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Abstract Human genetic studies have been the driving force
in bringing to light the underlying biology of psychiatric con-
ditions. As these studies fill in the gaps in our knowledge of
the mechanisms at play, we will be better equipped to design
therapies in rational and targeted ways, or repurpose existing
therapies in previously unanticipated ways. This review is
intended for those unfamiliar with psychiatric genetics as a
field and provides a primer on different modes of genetic
variation, the technologies currently used to probe them, and
concepts that provide context for interpreting the gene–phe-
notype relationship. Like other subfields in human genetics,
psychiatric genetics is moving from microarray technology to
sequencing-based approaches as barriers of cost and expertise
are removed, and the ramifications of this transition are
discussed here. A summary is then given of recent genetic

discoveries in a number of neuropsychiatric conditions, with
particular emphasis on neurodevelopmental conditions. The
general impact of genetics on drug development has been to
underscore the extensive etiological heterogeneity in seeming-
ly cohesive diagnostic categories. Consequently, the path for-
ward is not in therapies hoping to reach large swaths of pa-
tients sharing a clinically defined diagnosis, but rather in
targeting patients belonging to specific Bbiotypes^ defined
through a combination of objective, quantifiable data, includ-
ing genotype.
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Introduction

The familiality of psychiatric illness has long been appreciat-
ed, but only in the past decade or so have the tools and re-
sources become available to probe its genetic determinants
directly. This new era of genetics is particularly meaningful
in psychiatry, where, unlike other medical fields, disorders
have often been diagnosed and treated subjectively and in
the absence of a clear biological framework. Furthermore,
the historically unappreciated link between mental illness
and biology has led to centuries of stigma for those suffering.
By using genetics to frame mental illness as a biomedical
phenomenon, there is hope that stigma can be alleviated.

Because many aspects of psychiatric illness are uniquely
human and have no adequate animal or cellular model, human
genetic research studies are particularly crucial for illuminat-
ing the underlying biology of these conditions. As these stud-
ies fill in the gaps in our knowledge, we will be better
equipped to design therapies in a rational and targeted way.
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This review is intended for outsiders to the field of psychi-
atric genetics and perhaps even genetics in general. I begin by
laying a foundation of basic aspects of genetic variation so that
the most salient genetic findings from a number of major
neurodevelopmental and neuropsychiatric conditions can be
appreciated in their context in the latter half of the review.
First, an overview of different kinds of genetic variation is
given, followed by technologies currently used to probe them.
General concepts that routinely come up in these genetic stud-
ies are then reviewed, and finally a brief synopsis of current
trajectories of discovery in the major neurodevelopmental and
neuropsychiatric conditions is given.

Types of Genetic Variation

Aneuploidy, the largest of the genetic variations (Fig. 1), is an
abnormal chromosome count resulting from errors in chromo-
some segregation during cell division. Aneuploidy increases
in the maternal germline with advancing maternal age [1].
Most aneuploidies that occur in the germline are embryonic
lethal, but some result in viable individuals with developmen-
tal syndromes, the most well-studied examples being Down
syndrome (trisomy 21) and Klinefelter syndrome (47, XXY),
as well as Turner syndrome (monosomy X), Edward syn-
drome (trisomy 18), and Patau syndrome (trisomy 13).
Exciting approaches that re-engineer X-inactivation mecha-
nisms for potential treatment of some aneuploidies are current-
ly under investigation [2, 3].

Genomic structural variants (SVs) occur on a
subchromosomal scale (Fig. 1) and include inversions and
translocations (where there is no net loss of genetic material,
such as the balanced translocation involvingDISC1 in schizo-
phrenia (SZ) [4]), as well as deletions and duplications (where
there is a net loss or gain, respectively, of genetic material).
Deletions and duplications comprise a subclass of SVs called
copy number variants (CNVs). SVs are sometimes arbitrarily
defined as larger than 1 kb [5, 6]; however, in actuality, their
size distribution is continuous, with smaller variants being
more numerous within an individual genome and larger vari-
ants being less numerous. Ascertainment of CNVs has played
a crucial role in psychiatric genetics over the past decade, as it
has helped to turn the spotlight from the common variants
popularized by genome-wide association studies (GWAS) to
rare variants of large effect [7]. CNVs are a normal form of
human genetic variation [8, 9], but neuropsychiatric popula-
tions show enrichment for de novo and rare, large CNVs [7,
10–16]. Genes that support the development and function of
the brain tend to be larger than other genes, and so are more
frequently affected by structural variation [17]. Furthermore,
segmental duplications, which can act as a catalyst for SVs,
are expanding in the primate and specifically the human line-
age [18], with brain genes particularly affected [19]. Taken
together, structural variation is an important mode of genetic
variation in human evolution and disease in general, and in
neuropsychiatric conditions in particular.

Short tandem repeats (STRs) and variable number tandem
repeats (VNTRs), are smaller genetic variations (typically a
few to hundreds of base pairs, and up to thousands of base

Fig. 1 Size distributions of
classes of genetic variation, and
the ability of microarray and
sequencing technology to detect
them. Solid circle = routinely
detectable; (+) = detectable
depending on platform, or with
special protocols, or with
limitations on size or coverage;
(–) = not detectable; SNP =
single-nucleotide polymorphism;
SNV = single nucleotide variant;
indel = insertion/deletion; STR =
short tandem repeat; VNTR =
variable number tandem repeat;
SV = structural variant; CNV =
copy number variant
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pairs for VNTRs; see Fig. 1), consisting of a number of repeats
of some core polynucleotide sequences (2–6 for STRs and 7–
100 for VNTRs) . STRs arise chiefly as a result of slippage of
DNA replication machinery and have high mutation rates
compared with other forms of genetic variation [20]. Well-
studied conditions with STRs as the causal factor include
Huntington disease (HD) and Fragile X syndrome. In
huntingtin (HTT), the gene that underlies HD, a CAG trinu-
cleotide repeat encodes a polyglutamine tract in the corre-
sponding huntingtin protein. If this STR expands past 35 re-
peats, the polyglutamine tract of the corresponding protein
causes protein aggregation, which is pathogenic, and results
in progressive neurodegeneration, chorea, psychiatric sys-
tems, and early death [21]. The CAG repeat is unstable and
expansion between generations can lead to earlier onset of the
disease, a phenomenon known as anticipation. In contrast to
HD, the STR that underlies Fragile X syndrome lies in a non-
coding regulatory sequence, upstream of FMR1. If this CGG
repeat expands past ~200 units, the promoter becomes
hypermethylated and gene expression of FMR1 is shut down
[22]. FMR1 encodes a vital regulatory protein that binds
mRNAs, in particular those related to synaptic function, and
loss of FMR1 results in mass dysregulation of protein expres-
sion and autism-like neurodevelopmental features.
Genotyping STRs at a genome-wide scale using high-
throughput sequencing technology is not routinely done be-
cause read lengths are not currently long enough to read
through many STRs while still having enough flanking se-
quence to reliably map them. Consequently, while specific
markers are used for forensics or diagnosing well-known dis-
eases, relatively little is known about the role of STRs in
disease at the genomic scale.

Indels (insertion/deletions) are polynucleotide expansions
(insertion) or contractions (deletion) relative to the reference
genome. Like SVs, the size distribution of indels is continu-
ous, but generally variants ranging from 1 to 50 base pairs are
considered indels (with larger indels becoming indistinguish-
able from small SVs; see Fig. 1) [23]. In protein-coding se-
quence, indels that are not multiples of 3 are under selective
pressure because they would induce a frame shift in the sub-
sequent transcript and protein, either leading to nonsense-
mediated decay or an entirely different structure downstream
of the indel.

Single nucleotide variants (SNVs) are the smallest type of
genetic variant (Fig. 1), and are by far the most thoroughly
used in genetic association studies. In protein coding se-
quence, SNVs can change codons to alter the eventual se-
quence of amino acids in the protein (missense variant), intro-
duce a premature STOP codon (nonsense variant), or alter
splicing properties (splice variants). SNVs may also change
the codon to another codon for the same amino acid (synon-
ymous variants). SNVs in a noncoding sequence may exert an
effect by altering binding affinities for DNA-binding proteins,

such as transcription factors, or by affecting epigenetic prop-
erties of the chromatin, such as DNA methylation. These
single-letter changes to the genetic code are, from a technical
standpoint, the easiest class of genetic variation to identify in a
massively parallel way, which led to them being the basis for
the first generation of GWAS. SNVs that are common in the
population are called single-nucleotide polymorphisms
(SNPs), and these are the variants that are probed by the mi-
croarrays used in massive studies like those of the Psychiatric
Genomics Consortium (PGC; http://pgc.unc.edu). Because
SNPs are common in the population, they have generally
withstood a reasonable amount of selective pressure, and,
consequently, associations between a SNP and a deleterious
condition such as a disease will generally have a small effect
size. Such small effects require large studies to provide the
power necessary to declare a statistically significant
association. However, rare SNVs (or any kind of rare
genetic variant) have generally not undergone the same level
of purifying selection, and so disease associations can have
larger effect sizes. However, owing to the rarity of these
variants, they are often pooled within a gene or even a gene
set or pathway to provide the necessary power to demonstrate
a statistically significant association. A number of properties
of SNPs plagued early GWAS [24], including confounding
effects with population structure, as well as underpowered
designs (as common SNP effects are small and require large
samples to achieve significance). Furthermore common SNPs
often merely tag causal variants by virtue of their
Bhitchhiking^ together through recombination events
( con t r ibu t ing to a phenomenon ca l l ed l i nkage
disequilibrium). This tagging effect can make locating and
interpreting the causal variant a challenging exercise.

Technologies

Two basic technologies dominate current genetic studies of
psychiatric conditions: DNA microarrays and high-through-
put sequencing (Fig. 1). Microarrays use DNA oligonucleo-
tide probes, which give a sparse picture of the genome, to
genotype SNPs and CNVs. The low cost of these arrays (typ-
ically around $100–200) enabled the massive GWAS projects
of the past decade, to the point that Bmicroarray^ and
BGWAS^ have become nearly synonymous. While the future
is clearly in sequencing technologies (see below), microarray
platforms, particularly those with custom probe content (such
as the Illumina PsychArray, which probes an assortment of
variants nominated by researchers in psychiatric genetics) still
have their place in certain study designs. Specifically, in stud-
ies where assessment of common genetic risk is prioritized
over gene discovery, microarrays can be a cost-effective tool.

As DNA sequencing prices have fallen dramatically over
the past decade, investigators have more options to consider
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when designing genetic studies [25]. Whole-exome
sequencing (WES) was the first form of high-throughput se-
quencing to be widely adopted in psychiatric genetics studies,
with early studies in autism demonstrating enrichment of del-
eterious protein-coding mutations [26–29]. In WES, a prelim-
inary capture step is performed that limits input DNA to
protein-coding exons, thus reducing the DNA to be sequenced
bymore than an order of magnitude.While cost was the major
consideration that birthed WES as a stopgap technology, in-
vestigators found that in contrast to GWAS, where top hits
were often in functionally ambiguous noncoding regions, data
from WES were comparatively straightforward to interpret:
changes to coding DNA sequence affect splicing and amino-
acid sequence of the resulting protein in a relatively straight-
forward way.

As sequencing throughput continues to increase with new
technology, the price differential between WES and whole-
genome sequencing (WGS) is shrinking. A whole genome
sequence currently costs around 2 to 3 times the cost of an
exome, yet yields ~30 times more data. Furthermore, the
protein-coding fraction of the genome is covered more uni-
formly in WGS [30], and SVs can be called far more reliably
and comprehensively in WGS. However, compared with
WES, all these additional data require a substantial investment
in storage and computational infrastructure, as well as the
expertise to interpret noncoding variation. By far the most
widely used technology for WGS is Illumina’s sequencing
by synthesis, which sequences about 150 base pairs (75–300
base pairs, depending on the instrument and chemistry) of the
ends of DNA fragments. While Illumina’s technology has
proven popular and cost-effective, short-read (SR) approaches
to sequencing have limitations. SR cannot read through long
STRs, and consequently cannot always genotype them. SR
can only be used for short-range phasing of variants; it strug-
gles to resolve complex structural variation and low-
complexity sequences. Competitors have focused on develop-
ing long-read technologies in the hope of luring customers
who have run into Illumina’s limitations. PacBio uses a
single-molecule real-time approach to achieve reads averag-
ing > 10 kb [31]. This technology was demonstrated to great
effect in the sequencing of a hydatidiform mole genome,
resulting in a far more comprehensive view into SVs than
can be provided by Illumina’s technology [32]. This work also
enabled the closure of many interstitial assembly gaps in the
human reference genome. While PacBio’s technology de-
livers impressive results and throughput is improving, its high
cost pushes it out of the reach of most laboratories and makes
it a poor solution for sequencing large cohorts. A somewhat
more cost-effective approach to long-read sequencing has
been developed by 10X Genomics [33], called linked read
sequencing. This approach uses microfluidics to partition
high-molecular-weight DNA molecules into droplets where
barcodes are added to amplified fragments, thus introducing

the means to Blink^ the resulting sequencing reads back to a
single DNA molecule. The library is sequenced on standard
Illumina instrumentation, and a custom alignment and variant-
calling pipeline is used to identify and phase SNVs, indels,
and SVs. On average, 97% of SNVs were phased into phase
blocks ranging from 0.9 to 2.8 Mb in length [33].

While WGS is a powerful technology for comprehensive
discovery of genetic variations, targeted sequencing offers a
more economical approach for replication studies or other
hypothesis-driven designs that target a smaller number of
genes and loci. Technologies such as Agilent’s SureSelect
use RNA probes to capture targeted genomic regions prior
to sequencing library preparation. Another cost-effective ap-
proach to targeted sequencing is molecular inversion probes
[34]. These are linear DNA oligos whose ends target se-
quences that flank regions of interest of about 200 base pairs.
A gap filling and ligation reaction fills in the targeted sequence
and the probe is circularized, the residual linear DNA
digested, and the circular capture products amplified through
PCR. The pool of PCR products is then sequenced with stan-
dard Illumina chemistry. Although the up-front investment in
the synthesis of the oligo probes can be substantial, the num-
ber of individuals that can be sequenced with the resulting
probe pools is, for all practical purposes, limitless. Cost anal-
yses suggest that a panel of 1000 targeted regions can be
sequenced for < $10/per individual [35].

Concepts

Here I introduce some concepts that come up routinely in
psychiatric genetics. While some of these concepts are illus-
trated with examples from the field, the major findings are
presented in more detail in the BCurrent Trajectories^ section.

GWAS data have seen a renaissance in recent years with an
increasing appreciation of the role of common polygenic risk
[36–39]. Focus has shifted from array-based GWAS data as
the primary means of disease gene discovery to microarrays as
a tool to calculate the aggregate genetic risk of individuals for
various diseases. Predictive models are trained using large
discovery cohorts, such as from the PGC, and then a linear
combination of risk alleles is computed in the cohort of inter-
est for each individual, essentially producing a single numer-
ical value for each individual that represents their polygenic
risk for the disease in question. These polygenic risk scores
are then correlated with other variables of interest to draw
inferences about the role of common polygenic risk in the
phenotypes of interest. Such analyses, using either a polygenic
risk score or an alternative approach called LD score regres-
sion [40], are often referred to as studies of genetic correla-
tions [41, 42]. Notable examples of the application of poly-
genic risk scores in the general population include the finding
that polygenic risk for autism is positively correlated with
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cognitive ability [37] and that polygenic risk for SZ is predic-
tive of creativity [38]. Such examples may serve to explain, at
least in part, the evolutionary double-edged sword of polygen-
ic psychiatric risk. Furthermore, it has been shown through
genetic correlations that major depressive disorder, bipolar
disorder, and SZ share genetic risk factors; and that anorexia
and SZ share genetic risk factors [41]. A further permutation
of the concept of polygenic risk is the use of predictive models
to infer gene expression (rather than disease risk) based on
large-scale genotyping data [43, 44]. In this way, the collec-
tion of imputed gene expression values may be used as an
intermediate phenotype to link trait or disease state to
genotype.

As parallel efforts to discover the genetic basis for different
common psychiatric conditions have progressed, it has be-
come clear that a substantial number of risk genes confer risk
for multiple conditions [42], a phenomenon called pleiotropy
[45]. Consequently, the notion that there are Bschizophrenia
genes^ and Bautism genes^, and so on, has evolved into the
idea that there are simply Bbrain genes^ that can be perturbed
in ways and combinations so as to predispose individuals to
either SZ or autism or any other neuropsychiatric condition
[46]. Certain classes of genes may be more likely to be in-
volved in one condition than another [e.g., chromatin and
transcriptional regulators in autism spectrum disorder
(ASD)], but the field is young enough that it is difficult to
determine whether or not these perceptions of thematic segre-
gation by condition are merely a product of ascertainment
bias.

A very specific kind of pleiotropy has been observed in
connection with some well-studied CNVs: reciprocal (or mir-
ror) phenotypes. When a deletion and its reciprocal duplica-
tion (i.e., of the same genetic material) results in phenotypes
that are correspondingly mirrored at opposite ends of a spec-
trum, that locus is said to be involved in a reciprocal pheno-
type. The implication is that phenotypes associated with these
loci vary in a semi-quantitative way with gene dosage.
Notable examples include variation of head circumference
(i.e., trends toward microcephaly or macrocephaly) and body
mass index with comorbid neuropsychiatric features observed
in 16p11.2 [47, 48], head circumference in 1q21.1 [49], and
head circumference, stature, and bonematuration rates at 5q35
[50]. Reciprocal CNVs at a number of genomic loci that con-
fer reciprocal risk for autism or SZ (1q21.1, 16p11.2,
22q11.21, and 22q13.3) have led to a hypothesis that, in some
respects, these 2 conditions might be considered reciprocal
phenotypes [51].

As sequencing prices have continued to fall, it has be-
come practical to sequence large numbers of trios with the
aim of identifying putatively causal de novo mutations
(DNMs). These are new mutations that do not affect the
parents but that occur sporadically in either the sperm or
egg haploid genomes, thus propagating to all cells in the

offspring. This approach to gene discovery is particularly
fruitful when family history is strongly suggestive of the
condition being sporadic: the proband’s genome is com-
pared with the parents’ genomes, and genetic variants that
are absent in both parents are candidate DNMs (sequenc-
ing errors lead to many false-positives and best practices
require confirmation of putative DNMs with an additional
genotyping technology). Early exome studies of autism
rapidly expanded the list of autism risk genes by identi-
fying genes that were hit by de novo and presumed dam-
aging mutations in multiple individuals [26–29]. Further,
these studies showed that individuals with autism do not
have a greater burden of exonic DNMs, although their
DNMs are more likely to be damaging. WGS studies of
autism and other samples showed that a disproportionate
number of DNMs (~75%) are transmitted from the father,
that DNM burden is positively correlated with paternal
age (about 1 DNM per year of paternal age), that DNMs
cluster together in a nonrandom fashion, that humans har-
bor about 50 to 100 single-nucleotide DNMs each, and
that single-nucleotide mutation rate varies substantially
across the genome [52, 53]. As DNMs have undergone
only a single round of selective pressure, they are attrac-
tive candidates for potentially causal variants of large
effect.

Depending on the comprehensiveness of the genetic study,
there may be many thousands of variants of interest, and a
variant annotation scheme must be used to prioritize candi-
dates for further investigation. For protein-coding variants,
indicators of the functional consequence (amino-acid change,
premature STOP codon, splice-site disrupting, etc.) can be
assigned in a straightforward manner. Variants are also anno-
tated according to the frequency of the minor allele in a pop-
ulation sample, and this is used to classify the variant as com-
mon or rare (with thresholds varying, but usually either < 0.05
or < 0.01 qualifies as rare). Measures of selective constraint,
such as PolyPhen [54], Genomic Evolutionary Rate Profiling
(GERP) [55], or Combined Annotation Dependent Depletion
(CADD) [56] are often used as an indicator of how deleterious
the variant is. In addition, noncoding variants are sometimes
annotated according to whether they intersect known regula-
tory elements or epigenetic marks, which may give further
clues as to their regulatory consequences.

The impact of a genetic variant does not occur in a vacuum;
it is often modulated by other genetic factors or the environ-
ment. This modulatory effect can result in incomplete
penetrance (when some carriers of a damaging variant do
not show the corresponding phenotype) or variable
expressivity (when the associated phenotype manifests itself
differently in individuals). When the effect of a variant de-
pends upon the genetic background of an individual or the
genotype at another locus, the effect is said to be epistatic.
Epistatic effects are often called gene–gene interactions, and
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epistasis has been used in model organisms as a means to flesh
out functional gene networks [57], though in humans the phe-
nomenon has not been observed as extensively. Nevertheless,
clear examples of epistasis have been observed in human neu-
ropsychiatric and developmental conditions [58–64].

In a way that is comparable to epistasis, the sex of the
variant carrier can have a decisive effect on the phenotypic
expression of the variant. Perhaps the most striking example
of this is the well-known male bias in ASD [65]. This work
has led to a broader idea of the Bfemale protective effect^ in
neurodevelopment in general [66–68], where females can car-
ry higher levels of genetic risk than males, while remaining
largely asymptomatic. The idea of a female protective effect is
attractive, in part, because of its therapeutic implications: if the
biological pathways that make females more resilient in the
face of genetic insult can be better understood, then perhaps
they can be exploited to therapeutic effect [66, 68, 69]. The
level of sexual dimorphism in neuropsychiatric conditions
varies along a spectrum ranging from extreme male bias in
autism and other neurodevelopmental conditions to extreme
female bias in eating disorders and anxiety [70]. Because of
the crucial role that sex plays in the phenotypic expression of
genetic conditions, it should be a core factor in experimental
designs, and not ignored for convenience sake.

As with sex, the environment can play a crucial mod-
ulatory role in the expression of genetic disease, including
autism [71, 72], major depression [73], SZ [74, 75], and
others. The prototypical example of the gene–environ-
ment interaction in neuropsychiatry is post-traumatic
stress disorder (PTSD) [76, 77], where not all individuals
who suffer a traumatic event develop PTSD. It is thought
that there is a latent genetic risk that, when combined with
a traumatic event, manifests as PTSD.

Current Trajectories of Genetic Discovery

In the wake of the completion of the Human Genome Project,
psychiatric geneticists have exploited the above technologies
and concepts to learn more about the biological nature of
neuropsychiatric conditions. Below I provide a brief synopsis
of the recent trajectory of genetic discovery for some of the
major neurodevelopmental and neuropsychiatric conditions.
Emphasis is given to neurodevelopmental conditions, and
these are not intended to be comprehensive; indeed, the
breadth of the field makes a comprehensive review impossi-
ble. Rather, the goal is to illustrate patterns of inquiry currently
in use across conditions. Table 1 summarizes the various con-
sortia and working groups (with websites, where available)
undertaking research in each condition. While not exhaustive,
Table 1 focuses mostly on consortia that have demonstrated
their productivity through multiple peer-reviewed publica-
tions over the last 5 years.

Intellectual Disability

Intellectual disability (ID) is a genetically heterogeneous
neurodevelopmental disorder characterized by impaired adap-
tive functioning and low IQ. Prevalence of ID is estimated to
be between 0.05% and 1.55% [78]. ID is often a comorbidity
in other neuropsychiatric conditions [79, 80] and is especially
prevalent in SZ and ASD, as well as attention deficit/
hyperactivity disorder (ADHD) [81]. Because of its profound
effect on fecundity, severe ID is presumed to be largely mono-
genic and not familial [82], though the total number of risk
genes has yet to be enumerated. At the same time, ID has
varying levels of severity and it has been shown that some
less severe forms of ID are the result of complex polygenic
inheritance [82], essentially representing the lower range of
intelligence, which itself has been shown to have a heritability
of 0.4 to 0.8 [83].

ID has classically been linked to large-scale structural var-
iations in the genome, and these have been extensively
reviewed [84]. Recent WGS and WES studies, which can
resolve deleterious genetic variants at a much finer resolution,
have shored up known ID genes, discovered new ones, and
demonstrated emergent patterns. One recent study [85] per-
formedWGS on 50 individuals diagnosed with severe ID and
their unaffected parents and found a clear genetic cause in
42% of the subjects (this was estimated to generalize to a rate
of 62% in a new sample where microarray and WES analyses
had not already been performed). This study, like others,
found an excess of protein-coding de novo mutations, as well
as enrichment of de novo hits among a list of 528 known ID
genes. The use of WGS was vindicated by the discovery of
several de novo SVs that escaped detection by microarray
technology. As expected, slightly lower diagnostic yields are
obtained with WES [86]. More recently, a meta-analysis of >
2000 trios with ID found statistical associations of rare and de
novo variants in 10 newly identified candidates: DLG4,
PPM1D, RAC1, SMAD6, SON, SOX5, SYNCRIP, TCF20,
TLK2, and TRIP12 [87]. These genes were shown to be intol-
erant to functional nonsynonymous variants.

As a complement to the unbiased, genome-wide studies,
many recent studies have followed the Bgenotype-first^ ap-
proach [88], where a sample of individuals carrying damaging
mutations in the same gene is assembled, and then character-
ized extensively from a phenotypic standpoint. Examples in-
clude POGZ [89], DYRK1A [90], TBCK [91], EBF3 [92],
CHAMP1 [93], and IARS [94].

Inborn errors of metabolism represent a well-known
cause of ID [95], and are attractive from a research per-
spective because of the potential for addressing or even
preventing negative outcomes through dietary supplemen-
tation or restriction [95, 96]. Well-studied examples in-
clude phenylketonuria [97], defects in creatine transport
[98], branched-chain amino-acid metabolism [99, 100],
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glycosylation [101], and lysosomal storage disorders
[102]. A recent network analysis of ID risk genes
underscored the central role of metabolic pathways, and
highlighted other areas of convergence in ID, including
genes involved in nervous system development, RNA me-
tabolism, transcription, hedgehog signaling, glutamate
signaling, peroxisomes, glycosylation, and cilia [103].

A number of pharmacological strategies targeting ID are
under development [104]. Risperidone was shown in early
studies to significantly ameliorate problematic behaviors
[105, 106], though significant side effects temper enthusiasm
about its use [107]. Furthermore, because it does not directly
target pathways known to be dysregulated in ID, it cannot be
considered a specific therapy for ID. Other approaches justi-
fied by the known molecular pathologies have been investi-
gated including mGluR5 antagonists [108–111], ampakines
[112–114], and γ-aminobutryic acid B agonists [115]. The
mTOR pathway has also been a target of drug development
in the context of ID [116], where rapamycin and other inhib-
itors of mTOR function show promise [117].

ASD

ASD is a phenotypically and genetically heterogeneous
collection of neurodevelopmental conditions that entail
impairments in social communication and restrictive and
repetitive behaviors. Heritability of ASD ranges widely
depending on study design and confounds, but recent es-
timates put it at 0.5 to 0.54 [36, 118]. Current estimates of
prevalence are at 1 in 68 [119], and ASD encompasses
enormous phenotypic diversity, from profoundly affected
nonverbal individuals with comorbid ID to highly intelli-
gent but socially impaired individuals. Correspondingly,
there is no single genetic architecture for ASD. Some
well-known monogenic syndromes show ASD as a com-
mon feature, including Rett syndrome (MECP2), Fragile
X syndrome (FMR1), and Angelman syndrome (UBE3A).
However, recent work has shown that most risk for ASD
lies in the cumulative effect of thousands of common risk
variants [36]. It is estimated that there are likely hundreds
of ASD risk genes [26], and recent coordinated and indi-
vidual efforts have been aimed at enumerating them. No
other neurodevelopmental condition has been investigated
with sequencing technology as intensively as ASD, and
many early analytical and methodological advances were
made to enable the analysis of ASD sequencing data
[120–122].

In contrast to sequencing studies, ASD GWAS projects
have yet to suggest robustly associated loci, and data from
these studies have shown more traction in developing
polygenic risk scores for ASD [37, 123] than for gene
discovery. Array-based CNV studies have been more pro-
ductive from a locus discovery perspective, through theirT
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focus on detecting rare variation [14, 124]. In 2012, a
series of coordinated WES studies of ASD were published
that used de novo mutation as a means for gene discovery
[26–29]. Shortly thereafter came the first WGS studies of
autism [52, 125]. These studies, especially the WES stud-
ies with their larger numbers, quickly expanded the list of
candidate ASD genes, and multiple follow-up studies con-
firmed the association of some of these genes with ASD,
notably CHD8, DYRK1A, GRIN2B, TBR1, PTEN, and
TBL1XR1 [126], POGZ [89], and ADNP [127]. One
emerging theme is that ASD risk genes are likely to be
regulatory targets of fragile X mental retardation protein
(FMRP), the protein encoded by the Fragile X gene,
FMR1 [27]. Other risk genes are involved in synaptic
structure and integrity, such as neuroligins/neurexins
[128, 129], SHANK proteins [130], and contactin proteins
[131]. Still other ASD risk genes are involved in broad
regulation of chromatin structure and transcriptional reg-
ulation, such as CHD8 [28, 29, 126, 132, 133], TBR1
[126, 134], and TCF4 [132, 135].

Effective treatment options for ASD are likely to be highly
individualized, owing to the extensive heterogeneity of the
condition. Indeed, much of the most promising treatment de-
velopment work is done in genetically defined forms of ASD,
such as Fragile X [136], Rett syndrome [137–139], and others
[100, 140–143].

Several consortia and foundations have been and con-
tinue to be driving forces in ASD genetics. The Simons
Foundation has built extensive infrastructure and data sets
for ASD researchers to use, including SFARI gene, which
offers a curated list of ASD candidate genes. In addition,
sequencing data and biospecimens from the Simons
Simplex Collection are available to qualified investiga-
tors. The Simons Foundation also sponsors the Variation
in Individuals Project, which focuses on genetically de-
fined forms of ASD such as 16p11.2 and 1q21.1. Other
consortia and projects actively contributing to research in
the genetics of ASD include the ARRA Autism
Sequencing Collaboration, the Autism Genome Project
Consortium, the 16p11.2 European Consortium, and the
Psychiatric Genomics Consortium.

ADHD

ADHD is a highly heritable neurodevelopmental condi-
tion that presents with impairments in sustaining attention
and an inability to control impulses and activity level. In
addition to the previously mentioned comorbidity with
ID, ADHD shows high comorbidity with ASD within in-
dividuals and family members [144]. Prevalence of
ADHD is estimated at 5% to 7% in children [145, 146]
and 3% to 5% in adults [147, 148]. Twin studies estimate
high heritability (70–80% [149, 150]), and ADHD is

genetically heterogeneous and a host of candidate genes
have been suggested [151–153]. Candidate gene studies
(i.e., where only one or a handful of polymorphisms are
studied) suffer from ascertainment bias, and many of the
positive associations in candidate gene studies of neuro-
transmitter pathway genes are not represented in genome-
wide studies, where a higher burden of proof exists owing
to multiple hypothesis testing. However, some integrative
analyses have indicated that pooling of common variants
within these neurotransmission pathways may lead to sta-
tistical significance [154, 155].

Perhaps the most compelling theme to emerge from the
genome-scale studies of ADHD is glutamatergic neurotrans-
mission. A large study of CNVs implicated metabotropic glu-
tamate receptors, as well as functionally related genes, in the
etiology of ADHD [156]. This work led to the repositioning of
the drug NFC-1 (fasoracetammonohydrate), which stimulates
metabotropic glutamate receptors, for treatment of ADHD in
individuals with confirmed mutations in mGluR genes (clini-
cal trial ID NCT02777931). A subsequent study of CNVs in
ADHD also found a link to metabotropic glutamate receptors
[157]. Imaging studies have suggested abnormal glutamate
levels in cortical and subcortical brain regions [158].
Glutamatergic signaling has gradually emerged as a point of
ove r l ap be tween ADHD and ASD [159 , 160 ] .
Methylphenidate, a common medication for ADHD that acts
as a dopamine–norepinephrine reuptake inhibitor, was found
tomodulate the number of surface glutamate receptor subunits
in a dose-dependent, bidirectional fashion [161]. Furthermore,
genetic variation in GRM7 was associated with response to
methylphenidate [162].

Synaptic adhesion molecule LPHN3, which regulates syn-
aptic density and development [163], was found to be associat-
ed with ADHD by a linkage study [164] and has been robustly
replicated since then [165–175]. LPHN3 variants have been
shown to be predictive of methylphenidate response in
ADHD [173]. FLRT3 encodes a ligand for LPHN3
[176–178], and has itself shown suggestive genetic associations
to ADHD [179–182].

Other studies of rare variation in ADHD have implicated
signal transduction genes NT5DC1, PSD, SEC23IP, and
ZCCHC4 [183], and a small-scale exome sequencing study
found a significant excess of rare variation in 51 preselected
ADHD candidate genes [184].

Developmental Language Disorder

Developmental Language Disorder (DLD), also known as
specific language impairment, language impairment, or lan-
guage disorder, is a neurodevelopmental condition that im-
pairs expressive and receptive language ability that is not at-
tributable to hearing loss or severe ID. Prevalence is estimated
at 7% [185] and heritability is moderate to high [186–189]. It
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is highly comorbid with ADHD, with ~40% of individuals
with DLD also having an ADHD diagnosis [190].

Early genetic studies of language ability were driven by
pedigrees with very pronounced phenotypes, and these led
to seminal discoveries such as disruptive variation in
FOXP2 being associated with impaired language abilities
[191–194]. However, subsequent studies of common variation
have not been able to provide strong support for these genes
playing a major role in DLD [195, 196]. Genome-wide studies
of common variation are generally woefully underpowered
and have not produced findings that withstand multiple testing
correction [197, 198].

A recent study that combined GWAS and exome sequenc-
ing in an isolated population implicated SETBP1 as a
language-associated gene, and this association was replicated
in an admixed sample [199]. Furthermore, through exome
sequencing of the most severely affected individuals in the
sample, a number of putatively disrupting variants were found
and, together with GWAS candidates, these genes were
enriched as transcriptional targets of MEF2A. WES was used
in another study that implicated NFXL1, and then confirmed
the association with language ability in 2 other samples [200].
These studies illustrate that movement toward sequencing
technologies will bear fruit because of its ability to combine
analysis of common and rare variation together.

Tourette Syndrome

Tourette syndrome (TS) is a neurodevelopmental condition
that presents with disruptive motor and vocal tics [201].
Although early work suggested a monogenic, autosomal dom-
inant mode of inheritance [202], subsequent findings demon-
strated substantial genetic and phenotypic heterogeneity
[203–205]. TS shows strong comorbidities with obsessive–
compulsive disorder and ADHD [206], with other mood, anx-
iety, and disruptive behavior disorders occurring in about 30%
of probands. While many of the specific genes underlying TS
remain elusive, over the last decade, histidine decarboxylase,
a key enzyme in the biosynthesis of histamine, has emerged
from human genetic studies as an important player in the eti-
ology of the disease [207–209], with animal models
displaying TS-like phenomenology [210] and implicating an
interaction between dopaminergic and histaminergic systems
in the basal ganglia. Administration of haloperidol and hista-
mine were shown to rescue TS-like behavioral and molecular
characteristics in this model.

A number of common variant studies of TS have been
carried out, some at the genome-wide scale, with less conclu-
sive results. The first GWAS of TS failed to reach significance
for any SNP [211]. A follow-up study [212] that included 42
of the top candidates from the initial GWAS found a signifi-
cant association at rs2060546, near the gene that encodes the
axon guidance protein netrin 4 (NTN4), which shows strong

expression in the striatum. A recent attempt at replicating this
association failed [213]; however, a meta-analysis of 3 cohorts
showed significance and consistent direction of effect.

Several consortia are currently undertaking large-scale ge-
netic studies of TS. The European Multicentre Tics in
Children Study (EMTICS) seeks to elucidate gene–environ-
ment interactions, including the involvement of infection and
immunemechanisms in TS etiology. Two patient cohorts form
the basis of EMTICS: the ONSETstudy involves follow-up of
375 high-risk children aged 3 to 10 years who have an imme-
diate family member with a diagnosis of TS and at study entry
have no tics. COURSE is a longitudinal study that is following
700 children and adolescents (aged 3–16 years) with a known
chronic tic disorder or TS. The study began in March 2013
and the study will conclude in 2017.

TS-EUROTRAIN is a training network that acts as a plat-
form to unify large-scale TS studies and educate the next
generation of experts. TS-EUROTRAIN is notable for com-
pleting the first epigenome-wide association study for tics,
analyzing data from the Netherlands Twin Register [214].
This study interrogated 411,469 autosomal methylation sites
in 1678 individuals. Although no site reached genome-wide
significance, the top hits include several genes and regions
previously associated with neurological disorders and warrant
further investigation.

The Tourette International Collaborative Genetics (TIC
Genetics) study [215, 216] is currently finishing analysis of
WES data from 325 simplex TS trios, with the main focus
being the detection of de novo SNVs and indels.

Adult-Onset Disorders

Schizophrenia

Schizophrenia (SZ) is a complex, highly heritable, and hetero-
geneous psychiatric disorder that presents with positive (psy-
chosis, hallucinations) and negative (apathy, blunted affect,
social withdrawal, poverty of speech, anhedonia) symptoms,
with associated cognitive deficits. Its prevalence is estimated
at 1% [217] and it is highly heritable (65–81% [218, 219]).
Significant comorbidities include substance abuse (47%) and
depression (50%), as well as anxiety disorders (29% PTSD,
15% panic disorder, and 23% obsessive–compulsive disorder)
[220]. Despite the wide appreciation of the genetic roots of
SZ, its etiology and origins are still not fully understood [221],
though some recent exciting progress has been made that is
beginning to chip away at the complex physiology that under-
lies SZ.

It is clear that SZ is polygenic [222, 223], and, indeed, the
most compelling study of the last several years identified 108
loci as SZ-risk loci [224]. One of these hits resides in the major
histocompatibility complex, a notoriously difficult region to
resolve from a genotype standpoint. Despite this challenge,
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recent work that focused on elucidating the underlying source
of the association signal in this region found that the comple-
ment component gene C4 drives the underlying association,
and that risk alleles result in higher expression of C4A [225,
226]. C4 protein is expressed at the synapse and plays a role in
synaptic pruning, thus implicating overactive synaptic prun-
ing as a mechanism underlying schizophrenia risk.

A recent large-scale WES study of SZ [222] implicated
voltage-gated calcium ion channels and proteins comprising
the ARC postsynaptic protein complex as harboring an over-
abundance of putatively functional rare variation. As has been
noted for genes affected by damaging variation in ASD [27],
this study showed an enrichment of FMRP targets affected by
damaging variation in SZ probands. These and other genetic
findings implicate synaptic genes as a major theme in the
genetic etiology of SZ [227], suggesting that development of
therapeutics should involve the targeting of synaptic proteins
and processes.

Bipolar Disorder

Bipolar disorder (BPD) is a heritable psychiatric condition
marked by alternating episodes of mania and depression.
Prevalence is 2% to 3% [228], and heritability may be as
high as 80% [229]. Individuals with BPD are at an 8- to
10-fold increased risk for suicide [230]. BPD is a complex
and genetically heterogeneous condition; however, com-
pared with other conditions such as SZ, discovery of ge-
netic risk factors robustly and specifically connected to
the condition has been slow. The largest GWAS in BPD
to date [231] showed associations in 4 known (MAD1L1,
6q16.1, DDN, and TRANK1) and 2 novel loci (intergenic
9p21.3 and intronic variants in ERBB2). Exome sequenc-
ing in a large cohort of familial BPD showed an enrich-
ment of predicted damaging variation in genes previously
associated with ASD and SZ, as well as targets of the
fragile X protein, FMRP [232], suggesting overlapping
genetic risk with these disorders. The trickle of genetic
findings in BPD, in contrast to its high heritability, speak
to the extensive complexity and heterogeneity of the dis-
order, and support the need for larger studies of this con-
dition. In the near term, perhaps one of the most promis-
ing approaches is in the genetics of lithium response,
reviewed in detail in this issue.

Major Depressive Disorder

Major depressive disorder (MDD) is characterized by
prolonged depressed mood or loss of interest or pleasure in
nearly all activities, together with other disturbances in areas
such as sleep, appetite, and psychomotor activity. Its preva-
lence varies by geographic location but is mostly 8% to 12%
[233, 234], and women show more susceptibility than men.

Significant comorbidities include dysthymia (20%) and anxi-
ety disorders (21%) [235] . Heritability is estimated at about
37% [236, 237]; however, like BPD, genetic findings that
provide compelling biological insights into the disorder have
been elusive [238]. Nevertheless, recent studies show prom-
ise. The largest MDD GWAS to date, which used data from
direct-to-consumer genetics company 23andMe, uncovered
15 loci associated with MDD [239]. Another study used
low-coverageWGS and identified SIRT1 and LHPP as poten-
tial MDD risk genes [240].

While genetic studies ofMDD have not yet yielded enough
robust results for pathway analyses to gain traction, a recent
gene expression study of individuals with MDD implicated
inflammation/immune pathways (specifically interleukin-6
and natural killer signaling pathways) as a marker of MDD
[241]. DVL3, a gene that regulates cell proliferation and pre-
viously implicated by PGC results [242], was also found to be
differentially expressed in this analysis. These findings raise
the possibility of targeting inflammation pathways as a means
to treat depression [243].

Conclusion

Human genetic studies have been the driving force in bringing
to light the underlying biology of psychiatric conditions. The
complex nature and genetic heterogeneity of these conditions
requires vast sample sizes to power statistically robust associ-
ations, and such studies can only be accomplished through
continued intra- and international collaboration and an in-
crease in data sharing. While these massive collaborative ef-
forts are necessary for gene discovery, individual laboratories
and investigators still play a vital role in contextualizing and
deepening our understanding of these genetic associations
through focused and hypothesis-driven investigation.

As a complement to these gene-discovery efforts, it is clear
that much of the future of psychiatric genetics lies in the
Bgenotype-first^ approach to studying genetically defined
neuropsychiatric conditions. These studies, which are perhaps
the greatest near-term boon that genetics can bestow on ther-
apeutic research, can inform the design of clinical trials and
improve the odds of their success while providing crucial
insight into the penetrance and variable expressivity displayed
among carriers of functionally comparable genetic variations.
The Simons Variation in Individuals Project project provides a
useful model for considering the promise and the challenges
of clustering patients by genetic etiology. Furthermore, emerg-
ing online patient networks such as patientslikeme.com and
the Interactive Autism Network, though not explicitly genet-
ically defined, also show potential in the way they remove
geographic boundaries and allow self-clustering of patients.

From a technological standpoint, microarray technology is
waning, though for certain applications it remains an
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economical option. Sequencing approaches, and, in particular,
WGS, allow for comprehensive discovery of all modes and
frequencies of genetic variation, not just those designed into
an array. Cost and analytical expertise are the prevailing bar-
riers for wider adoption, but these are rapidly diminishing.

Common polygenic risk is becoming a useful tool for com-
paring the shared genetic basis of disparate psychiatric condi-
tions, for stratifying population samples according to their
polygenic risk as part of the study design, as well as for study-
ing genetic correlates in the general population while drawing
conclusions about the link between psychiatric risk and traits
that may be under positive selection (such as creativity or
cognitive ability).

Finally, as genetic and other molecular studies of psychiat-
ric conditions increase our understanding of the basic biology
of these disorders, we may find that drugs (or supplements)
already on the market may be repurposed to treat underlying
causes that manifest as mental illness [100, 243].
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