ [128] ↑ [129] ↑

(–) = unchanged; ↑ = increased; ↓ = decreased; NAWM= normal-appearing white matter; CGM = cortical gray matter; NAGM= normal-appearing gray
matter; GdE = gadolinium-enhancing; NAA = N-acetylaspartate; GABA = γ-aminobutyric acid

*Typically normalized to creatine in voxel
† Includes free choline, phosphorylcholine, glyceryl-phosphoryl-choline; possibly taurine and betaine
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cholinergic neurons previously described in patients with MS
[187].

Amyloid tracers (11C-PiB and 18F-florbetaben) studied in
dementia also correlate with T2 lesions in patients with MS
and may correlate with demyelination [175, 177]. Whether
their uptake in WM is nonspecific or reflects β-amyloid pa-
thology in MS is yet unknown. The 11C-MeDAS tracer has
been studied in animal models of demyelination [lysolecithin

Table 2 Summary of positron emission tomography ligands used in
clinical multiple sclerosis (MS) studies

Isotope Clinical study findings

TPSO
Microglial activation
11C-PK11195
First-generation

Glial activation
22 MS, 7 HC [161]
– ↑GdE vs NAWM
– ↓ in T2 lesions overall, but ↑ in T2 lesions during

relapse
– ↑ in NAWM during progression
22 MS, 8 HC [162]
– ↑ in NAWM correlated with atrophy
– ↓ in T2 lesions correlated with atrophy
18 MS (10 RR, 8 SP), 8 HC [163]
– ↑ in cortex (MS vsHC) correlated with EDSS (SP

> RR)
– SP > RR ↑ specific cortical regions
10 SP, 8 HC [164]
– ↑ in periventricular WM, NAWM, and thalamus

(SP vs HC)
- ↑ in 57% chronic T1 black holes
10 RR, 9 SP/PP [165]
– ↑in 947/1242 (76%) T1 black holes in all cases
– ↑ in 437/1242 (35%) SP/PP T1 black holes; cor-

related with EDSS
18 CIS, 8 HC [166]
– ↑ in NAWM in CIS vsHC correlating with EDSS

and risk for MS at 2 years – ↑ in deep gray
matter in CIS vs HC

9RR [167] – ↓ globally by 3.2% and also in cortical
GM and cerebral WM after treatment with
glatiramer acetate for 1 year

Second-generation
Higher affinity and

greater specificity
1. 18F-FEDAA1106
2. 11C-PBR28
3. 11C-vinpocetine
4. 18F-DPA-714
5. 18F-PBR06
6. 11C-PK-1195

1. 9 RR with GdE, 5 HC [168]
– no difference
2. 11 MS, 7 HC [169]
– ↑ in GdE vs NAWM
– ↑in prelesional areas
– global levels correlated with disease duration
RR stable, 1 RR active [170]
– reproducible and ↑ in GdE
15 SP, 12 RR, 14 HC [171]
– ↑ in cortex and cortical lesions (7T T2*)
– ↑ SP > RR
– uptake in cortex, deep GM, and NAWM

correlated with disability and cognitive
impairment

– cortical thinning correlated with ↑ in thalamus
3. 4 MS [172]
– 11C-vinpocetine parallels 11C-PK11195 but has

higher signal
4. NCT02305264: ongoing trial recruiting patients

with relapsing and progressive MS
5. NCT02649985: ongoing trial recruiting patients

with relapsing and SPMS in comparison with
HC and Alzheimer’s disease

6. NCT02207075: ongoing trial recruiting patients
with SPMS

A2A adenosine receptor
Upregulated in activated

microglia
11C-TMSX

8 SPMS, 7 HC [173]
– ↑ NAWM and correlated with disability

Astrocyte marker
11C-acetate

6 RRMS, 6 HC [174]
– ↑ WM and GM in MS
– correlates with T2 lesions and T1 black holes

High affinity for CNS
myelin

Amyloid tracers
1. 11C-PiB

1. 2 MS [175]
– correlates with myelin
20 RR, 8 HC [176]
– ↓ in MS lesions

Table 2 (continued)

Isotope Clinical study findings

2. 18F-florbetaben – longitudinal variability suggested remyelination
and inversely correlated with disability

2. 12 MS (5 RR, 2 SP, 2 PP), 3 HC [177]
– ↓ in T2 lesions and correlated with EDSS
– ↓ in progressive vs relapsing patients

Glucose metabolism
18F-FDG

8 MS, 8 HC [178]
– ↓in thoracic and lumbar spinal cord after walking
1 MS [179]
–↑ in 2 T2 lesions in acute presentation of

tumefactive MS
2 MS [180]
– no uptake in lesions resembling tumefactive MS

or Balo's concentric MS
17 RR, 18 HC [181]
– ↓ uptake in cortical and deep GM structures with

variable correlation to lesions
10 MS [182]
– ↓ in cortex over 2 years
23 MS, 9 HC [183]
– ↓ uptake in cortical and regional (dorsolateral

prefrontal, orbitofrontal, caudate, putamen,
thalamus, and hippocampus)

– ↓ cortical correlated with T2LV
– ↑ in right thalamus correlated with improved

cognitive performance
16 RR, 12 SP, 10 HC [184]
–↓ in thalamus and other deep grey matter

structures (e.g., hippocampus and cingulate
gyrus)

47 MS, 16 HC [185]
– ↓ in prefrontal areas and ↓ right prefrontal cortex

negatively correlated with fatigue severity
NCT02305264: ongoing trial recruiting patients

with relapsing and progressive MS;
characterizing 18F-FDG in WM inflammatory
cells

Neuronal and axonal
degeneration

GABAA-R
18C- and 18F-flumazenil

18 MS (9 SP/PP, 9 RR) [186]
– ↓ in cortical and deep GM in both relapsing and

progressive
– ↓correlated with T2LVand cognitive

performance
NCT01651520: ongoing trial recruiting patients

with early MS to quantify cortical and deep GM
neuronal loss.

↓↑ = decreased or increased uptake, respectively; TPSO = translocator
protein; HC = healthy controls; GdE = gadolinium-enhancing lesions;
NAWM = normal-appearing white matter; RR = relapsing remitting; SP
= secondary progressive; EDSS = Expanded Disability Status Scale; WM
= white matter; PP = primary progressive; CIS = clinically isolated syn-
drome; GM = gray matter; SPMS = secondary progressive MS; CNS =
central nervous system; 18 F-FDG = fludeoxyglucose; T2LV = T2 lesion
volume; GABAA-R = γ- aminobutyric acid A receptor
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[188], experimental autoimmune encephalomyelitis (EAE)
[189], and cuprizone [190] and shows promise in improving
detection of myelin.

Microglial activation has been characterized by uptake of
ligands targeting the translocator protein, also known as the
peripheral benzodiazepine receptor, and the 11C-TMSX li-
gand, which selectively binds to the A2A adenosine receptor.
TSPO is expressed in activated microglia and reactive astro-
cytes [191], whereas 11C-TMSX is expressed throughout the
central nervous system [192] and is upregulated in activated
microglia in vitro [193]. In patients with CIS, the translocator
protein tracer 11C-PK11195 is increased in T2 lesions,
NAWM, and deep GM versus controls, and correlates with
disability and risk of MS in 2 years [166]. TSPO uptake is
increased in GdE lesions [170] and NAWM in patients with
MS. TSPO levels also parallel progression [163] and atrophy
[162]. Treatment with glatiramer acetate decreases its uptake
globally in both GM andWM [167]. The 11C-TMSX ligand is
also higher in NAWM and correlates with EDSS scores [173].
Chronic lesions with T1 hypointensity in patients with SPMS
also show perilesional TSPO uptake which parallels
microglial/macrophage (CD68) immunohistochemistry on
chronic MS tissue [194] and in EAE [195]. TSPO uptake
parallels neuronal loss (NAA with MRS), GM atrophy, and
disability [171, 196]. Many other novel TSPO ligands in de-
velopment for MS are currently being studied (Table 2).

Benzyl 11C-acetate [197] and its 18F derivative [198] have
been proposed to label astrocytes as acetate accumulates in
astrocytes in MS lesions [174]. With greater recognition of
the role of astrocytes in MS, development of similar in vivo
ligands will prove useful in determining efficacy of targeted
therapeutics.

Glucose metabolism with fludeoxyglucose has been stud-
ied to determine whether metabolic dysfunction precedes de-
myelination. Metabolic activity is also hypothesized to predict
symptoms such as cognitive impairment or fatigue. In animal
models of MS, no differences with EAE [199] or with lyso-
leci thin [188] in the brain have been noted, but
fludeoxyglucose is increased in spinal cord lesions from
EAE [200]. Cognitive impairment is associated with glucose
hypometabolism in cortical regions [183], as well as the thal-
amus and other deep GM structures [183, 184]. Fatigue sever-
ity is associated with glucose hypometabolism in the prefron-
tal cortex [185] and thalamus [201].

Multiple ligands with novel targets have been developed,
tested in vitro, or tested in vivo in animal models of demyelin-
ation (cuprizone [190], lysolecithin [202], EAE [203]). The
high costs associated with producing radiopharmaceutical
agents and the availability of cyclotrons present an obvious
limitation but will likely diminish with its further use. As with
other advanced imaging techniques, PET imaging hopes to
increase the specificity of identifying MS lesions and under-
standing the underlying biology.

Myelin Measures

Water constitutes approximately 40% of myelin, is thought to
be present between its layers, and can be imaged from short
T2 relaxation components in < 50 ms [204]. Myelin water
fraction (MWF), a ratio of myelin water to total water [205],
correlates with myelin density histologically (Luxol fast blue)
[206]. Regions with intermediate T2 signal between NAWM
and T2 lesions, termed Bdirty-appearing white matter^, were
also found to have decreased MWF corresponding to de-
creased myelin (Luxol fast blue) and axonal density
(Bielschowsky stain) [207].

While initially time consuming,MWF can now be acquired
in feasible acquisition times [208] and whole-brain coverage
using fast acquisition with spiral trajectory and T2prep, or
multicomponent-driven equilibrium single pulse observation
of T1 and T2 can be attained in 4 [209] or 14 min [210],
respectively. Another approach to improve MWF resolution,
direct visualization of short transverse relaxation time compo-
nent, suppresses long T1 signal leaving a short T2* signal in
the myelin water range and can be acquired in a very short
time (3 min) [211].

MWF in MS lesions and NAWM correlates with disability
measures, discriminates MS types, and can be used to track
longitudinally evolution of lesions. Lesions contain 6% more
water but 52% less MWF, on average, versus control WM.
MS NAWM contains 2% more water and 16% less MWF
versus control WM [212]. NAWM MWF in PPMS is de-
creased by 6% versus controls and correlates with EDSS
[210] and 9-hole peg test [213]. Lesional MWF varies be-
tween GdE and T2 lesions, and T1 black holes [208] and
differences are hypothesized to be due to pathologic variations
of the lesion types. MWF may be useful as an outcome mea-
sure for therapeutics that promote repair as it is sensitive to
recovery following GdE [214].

Myelin imaging can be supplemented by measurement of
axonal content, estimated with MRI diffusion measures. The
myelin G-ratio (axon diameter/axon + myelin diameter) can
be directly measured with electron microscopy and an in vivo
surrogate can be obtained with MRI by calculating the myelin
and axonal volume fractions [215, 216].

Spinal Cord Imaging

Spinal cord MRI can aid in the diagnosis of MS [217], assist in
risk stratification in RIS [218] or CIS [219], and monitor for
disease activity on treatment. Inherent difficulties of MR spinal
cord imaging include small cross-sectional size, physiological
motion, and the local environment of the cord with surrounding
bone structure [220]. These conditions have made implementa-
tion of spinal cord imaging difficult in clinical trials. The
MAGNISMS group has made recommendations for spinal cord
clinical acquisition parameters to include both sagittal and axial
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planes with 1) T2; 2) short T1 inversion recovery or DIR [221];
and 3) postcontrast T1 [217]. Other methods, such as T1 3D
magnetization-prepared rapid acquisition with gradient echo
[222] and proton density fast spin echo [223], may add value
in lesion detection. Spinal cord lesions may be missed without
axial views [224] or including T2 with either short T1 inversion
recovery or DIR [221, 225]. Novel methods strive to image the
entire cord efficiently [226] as the thoracic region, often ignored,
includes 40% of spinal cord lesion burden [227]. For clinical
trials, imaging of the cervical spine is probably the best candidate
for a multicenter outcome measure.

Spinal cord atrophy measures, such as cross-sectional area,
have been studied extensively in almost all forms of MS and
are good candidates for clinical trials. Cervical cord atrophy in
CIS [228] is independently associated with accrual of disability
[229] and suggests axonal loss and demyelination [230] occur
early in the disease course. The cervical cord is extensively im-
aged in MS and is an attractive outcome measure as its atrophy
correlates with disability, particularly in progressive MS [231,
232]. Reproducible medulla oblongata volumes [233] or cross-
sectional area at C2 [234] seem to follow this trend and could be
a surrogate for cervical cord involvement in clinical trials. GM
lesions may be more readily detectible in the cord than in the
cortex [235]. GM loss occurs in both cervical [236] and thoracic
[237] segments, is more pronounced in progressive courses
[238], correlates with disability, and is independent of WM atro-
phy in relapsing MS [236]. Accrual of cervical cord lesions in-
creases the odds of thoracic cord lesions [239] and overall cord
lesion burden are associated with certain HLA-DRB1 alleles
[240] and risk loci [241]. Measuring loss of cord volume to
monitor efficacy of neuroprotective therapeutics [242], such as
IFN-β1α [243], IFN-β1b [244], and glatiramer acetate [245]
have been attempted in small trials.

Multiple advanced imaging techniques have been applied
to the spinal cord in preliminary studies [246], and hold prom-
ise for future clinical trials. Advanced measures have been
useful in distinguishing differences in clinical phenotypes
[247] and correlating with disability measures. DTI has been
extensively applied to the spinal cord in normal-appearing and
lesional regions, correlates with demyelination histologically
[248], and can be used to track recovery longitudinally [249].
These changes reflect global changes in the disease as they
also correlate with retinal nerve fiber layer thickness [250].
Decrease in normal-appearing cervical cord FA is specific
and sensitive in distinguishing MS from controls [251], and
is more markedly decreased in progressive than in relapsing
courses [252]. Spinal cord GM is increasingly involved in
comparing CIS, RRMS, and SPMS with respect to FA (de-
creased suggesting demyelination), RD (increased suggesting
demyelination), and MD (increased with injury) [253].

Other methods includeMWF,MRS,MT, and fMRI.MWF,
an estimate of myelination [254, 255], is reduced in the cervi-
cal cord of patients with progressive MS [213], and does not

appear to change with glatiramer acetate after 2 years [256].
MRS is susceptible to artifact, low signal-to-noise ratio, and
mostly limited to the cervical cord [257]. Some changes in
mIns, NAA, and Cho have been found in patients with MS,
albeit in small studies with variable results [258], and some
association with disability [259]. MT in the spinal cord is
associated with myelin and axonal density and can be ac-
quired quantitatively the spinal cord with reasonable acquisi-
tion times [260]. Decrease in spinal cordMT is observed early
in MS, involves both WM [261] and GM [262], correlates
with disability [263], and appears to be more affected in the
outer pial/subpial region in CIS, relapsing, and progressive
MS versus controls [264]. MT reduction in the dorsal and
lateral columns correlates with impaired vibratory sense and
muscle power, respectively [261]. Lastly, fMRI has been used
to characterize disability and typically shows diffuse cord re-
cruitment with fatigue [265] and overactivation with tactile
stimuli in relapsing [266], as well as progressive [75], courses.

Leptomeningeal Enhancement

Persistent enhancement of the leptomeninges may reflect pop-
ulations of immunologic cells that may contribute to ongoing
neurodegeneration, cortical demyelination, and cortical atro-
phy seen in MS [267]. Leptomeningeal enhancement (LME)
has only recently been described in MS and T2 FLAIR
postcontrast is more sensitive than T1 in detecting enhance-
ment due to improved CSF contrast. LME is more prevalent in
progressive MS and correlates with global and cortical atro-
phy [268]. The association between LME and cortical subpial
demyelination and perivascular macrophages and T and B
lymphocytes has been demonstrated in a small postmortem
study [269].

Although LME occurs in 25% [269, 270] of patients with
MS, it is not specific. A similar pattern of proximity to vessels,
nodular or linear shape, and supratentorial more than
infratentorial location, is seen with other inflammatory/
infectious (human T-lymphotropic virus, HIV, Behçet’s disease,
Susac syndrome [270, 271]) and noninflammatory/noninfectious
conditions. Also, 4 of 65 female asymptomatic first-degree rela-
tives of patients with MS have persistent LME [272]. There has
been speculation, owing to the increased frequency of these le-
sions in PMS and their location, that these lesions may represent
meningeal follicles and contribute to ongoing progression. It is
possible this could be targeted and used as an outcome measure
in trials, but validation is still required.

Iron Imaging

Iron is the most abundant trace metal in brain and is stored
predominantly in oligodendrocytes and myelin [273], making
it an attractive imaging contrast in MS. In active MS lesions,
dying oligodendrocytes release iron, which accumulates in
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astrocytes, microglia/macrophages, and axons [274]. This
process contributes to oxidative injury and mitochondrial dys-
function of axons, neurons, and glia in the lesional milieu
[275] . Nonphagocy tos ing pro in f l ammatory M1
macrophages/microglia accumulate iron at the edge of chronic
active WM and cortical demyelinated lesions [276]. Iron con-
trast can be assessed onMRI with spin echo T1 or GRE and in
tissue confirmed with immunohistochemistry (Perls’ stain for
iron and CD68 for microglia). Remarkably, chronically active
lesions with rims are more likely to continue expanding,
whereas chronically inactive lesions do not [277]. Rims are
not only more common in active relapsing MS, but also pres-
ent in SPMS [276, 278], and their persistence correlates with
more tissue injury (T1 hypointensity) [279].

In addition to accumulation of iron in WM lesions [274,
276], in both CIS [280] and RRMS [281] iron accumulation is
also found in deep GM. Deep GM iron content correlates with
disability [282], WM tract injury by DTI metrics [283], and
cognitive impairment [284, 285]. Over time, iron in NAWM
decreases in MS, possibly because of glial uptake [274, 286].

There is a plethora of MRI techniques, each with their
advantages and disadvantages, used to evaluate iron accumu-
lation in vivo at 7 T [287]: T2 hypointensity [288], phase
[289], transverse relaxivity (R2*) [290], T2*GRE [291],
susceptibility-weighted imaging [292], T2* coupled with
phase-dynamic contrast-enhanced T1 [293], magnetic field
correlation [294], FLAIR* [295], 3D-T2*-angiography (3D-
ESWAN) [296], quantitative susceptibility mapping (QSM),
and inversion recovery-ultrashort echo time (concomitantly
images myelin and iron [297]). Also, an exogenous method
to evaluate iron uptake exists with ultra small (nano) super
paramagnetic particles of iron oxide that are phagocytosed
by active monocytes/microglia. These particles show promise
in detecting more active lesions than gadolinium in pilot stud-
ies [298] and correlate with tissue injury in CIS [299, 300].

Of particular interest, QSM, has fewer artifacts than conven-
tional imaging [301], advantages to phase imaging [289], corre-
lates well with iron in microglia/macrophages [301], and can be
used to longitudinally follow active lesions. QSM shows 90%
sensitivity and specificity with GdE [302], starts to increase fol-
lowing aGdE lesion, and falls to baseline after 4 years [303]. Iron
accumulation in the deep GM by QSM correlates with cognitive
impairment [304] and impaired ability to suppress task-irrelevant
information (inhibitory control) [305].

Because inflammation precedes and continues following
GdE, QSM may prove to be an invaluable complementary
tool to monitor inflammation. Detection of rimmed lesions
carries the potential to supplement established measures of
Bactivity^ (new/enlarging T2 or GdE lesions) without the need
for exogenous contrast agents. Furthermore, it may be possi-
ble to discriminate MS from microvascular disease [295] or
NMOSD by the appearance of central veins, hypointense rims
[306], and deep GM iron accumulation [296].

Overlap in the appearance ofMS lesions with mimics, such
as cerebral small vessel disease or migraine, present a chal-
lenge in clinical trials. The T2 lesion volume attributable to
MS can potentially be misrepresented by comorbidities, par-
ticularly early in the MS disease course. The North American
Imaging in Multiple Sclerosis Cooperative noted improved
visualization of central vessels, a feature associated with de-
myelinating lesions to help discriminate MS lesions, by incor-
porating T2* and FLAIR (FLAIR*) [307, 308].

Iron imagingmay represent a suitable clinical trial outcome
measure especially for therapies that target iron metabolism or
microglia. Future trials which use medications that target iron
or microglia may use iron MRI measures as intermediate
outcomes.

Magnetic Resonance Fingerprinting

Magnetic resonance fingerprinting (MRF) can collect whole-
brain quantitative T1, T2, and spin density images in under
5 min by pseudo-random acquisition of flip angle and repeti-
tion, echo, and inversion times [309]. This novel technique is
able to discriminate healthy controls from patients with MS
and note differences between patients with SPMS and RRMS
with respect to T1 and NAWM [310]. Furthermore, T1 and T2
values in particular regions correlate with disability measures
including MS Functional Composite and Expanded Disability
Status Scale scores [310]. The quantitative nature of this meth-
od makes it of particular interest in multicenter clinical trials
using different MRI scanners. Ongoing studies are looking to
characterizeMRFmeasures in the thalamus, acquireMRF at 7
T, and include chemical exchange characteristics with sensi-
tivity to myelin content (unpublished work and [311]).

Conclusions

Advanced MRI imaging techniques in MS are rapidly evolving
and will only continue to increase in their value as a surrogate
in vivo biomarker for inflammation and neurodegeneration.
Although many of these tools still require validation and devel-
opment for multicenter application given they may have been
restricted to smaller studies, their usefulness in clinical trials
and practice will be of great value. The development of thera-
peutics that target specific pathogenic mechanisms will require
these techniques to evaluate their efficacy as outcome measures.
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