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Abstract The standard of care for malignant gliomas of the
brain has changed very little over the last few decades, and does
not offer a cure for these rare, but fatal, tumors. The field of
immunotherapy has brought potent new drugs into the onco-
logical armamentarium, and is becoming recognized as a po-
tentially important arm in the treatment of glioblastoma for
adults. Immune checkpoints are inhibitory receptors found on
immune cells that, when stimulated, cause those immune cells
to become quiescent. While this is a natural mechanism to
prevent excessive inflammatory damage and autoimmunity in
otherwise healthy tissues, cancer cells may utilize this process
to grow in the absence of targeted immune destruction.
Antibodies derived to block the stimulation of these negative
checkpoints, allowing immune cells to remain activated and
undergo effector function, are a growing area of immunother-
apy. These therapies have seen much success in both the pre-
clinical and clinical arenas for various tumors, particularly mel-
anoma and nonsmall-cell lung cancer. Multiple clinical trials
are underway to determine if these drugs have efficacy in glio-
blastoma. Here, we review the current evidence, from early
preclinical data to lessons learned from clinical trials outside
of glioblastoma, to assess the potential of immune checkpoint
inhibition in the treatment of brain tumors and discuss how this
therapy may be implemented with the present standard of care.
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Introduction

Primary brain tumors are rare and have a reported age-
adjusted incidence of 22 cases per 100,000 people per year
in the USA [1]. While meningioma has been the most fre-
quently reported histology, at 36% of all primary brain tumors
in patients of all ages, the broad category of gliomas are a
close second, comprising 27% of all primary brain tumors.
The majority of gliomas are malignant with a histologic sub-
type of grade IV astrocytoma, or glioblastoma (GBM). GBM
is the most common malignant primary brain tumor (46%) as
well as the most deadly, with a 5-year survival rate of 5%. It is
important to note that brain metastases highly outnumber pri-
mary malignant brain tumors approximately 10 to 1 [2]. The
most common sources of metastatic brain tumors, in descend-
ing order, are malignancies originating in the lungs (39%),
breast (17%), and skin (malignant melanoma, 11%) [3]. Like
GBM, prognosis following a diagnosis of metastatic brain
disease is poor, with the average 2-year survival rate reported
to be 8% [4].

There is currently no cure for GBM. The current standard
of care (SOC) is comprised of surgical resection followed by
radiation and chemotherapy. Despite these aggressive ap-
proaches, GBM always recurs, owing to its highly invasive
nature. The most recent development in SOC was over a de-
cade ago with the addition of the alkylating agent temozolo-
mide (TMZ) as an adjuvant. Although an advancement in the
treatment of GBM, adjuvant TMZ led to only a modest im-
provement in overall survival from 12 to 15 months [5]. Much
research and effort has gone into optimizing and expanding
the current SOC with novel treatment modalities.

Immune checkpoint inhibitors have gainedmomentum as a
prominent antitumor strategy, and have generated promising
results in both preclinical and clinical trials for non-central
nervous system (CNS) tumors, particularly melanoma and
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nonsmall-cell lung cancer (NSCLC). Immune checkpoints are
molecules that serve to downmodulate inflammatory reactions
within the body so as to maintain immune homeostasis and
prevent autoimmunity [6]. Tumors utilize immune check-
points as major mechanisms to evade immune destruction;
thus, immune checkpoint blockade serves to augment the an-
titumor immune response to halt or reject tumor growth and
future tumor formation. The most well-characterized immune
checkpoints are cytotoxic T-lymphocyte-associated antigen 4
(CTLA-4) and programmed cell death 1 (PD-1), but others
exist and many more yet undiscovered. Often referred to as
first-generation immune checkpoint inhibitors, monoclonal
antibodies that antagonize CTLA-4 or PD-1 have already
reached the clinic. In early 2011, the Food and Drug
Administration (FDA) approved the first immune checkpoint
inhibitor, ipilimumab (a monoclonal antibody targeting
CTLA-4), for the treatment of advanced melanoma [7].
Later in 2014, the FDA approved pembrolizumab and
nivolumab, both anti-PD-1 monoclonal antibodies, for mela-
noma, NSCLC, renal cell cancer (RCC), and Hodgkin lym-
phoma [8, 9]. The use of these first-generation immune check-
point inhibitors in advanced melanoma and other non-CNS
tumors has produced profound survival benefits that are often
long-lasting in responders.

Although malignant melanoma has seen the largest strides
in terms of checkpoint inhibition, much research effort has
gone into studying how these drugs can be used in treating
malignant gliomas. Here, we review both preclinical and clin-
ical evidence for the potential use of immune checkpoint
blockade in glioma therapy, with a primary emphasis on
anti-CTLA-4 and anti-PD-1 therapies. Then, we review the
current SOC for GBM and discuss how it can potentially
affect the efficacy of immune checkpoint blockade. We also
discuss how potential future treatment regimens may be opti-
mized by the use of biomarkers and combinations of different
strategies in the hope of improving response rates and clinical
outcomes.

Immune Checkpoints

Just as immune cells may be activated by antigen and
costimulatory signals, inhibitory signals also exist that act to
suppress their activation and/or effector function (Fig. 1). The
immune system is kept in check via these inhibitory mecha-
nisms, referred to as immune checkpoints, in order to prevent
autoimmunity and excessive destruction of healthy tissue at
sites of active inflammation [6]. Cancer often utilizes these
natural feedback mechanisms to avoid effect ive
immunosurveillance, which produces a more favorable tumor
microenvironment for tumor growth and formation [10].
Through direct expression of ligands of these checkpoint re-
ceptors or by stimulating their expression on other cells within

the tumor microenvironment, cancer cells can effectively
dampen the immune response that would otherwise benefit
the host by attacking and destroying neoplastic tissue.
Moreover, tumor-infiltrating lymphocytes (TILs) often co-
express multiple immune checkpoint receptors due to chronic
antigen stimulation within tumors, which is associated with a
more severe exhausted phenotype. This T-cell exhaustion is
characterized by impaired proliferative ability, effector cyto-
kine production, and cytolytic function [11]. Thus, successful
immune checkpoint blockade may require a combinatorial
approach in order to generate a more robust antitumor immune
response.

CTLA-4 and PD-1 are the most well-characterized immune
checkpoints and were the first to be clinically inhibited in
cancer by monoclonal antibodies (considered first-generation
immune checkpoint inhibitors). However, other inhibitory im-
mune checkpoints exist and include lymphocyte activation 3,
killer cell immunoglobulin-like receptors (KIRs), T-cell im-
munoglobulin mucin 3 (TIM-3), T-cell immunoreceptor with
Ig and ITIM domains (TIGIT), indoleamine 2,3-dioxygenase
(IDO), and adenosine A2a receptor. Costimulatory receptors
include inducible T-cell costimulatory, OX40 (CD134), 4-
1BB, and glucocorticoid-induced TNFR family-related
(GITR). The immune-mediated antitumor effects from either
antagonizing inhibitory immune checkpoints or agonizing
costimulatory receptors (often considered second-generation
drugs) are under heavy investigation in both the preclinical
and clinical settings for multiple tumor types. In the hierarchy
of immune checkpoints, CTLA-4 and PD-1 appear to have an
immunodominant role given the high degree of autoimmunity
in knockout mice [12–16], which aligns with the severe
immune-related toxicities observed in clinical trials using ei-
ther anti-CTLA-4, anti-PD-1, or combined therapies
(discussed later) [17]. By blocking lower-tier immune check-
points, second-generation inhibitors are expected to have bet-
ter immune side effect profiles when used as monotherapies or
in combination with other immune checkpoint inhibitors.

CTLA-4

A homolog to the costimulatory molecule CD28, CTLA-4 is a
glycoprotein highly yet transiently expressed on the cell sur-
face of T cells upon activation [18, 19]. CTLA-4 is also con-
stitutively expressed on immunosuppressive FoxP3+ regula-
tory T cells (Tregs) [20, 21]. CTLA-4 competitively binds to
B7-1 (CD80) and B7-2 (CD86) on antigen presenting cells
(APCs) with greater affinity than CD28, thus potently
blocking the costimulatory signal needed to amplify T-cell
receptor (TCR): major histocompatibility complex (MHC)
signaling in T-cell activation [22]. Thus, while MHC–antigen
complexes on APCs may bind to TCRs, secondary signals via
CD28 or CTLA-4 may determine if the T cell will become
activated or suppressed, respectively. Crosslinking of CTLA-
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4 and its ligands also transduces inhibitory signals within the
T cell that further suppresses activation and effector function.
CTLA-4 is known to bind to phosphatidylinositol 3-kinase
(PI3K), protein tyrosine phosphatase 1, and protein phospha-
tase 2A via a Try–Val–Lys–Met (YVKM) motif [23].
Although not yet fully characterized, these phosphatases are
postulated to propagate negative signals by counteracting
TCR signaling, impairing glucose metabolism, promoting an-
ergy, and inducing apoptosis [23]. CTLA-4 signaling is also
associated with decreased interleukin (IL)-2 production, thus
blunting cellular proliferation [19, 24]. Additionally, CTLA-4
has been shown to remove B7-1 (CD80) and B7-2 (CD86) on
APCs through a process called transendocytosis [25]. On
Tregs, CTLA-4 has an alternative function, and its stimulation
causes their activation [20, 21]. Therefore, CTLA-4

suppresses the immune system from different angles by
inhibiting effector T cells and activating Tregs.

Many preclinical studies have shown efficacy in targeting
CTLA-4 in a variety of tumors, including melanoma, prostate
cancer, and colon cancer [26–29]. In fact, blockade of CTLA-
4 reversed immunosuppression in a mouse model of colon
cancer, thus allowing for a robust immune response that
rejected both the primary tumor, as well as subsequent tumor
rechallenge [28]. The benefits of tumor regression and re-
bound of immune activity after blocking this receptor led to
interest in using this technique for treating gliomas. Despite
the relatively immune-privileged site of the CNS and the pe-
ripheral immunosuppression caused by gliomas, CTLA-4 has
shown positive results in animal models of these brain tumors.
Studies in a mouse model of glioma have shown that Tregs are
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Fig. 1 Immune checkpoint receptors and their cognate ligands can either
inhibit or enhance the antitumor immune response. Major
histocompatibility complex (MHC):antigen interaction with T cell
receptor (TCR) provides either signal 1 for T-cell activation by antigen
presenting cells (APCs) or subsequent recognition of tumor cells for
cytolysis. Binding of costimulatory molecules B7-1 (CD80) or B7-2
(CD86) on APCs to CD28 on T cells provides signal 2 for
amplification of MHC:antigen:TCR signaling. Cytotoxic T-lymphocyte-
associated antigen 4 (CTLA-4) can sequester CD80/CD86 and transduce
negative signals within the T cell. Programmed cell death 1 (PD-1) also
inhibits T-cell effector function via distinct mechanismswhen bound to its
ligands (PD-L1 and PD-L2). Monoclonal antibodies targeting CTLA-4
and PD-1/PD-1/PD-L1/2 (first-generation immune checkpoint inhibitors)
are currently approved for multiple tumor types and are currently being
tested in clinical trials for malignant glioma. Other membrane-bound
negative immune checkpoints include but are not limited to killer cell

immunoglobulin-like receptors (KIRs), lymphocyte activation gene 3
(LAG-3), T-cell immunoglobulin mucin 3 (TIM-3), T-cell
immunoreceptor with Ig and ITIM domains (TIGIT), and adenosine
A2a receptor (A2aR). Indoleamine 2,3-dioxygenase (IDO) is a
cytoplasmic protein that is the rate-limiting enzyme of tryptophan (Trp)
to kynurenine (Kyn) pathway. IDO can negatively modulate T-cell
responses by depleting the essential amino acid Trp and leading to the
production of Kyn, which is a metabolite that can suppress T-cell
function. Costimulatory receptors that enhance T-cell function upon
ligand binding include inducible T-cell costimulator (ICOS), OX40
(CD134), 4-1BB, and glucocorticoid-induced TNFR family-related gene
(GITR). CEACAM-1 = carcinoembryonic antigen-related cell adhesion
molecule 1; PtdSer = phosphatidyl serine; PVR = poliovirus
receptor (also known at CD155); ICOSL = ICOS ligand; OX40L =
OX40 ligand; 4-1BBL = 4-1BB ligand; GITRL = GITR ligand; Gal-9
= galectin 9; HMG-B1 = high-mobility group protein B1
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increasingly expressed in the tumor microenvironment over
time, and they have increased expression of CTLA-4 [30, 31].
After blockade of CTLA-4, there was an increase in number
of CD4 T cells with improved function [32]. Furthermore,
although this blockade does not suppress Treg function, it
conferred CD4 T cells with resistance to Treg inhibition
[32]. Significant survival benefits have been shown in mouse
models when combining a CTLA-4 inhibitor with other treat-
ments such as IL-12, tumor vaccine, and radiation therapy
[33–35]. The benefits observed in these translational studies
along with the successes seen in treating other non-CNS tu-
mors in humans revealed the potential of targeting CTLA-4 in
human glioma therapy.

With the advent of ipilimumab, a human monoclonal anti-
body specific for CTLA-4, human clinical trials targeting this
immune checkpoint were made possible. Most of these studies
looked at the utility of blocking CTLA-4 in malignant mela-
noma. In a phase III trial, Hodi et al. [7] showed that patients
with previously treated metastatic melanoma had improved
survival following treatment with ipilimumab, whether used
in conjunction with gp100 vaccine or not. Ipilimumab also
showed an improved survival benefit in conjunction with
dacarbazine for patients with untreated metastatic melanoma
[36]. Another trial showed a survival advantage in patients
with melanoma brain metastases [37]. While ipilimumab is
FDA approved for malignant melanoma, it is also being stud-
ied in clinical trials for other cancers, including malignant
gliomas. There are currently two clinical trials assessing
anti-CTLA-4 treatment for primary gliomas, including a phase
III trial comparing the efficacy of ipilimumab and nivolumab
in recurrent GBM (Table 1).

PD-1

PD-1 is expressed on B, T, and natural killer (NK) cells, and
its surface expression is highly upregulated following T- and
B-cell activation [38, 39]. PD-1 is also highly enriched on
exhausted T cells during chronic antigen stimulation as in
the setting of viral infection and cancer [11]. There are two
known PD-1 ligands, PD-L1 (B7-H1 or CD274) and PD-L2
(B7-DC or CD273), and binding in the periphery suppresses
effector T-cell function and mediates immune tolerance
[40–42]. Upon PD-L1/2 ligation and TCR engagement, PD-
1 transduces inhibitory signals via cytoplasmic domains, in-
cluding an immunoreceptor tyrosine-based inhibitory motif
and immunoreceoptor tyrosine-based switch motif. Although
the complete story about how PD-1 signals within the cell via
these motifs is unknown, there have been a couple key mo-
lecular insights. For instance, phosphorylation of the
immunoreceoptor tyrosine-based switch motif has been
shown to lead to the recruitment of protein tyrosine phospha-
tases protein tyrosine phosphatase 2 and/or protein tyrosine
phosphatase 1 to attenuate TCR downstream signaling via

dephosphorylation of CD3ζ, zeta-associated protein of
70 kD, and protein kinase C θ (PKC-θ) [43–46]. Moreover,
CD28-mediated phosphorylation of PI3K is also reversed by
PD-1 activation [47]. This serves to decrease the accumulation
of antiapoptotic products (e.g., Bcl-xl) and reduce down-
stream protein kinase B/Akt signaling, thus impairing glucose
metabolism and effector cytokine production [IL-2 and inter-
feron (IFN)-γ] [45, 47]. PD-1 also limits T-cell proliferation
by regulating gene products important for cell-cycle progres-
sion [48, 49]. Taken together, PD-1 serves to inhibit the adap-
tive immune response by T cells by counteracting TCR sig-
naling, impairing T-cell expansion, lowering survival, and
limiting effector function. Similar to CTLA-4, PD-1 appears
to have opposite signaling effects within Tregs, where it en-
hances the development and maintenance of this cell popula-
tion [50].

As highlighted by its role in maintaining immune homeo-
stasis in peripheral tissue, the PD-1–PD-ligand (L)1/2 axis is a
dominant mechanism hijacked by tumor cells to evade im-
mune destruction and mediate tolerance within the tumor mi-
croenvironment [6]. PD-L1 is highly expressed on multiple
tumor types, including GBM [51–54]. Myeloid cells within
the tumor microenvironment also appear to be an important
source of PD-L1 [55]. The prognostic value of PD-L1 expres-
sion in GBM is controversial with various studies showing
mixed results [54, 56].

Mechanisms by which PD-L1 is upregulated in GBM in-
clude tumor-intrinsic oncogenic signaling and an immune
negative feedback loop termed Badaptive immune resistance^.
Parsa et al. [57] were the first to describe how a tumor’s ge-
netic background could play a role in immunoresistance via
enhanced PD-L1 expression. In their study, loss of functional
phosphatase and tensin homolog, an important tumor suppres-
sor gene, and abnormal PI3K/Akt signaling correlated with
PD-L1 expression in GBM specimens. However, Badaptive
immune resistance^ refers to the mechanism by which the
presence of an immune infiltrate reflexively induces PD-L1
expression in surrounding tissue (predominately through
IFN-γ signaling), thus providing negative feedback on im-
mune cells and protecting tissue from immune destruction
[58, 59]. In contrast to the intrinsic tumor upregulation of
PD-L1, which is always abnormal and pathologic, Badaptive
immune resistance^ is a normal physiologic response that is
inappropriately utilized by cancer. Evidence for Badaptive im-
mune resistance^ in tumors include the induction of PD-L1
expression in tumor cells following IFN-γ treatment and the
colocalization of PD-L1 expression with TILs in the tumor
microenvironment [60–62].

Owing to persistent antigen stimulation in tumors, PD-1-
high CD8 TILs may represent a population of impaired tumor-
specific T cells that are either anergic or exhausted within the
tumor microenvironment. Thus, blockade of the PD-1–PD-
L1/2 interaction serves to reinvigorate this population to
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augment the antitumor immune response and lead to tumor
rejection. In an orthotopic glioma model, anti-PD-1 therapy
combined with radiation produced a long-term and durable
survival advantage in mice [63]. Mice in the combined treat-
ment arm were found to have higher levels of functional CD8
T cells within the brain than control groups. Accordingly, the
improved survival advantage was lost when mice were deplet-
ed of CD8 T cells, which supports the need of these cells in
mediating the antitumor response in this model. Data also
suggest NK cells could also be an important immune popula-
tion in PD-1 blockade, as NK cells pretreated with an anti-PD-
1 antibody had increased tumor cytotoxic effects and con-
ferred a survival advantage when injected in GBM-bearing
mice compared with appropriate control arms [64].

Clinically, anti-PD-1 therapies have shown impressive re-
sponses in advanced non-CNS cancers, including melanoma,
NSCLC, and RCC, with objective response rates of 31% to
40% [8, 65–67], 19% to 20% [68, 69], and 22% to 29%
[70–72], respectively. Other cancers that have also demon-
strated clinical benefits with anti-PD-1 therapies include
Hodgkin lymphoma, and ovarian, gastric, and head and neck
cancer [73]. Multiple clinical trials investigating the efficacy
of anti-PD-1 and anti-PD-L1 therapies in malignant glioma
are currently underway (Table 1).

Other Immune Checkpoints

Since the discovery of CTLA-4 and PD-1 and the successes
seen in cancer immunotherapy through their blockade, research
has been heavily focused on establishing other immune check-
points [6]. Second-generation inhibitors that target lower-tier
immune checkpoints other than CTLA-4 and PD-1, such as
LAG-3, TIM-3, KIRs, IDO, and adenosine A2a receptor, are
at various stages of development. As tumor immunoresistance
and T-cell exhaustion are characterized by the coexpression of
multiple immune checkpoint pathways, dual or multiple check-
point blockade may generate a more robust antitumor immune
response. In a gliomamouse model, blockade of TIM-3 or IDO
in combination with other immune checkpoint inhibitors pro-
duced impressive response rates [74, 75]. Long-term survival
was seen all mice treated with anti-TIM-3, anti-PD-1, and ra-
diation [74]. Similar results were observed with triple therapy
utilizing IDO, CTLA-4, and PD-L1 blockade [75]. These triple
therapy regimenswere both associated with higher levels brain-
infiltrating IFN-γ+ CD8 T cells and lower Treg levels.

Additionally, just as blocking negative checkpoints is prov-
ing beneficial in boosting the antitumor immune response,
there may also be utility in activating costimulatory signals.
For instance, 4-1BB activation in combination with radiation
and CTLA-4 blockade improved long-term survival rates in
glioma-bearing mice, an effect that appeared to be dependent
on CD4 Tcells [35]. Using a similar model, treating mice with
radiation and an agonistic antibody against GITR improvedT
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survival rates and the immune profile of brain-infiltrating T
cells [76].

Toxicities Associated with Immune Checkpoint
Blockade

With the expansion of clinical trials assessing the safety and
efficacy of immune checkpoint inhibitors in various malig-
nancies, drug-related side effects have become well recog-
nized. As negative checkpoints are important natural suppres-
sors of an immune response to prevent immunotoxicity, evi-
denced by CTLA-4- and PD-1-deficient mice [12–16], it is no
surprise that their inhibition is associated with symptoms of
immune-related dysfunction in various tissues.

With ipilimumab, dermatological manifestations, including
pruritus and rash, are the most common side effects, which
occur in up to 68% of patients (Fig. 2) [17, 77]. The vast ma-
jority of these symptoms are nonsevere, and they typically arise
around 3 weeks after initiating treatment. Diarrhea and colitis
may occur 6 weeks after the first dose in up to 46% of patients.
Additionally, gastrointestinal symptoms make up the majority
of severe adverse events, with severe symptoms occurring in up
to 23% of patients and requiring discontinuation of therapy.
Hepatotoxicity and endocrinopathies, such as hypopituitarism
and hypothyroidism, both occur in < 10% of patients. Their
timing following initial treatment is less consistent but typically
occur after 6 to 9 weeks of therapy. While nivolumab and
pembrolizumab have a similar side effect profile to ipilimumab,
adverse events due to these drugs are generally less common
and less severe [78]. Skin-related symptoms occur in up to 37%
of patients, and severe colitis has been observed in only 1% to
2% of patients [17]. Liver and thyroid toxicities are typically

similar to that of ipilimumab, but hypopituitarism may have a
slightly higher incidence. Timing of initial symptoms is similar
to that of ipilimumab, although they may be delayed a couple
weeks. In a study by Larkin et al. [9], where patients were
randomized to receiving ipilimumab and nivolumab in combi-
nation or as separate monotherapies, > 50% of the combined
treatment group experienced high-grade 3 or 4 adverse events,
whereas ipilimumab and nivolumab alone caused high-grade
adverse events in 27% and 16% of the patients, respectively.
Thus, by inhibiting multiple checkpoints, immune-related side
effects appear to be more severe. Interestingly, there is evidence
suggesting improved clinical outcomes in patients who experi-
ence at least grade 2 adverse events; however, these data are
currently inconclusive and possibly biased by the fact that those
with a clinical response to this immunotherapy remain on it for
a longer period of time [79].

The majority of immune-related side effects are reversible if
treated early with immunosuppressive agents and typically re-
solve within 6 to 8 weeks [77]. Patients who experience low-
grade side effects may continue their immunotherapy regimen
with the addition of medications for symptomatic relief. For
example, patients may take oral antipruritic medications with
topical steroids if experiencing dermatological manifestations,
and those with diarrhea may be given loperamide with fluid
and electrolyte repletion. If the adverse events are more severe,
a 1-month oral steroid taper may be indicated. Additionally, the
clinician may consider skipping a dose of the checkpoint inhib-
itor, decreasing the dosage, or discontinuing the treatment alto-
gether. Although life-threatening side effects are rare, there
must be a low threshold for recognizing them. In these cases,
an oral steroid taper should be initiated for at least 1 month with
permanent discontinuation of the immunotherapeutic agent.
Thus, early recognition and intervention will be key to both
alleviating these uncomfortable and potentially lethal side ef-
fects while allowing patients to continue to utilize the benefits
of this anticancer therapy. Of note, endocrinopathies may not
resolve with discontinuation of the immunotherapeutic agent
[9, 79]. To this end, clinicians should be proactive in asking
their patients if they have experienced any symptoms and
should perform liver and thyroid function tests prior to each
dose of treatment. As anti-CTLA-4 and anti-PD-1 therapies
become increasingly investigated for the treatment of gliomas
and metastatic brain tumors, their side effect profile may con-
tinue to evolve. Further insight into predicting which patients
may develop these undesired symptoms and methods of
preventing them will allow checkpoint inhibition to continue
to grow as an important player in the treatment of brain tumors.

Biomarkers for Anti-PD-1 Response

Although immune checkpoint blockade has produced pro-
found and objective durable tumor regressions, clinical trials
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in non-CNS tumors have shown that a significant proportion
of patients fail to respond, or responders ultimately relapse
with treatment. By examining responders versus nonre-
sponders, clinical studies have uncovered certain biomarkers
that correlate with response. Such biomarkers could have im-
plications when using anti-PD-1 and possibly anti-CTLA-4
therapy in patients with GBM. In terms of anti-PD-1 therapy,
described biomarkers include pre-existing T-cell infiltration,
PD-L1 expression within the tumor, and high mutational bur-
den [80]. It is important to note that there could be significant
interaction and overlap between these biomarkers, and they
may not act independently in a given patient (Fig. 3).

Rather than allowing T cells to infiltrate the tumor, thera-
peutic blockade of the PD-1–PD-L1/2 axis aims to reverse or
prevent the exhausted or anergic phenotype of T cells already
within the tumor microenvironment. Thus, a pre-existing im-
mune infiltrate is a prerequisite for anti-PD-1 therapy. To sup-
port this concept, Tumeh et al. [62] demonstrated that the
presence and density of CD8 T cells prior to treatment

predicted response to anti-PD-1 therapy in malignant melano-
ma. Moreover, these infiltrating T cells co-localized with PD-
L1 expression at the invasive margins, which suggests en-
gagement in the Badaptive immune resistance^ mechanism
and that blockade of the PD-1–PD-L1 axis could restore T-
cell effector function. With regard to GBM, TILs are of vari-
able densities and are mainly located around vasculature and
tumor invasion areas within the surrounding brain parenchy-
ma [54]. Strategies to enhance the density of TILs and possi-
bly improve the efficacy of anti-PD-1 therapy in GBM include
radiation, tumor vaccines, and adoptive T-cell therapy.

Tumor PD-L1 expression has also been shown to increase
the likelihood of response to anti-PD-1 therapy. High PD-L1
expression within the tumor microenvironment may suggest
the tumor heavily relies on the PD-1–PD-L1 axis for immune
escape, whereas low PD-L1 levels may have alternative im-
mune checkpoints or other immunoresistance mechanisms at
play within the tumor. One of the first pivotal observations
correlating tumor PD-L1 expression and anti-PD-1 response
was in a phase I clinical trial by Topalian et al. [81], which
investigated the safety and activity of nivolumab in multiple
tumor types, including melanoma, NSCLC, RCC, colorectal
cancer, and castration-resistant prostate cancer. In that study,
36% of patients with PD-L1-positive tumors had objective
responses, whereas none of the patients with PD-L1 negative
tumors had an objective response. Moreover, in a phase II trial
looking at the efficacy of pembrolizumab in NSCLC, patients
with ≥ 50% PD-L1 staining positivity had significantly higher
progression-free and overall survival compared with those
with < 50% PD-L1 staining positivity [68]. Thus, staining
for PD-L1 could be an important selection criterion for anti-
PD-1 therapy. Membranous PD-L1 expression, which is func-
tionally more relevant than cytoplasmic expression, is found
in approximately 38% and 17% of newly diagnosed and re-
current GBM, respectively [54]. The frequencies of membra-
nous PD-L1 expression in melanoma and NSCLC are cited to
be around 45% and 49%, respectively [82]. PD-L1 levels also
vary depending on the GBM subtype, with the mesenchymal
subtype being associated with high PD-L1 expression [54].
PD-L1 negativity is often observed in the proneural and glio-
ma CpG island methylator phenotype subtypes [54].

Genetic alterations within tumor cells, including single
amino acid substitutions, insertions, deletions, and transloca-
tions, have the propensity to become neoantigens, which are
highly tumor-specific and capable of being successfully pre-
sented to the host immune system. Higher mutational burdens
could be associated with a larger pool of these potential tumor
neoantigens, thus giving the immune system a better opportu-
nity to identify properly and destroy tumor cells [83]. As im-
mune checkpoint blockade enhances the endogenous antitu-
mor immune response, tumors with higher mutational loads
are thought to be more vulnerable to immune checkpoint in-
hibitors. This is nicely illustrated in a clinical study with a total
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Fig. 3 Potential biomarkers for clinical response to programmed cell
death 1 (PD-1)/programmed cell death ligand 1 (PD-L1) blockade.
From clinical trials outside of glioblastoma, CD8 T-cell infiltrate, PD-
L1 expression, and high mutational burden have been described as
distinct yet possibly overlapping predictors of clinical benefit to PD-1
pathway blockade. High tumor mutational burden has been associated
with tumor defects in mismatch repair (MMR) proteins, mutations
within the DNA polymerase epsilon gene (POLE), and environmental
exposures (e.g., smoking in lung cancer and ultraviolet light in
melanoma). PD-L1 can be upregulated on tumor cells via intrinsic
oncogenic signaling pathways or extrinsically by infiltrating T cells
through their release of interferon-γ (Badaptive immune resistance^). If
a tumor lacks a pre-existing CD8 T-cell infiltrate, strategies to possibly
generate one include administration of a tumor vaccine, radiation therapy,
adoptive T-cell transfer, or local chemotherapy. PTEN = phosphatase and
tensin homolog; PI3K = phosphatidylinositol 3-kinase; Akt = protein
kinase B
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of 41 patients that found higher response rates to
pembrolizumab in terms of observable tumor regressions
and overall survival in mismatch repair (MMR)-deficient co-
lorectal cancers, which have between 10- and 20-times more
mutations than MMR-proficient tumors [84, 85]. Similarly,
varying sensitivities to PD-1 blockade have been observed
in melanoma and NSCLC owing to differing levels of tumor
mutational burdens [86, 87]. These tumors usually carry
heavy mutational loads owing to their association with envi-
ronmental exposures, such as ultraviolet light for melanoma
and smoking for NSCLC. Rizvi et al. [86] demonstrated that
the molecular smoking signature, which is characterized by
high transversion rates, was associated with a significant im-
provement in progression-free survival in patients with
NSCLC treated with pembrolizumab. However, compared
with melanoma and NSCLC, GBM has a significantly lower
number of mutations per tumor (35 vs 135 and 147 for mela-
noma and NSCLC, respectively) [85]. Despite having a com-
paratively lower mutational burden, there are incidences with-
in glioma, albeit infrequent, where mutational burden is rather
high, such as loss of MMR proteins and mutations within the
exonuclease proof-reading domain of the DNA polymerase
epsilon gene (POLE). In a recent study, two patients with
GBM with inherited defects in MMR genes displayed signif-
icant clinical responses to nivolumab [88]. Loss of MMR
proteins has also been observed to occur in the setting of
TMZ in low-grade glioma and GBM at disease recurrence
[89–93]. TMZ-induced loss of MMR proteins is likely due
to the direct genotoxic effects of the drug or drug-related epi-
genetic silencing. Although associated with disease progres-
sion and TMZ resistance, TMZ-induced loss of MMR pro-
teins could possibly confer greater susceptibility to anti-PD-
1 therapy or other immune checkpoint inhibitors, owing to its
hypermutator phenotype. Similarly, POLE mutations, which
are often associated with young age, are speculated to predict
greater responses to anti-PD-1 therapy [94, 95].

Current Standard of Care

Current SOC for newly diagnosed GBM includes safe, max-
imal resection followed by radiation with concomitant and
adjuvant TMZ [5, 96]. There is yet to be a well-established
SOC for recurrent GBM. Dexamethasone is also routinely
administered throughout the treatment course, especially in
the postsurgical and postradiation setting, to relieve the symp-
toms and life-threatening complications associated with cere-
bral edema [97, 98]. These SOC modalities are known to
interact with the immune system, and each may have an im-
pact on the efficacy of immunotherapy in a positive or nega-
tive manner. Thus, it is paramount to determine how current
SOC will influence the translation of checkpoint inhibitors to

glioma or the introduction of novel glioma-specific
immunotherapies.

Radiation

Radiation has been demonstrated to influence remarkably the
antitumor immune response by altering the tumor microenvi-
ronment and the immunogenicity of tumor cells. In response
to ionizing radiation, tumor cells upregulate surface expres-
sion of MHC class I molecules and Fas, which induces apo-
ptosis upon interaction with its ligand [99–101]. Radiation
also expands the pool of potential antigens for MHC class I
loading by enhancing the degradation and production of pep-
tides within tumor cells and generating de novo peptides [101,
102]. These changes, along with increased MHC class I ex-
pression, serve to increase the recognition and subsequent
destruction of tumor cells by cytotoxic T cells. Radiation also
enhances both the frequency and diversity of TCRs of TILs
within the tumor microenvironment [103]. Mechanisms of
heightened immune cell trafficking include radiation-
induced expression of cell adhesion molecules and proinflam-
matory chemokines for tissue extravasation and migration,
respectively [104–107].

Radiation-induced, as well as chemotherapy-induced, tu-
mor cell death also leads to the release and expression of
damage signals that activate dendritic cells (DCs). These dam-
age signals on dying or stressed cells, along with other param-
eters, flag the cell death as an immunogenic, rather than
tolerogenic, event [commonly referred to as immunogenic cell
death (ICD)] [108, 109]. Notable damage signals include the
release of the chromatin-binding high-mobility group protein
B1 (HMG-B1), heat shock protein (70/90) exposure, adeno-
sine triphosphate release, and calreticulin translocation to the
cell surface. HMG-B1 is a potent adjuvant that stimulates DCs
and enhances antigen processing and cross-presentation to
cytotoxic T cells via Toll-like receptor 4 (TLR-4) ligation
[110, 111]. HMG-B1 interaction with TLR-4 on DCs appears
to be an essential component for ICD as HMG-B1 depletion
or TLR-4 loss promotes tumor growth in mice after inocula-
tion with irradiated or chemotherapy-treated (platinum-based
and antracyclines) dying cancer cells [111]. TMZ has also
been noted to induce ICD and synergize with DC-based vac-
cines in glioma mouse models [112–116].

Radiation is historically viewed as a therapy for local tumor
control, but this may no longer be held true. Radiation has
been observed and studied to generate a phenomenon called
the abscopal effect, a systemic immune-mediated response
whereby tumor regression is observed in lesions outside the
radiation field [117, 118]. In GBM, the abscopal effect would
be beneficial given the highly infiltrative nature of tumor cells
throughout the brain parenchyma. In preclinical models, the
abscopal effect has been observed in the setting of both
CTLA-4 and PD-1/PD-L1 blockade, whereby combination
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therapy decreased the formation of distant metastases or
slowed the growth of secondary nonirradiated tumors [103,
119–121]. In these models, it appears checkpoint blockade
may permit the abscopal effect as radiation therapy alone
failed to produce responses in secondary tumors that are of
the same clonal origin as the primary tumor challenge.
Additionally, the radiation schedule may influence the level
of the abscopal effect. In a breast cancer mouse model, frac-
tionated dosing but not single-dose radiation was able to gen-
erate an abscopal effect in combination with anti-CTLA-4
therapy [122].

Despite these profound local and systemic immune-
stimulatory effects, radiation can also promote some immuno-
suppressive mechanisms. For instance, PD-L1 has been
shown to be upregulated on tumor cells after radiation, which
would further exhaust any Tcells being trafficked to the tumor
site [103, 121]. Radiation has also been shown to recruit Tregs
and immunosuppressive tumor-associated macrophages with-
in the tumor microenvironment [123–126]. Data also suggest
Tregs are less sensitive to ionizing radiation, which would
confer a survival advantage for this cell population in the
setting of radiation therapy [127, 128]. These potential immu-
nosuppressive mechanisms could be targeted to further aug-
ment the synergy between radiation and immunotherapy.

TMZ

Oral TMZ is commonly viewed as an immunosuppressive
agent and may be antithetical to immunotherapy because it
causes severe lymphopenia in patients, which would decrease
the pool of tumor-specific T cells [129]. Standard TMZ and
radiation produced severe drops in median CD4 counts from
664 cells/mm3 to < 300 cells/mm3 (73% of patients) and < 200
cells/mm3 (40% of patients) at 2 months post-treatment initi-
ation in patients with high-grade gliomas [130]. The systemic
depletion of CD4 T cells was also found to be long-lived as
counts were persistently low at 12 months. TMZ doses that
cause lymphopenia have also been shown to increase the fre-
quency of Treg cells in glioma-bearing mice and patients with
GBM [131]. On the contrary, other studies suggest that oral
TMZ in low doses preferentially reduces the Treg cell com-
partment [114, 132, 133].

As oral TMZ is associated with severe lymphopenia, local
administration may be a viable alternative that could reach
adequate therapeutic levels within the tumor while limiting
adverse affects [134, 135]. Intraoperative implantation of bio-
degradable drug-impregnated wafers of carmustine, a
nitrosourea-alkylating agent, is already approved for the treat-
ment of high-grade malignant gliomas [136]. TMZ-
impregnated biodegradable wafers implanted locally into
glioma-bearing rodents demonstrated lower serum TMZ
levels and improved survival than oral TMZ [135]. It is im-
portant to note that all the data supporting local delivery

versus systemic delivery of TMZ are from the preclinical set-
ting with no studies in patients thus far.

Along with minimizing systemic toxicity, local delivery of
TMZ has been shown to also synergize with immunotherapy in
preclinical models. Intratumoral infusion of TMZ via micro-
osmotic pump in conjunction with tumor vaccine in a glioma
murine model demonstrated lower declines in peripheral leu-
kocytes and generated a more favorable tumor microenviron-
ment [137]. Compared with systemic administration of TMZ,
local infusion with tumor vaccine increased the number of CD8
TILs while decreasing intratumoral myeloid-derived stem cells.
Although not significant, there was also a trend of lower Treg
numbers in both the blood and locally within the tumor. As
local delivery leads to lower systemic levels of TMZ, this result
is in line with other studies showing there is a preferential
reduction of Treg with low-dose oral TMZ [114, 132, 133].
With regard to immune checkpoint blockade, local rather than
systemic delivery of chemotherapy (biodegradable drug-
impregnated wafers of carmustine and TMZ) synergized with
PD-1 blockade by markedly improving survival rates and aug-
menting the antitumor immune response in glioma-bearing
mice (submitted). Taken together, these findings suggest that
the delivery and dosing of TMZ may be important to consider
when administering this and possibly other chemotherapeutics
in concert with immunotherapy regimens.

Dexamethasone

Dexamethasone, the most potent synthetic glucocorticoid, is
widely used in patients with GBM because it significantly im-
proves the morbidity and mortality associated with tumor-
induced cerebral edema [97, 98]. Owing to their invasiveness
and local destruction, brain tumors disrupt capillary endothelial
tight junctions, which compromises blood–brain barrier integ-
rity. Passage of fluid into the brain extracellular space leads to
cerebral edema [138]. Moreover, brain tumors produce vascu-
lar endothelial growth factor and scatter factor/hepatocyte
growth factor, which promote blood vessel permeability [139,
140]. Although not completely understood, dexamethasone re-
stores the integrity of endothelial tight junctions and the blood–
brain barrier [138]. Dexamethasone is stated to diminish the
symptoms and improve neurologic function in approximately
75% of patients with brain metastases [141]. However, dexa-
methasone is a potent immunosuppressant and may modulate
both the innate and adaptive immune system in a manner coun-
terproductive to immunotherapy. For instance, glucocorticoids
trigger apoptosis and maintain DCs in a more immature phe-
notype, which is marked by increased endocytosis, less migra-
tory capability, poor antigen presentation, and decreased ex-
pression of both proinflammatory and costimulatory molecules
[142, 143]. Along with triggering T-cell apoptosis, glucocorti-
coids skewT-cell polarization toward a T helper 2 over T helper
1 phenotype, which is proposed to be the dominant phenotype
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responsible for orchestrating the antitumor immune response.
The Treg compartment is also enhanced with glucocorticoid-
induced expression of IL-10, tumor growth factor-β, and intra-
cellular FoxP3. Moreover, dexamethasone has been shown to
upregulate surface expression of CTLA-4 and PD-1 in a dose-
dependent manner on mouse activated T cells [144, 145].
Taken together, these glucocorticoid-driven immune effects ap-
pear to be antithetical to the goals of immunotherapy. Indeed,
dexamethasone was found to decrease the frequency of TILs
and abrogate the survival advantage afforded by an oncolytic
viral therapy in rodent glioma models [146, 147]. To avoid
these undesired effects caused by dexamethasone, other thera-
pies could be considered to ameliorate the symptoms of cere-
bral edema such as antivascular endothelial growth factor ther-
apies, including bevacizumab [148]. However, antiangiogenic
therapy should strive to normalize rather than completely prune
abnormal tumor vasculature in order to avoid hypoxia, which
could suppress the T-cell-mediated antitumor response [149].

Future Directions

Given the poor prognosis of gliomas, we must continue to
review and assess the SOC in treatment of these tumors in
the hope of establishing a routine regimen with improved
outcomes. An increasing understanding of the interaction be-
tween gliomas and the immune system has led to the
burgeoning field of glioma immunotherapy. Reversing the
immunosuppressive environment associated with these tu-
mors is a promising arm of treatment, and future therapies
may employ the use of checkpoint inhibitors in combination
with radiation therapy and chemotherapy.

The addition of immune checkpoint blockade to the current
SOC is an attractive strategy. Preclinical studies suggest that
combination therapy is more effective than each individual
therapy alone, particularly with regard to checkpoint blockade
and radiation therapy. Synergism between radiation and check-
point blockade has been shown in preclinical trials [35, 63, 74].
In addition to improved outcomes, combination therapy may
allow for decreased doses of each individual treatment, thus
decreasing the toxicity and side effects [150]. Interestingly, a
recent phase I trial (NCT02239900) showed that combining
radiation with ipilimumab for treatment of metastatic solid tu-
mors is not only safe, but it may also promote expression of
alternative immune checkpoints that may serve as additional
immunotherapy targets [151]. In the same manner, the addition
of checkpoint inhibition to chemotherapy has shown improved
results for advanced melanoma [36]. While these synergistic
combinations have been shown to be promising in preclinical
studies, several clinical trials currently looking at combination
therapy in a variety of cancers, including GBM, will hopefully
reveal its potential as a therapeutic strategy in treating primary
brain tumors in patients [152].

While many of the studies on checkpoint inhibitors assess
the outcome of inhibiting a single class of these receptors, the
tumor microenvironment is not static. Just as tumors are able to
avoid an otherwise healthy immune system, tumor cells may
adapt to overcome a specific immunotherapy. Human trials
with anti-PD-1 therapy for melanoma have shown that while
some individuals initially respond to therapy, many of them
have recurrence and progression of the disease [66]. Proposed
mechanisms of resistance to immune checkpoint blockade in-
clude but are not limited to tumor cell upregulation of alterna-
tive immune checkpoint receptors [153], secretion of immuno-
suppressive factors, loss of β-2 microglobulin [154, 155], and
decreased sensitivity to effector cytokines such as IFN-γ [154,
156]. For instance, TIM-3 was found to be upregulated follow-
ing resistance to anti-PD-1 in a lung cancer mousemodel [153].
Interestingly, this TIM-3 upregulation was specifically on T
cells with bound anti-PD-1 antibody, and addition of TIM-3
blockade following anti-PD-1 therapy resistance conferred a
survival advantage in these mice. Thus, there may be utility
in targeting multiple checkpoints instead of a single one.
Preclinical studies have shown efficacy of combined therapeu-
tic approaches, particularly with anti-PD-1 and anti-CTLA-4,
in increasing tumor infiltration with immune cells, compared
with individual monotherapies alone [157]. However, blocking
several checkpoints has the potential to increase side effects,
particularly immune-related adverse events. As previously
discussed, the rate of side effects when combining ipilimumab
and nivolumab may be more than double that seen in the indi-
vidual therapies alone [158]. The assessment of the efficacy of
combining these two immunotherapies for patients with recur-
rent GBM is currently underway. The combination of other
immune checkpoint inhibitors and the ideal timing of using
multiple therapy approaches have yet to be determined.

Finally, the variable response rates with the current check-
point inhibitors and the growing knowledge of other immune
checkpoints obviates the potential for personalized ap-
proaches to this area of immunotherapy. Biomarkers can be
used to predict a patient’s response to a specific therapy and
guide the clinician in the appropriate treatment regimen to
prevent unnecessary costs and adverse effects [80]. The future
of brain tumor therapy may involve genetic tests or tumor
characterization that will determine which checkpoint block-
ade to utilize, and this regimen could change over time as the
tumor microenvironment may adapt to one form of therapy.
With continued exploration we will hopefully be able to opti-
mize treatment for specific patients and hopefully contribute
to improving outcomes in brain tumor treatment.

Conclusion

GBM is a devastating disease with a dismal prognosis. Even
with current SOC, which includes safe maximal resection
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followed by radiation and chemotherapy, GBM always recurs
and is fatal. Over the decades, much research and effort has
been done in trying to prolong overall survival, but the bene-
fits are relatively short-lived. With the recent advent and rev-
olution of immunotherapy, especially immune checkpoint
blockade, non-CNS tumors have experienced impressive re-
sponses with durable long-lasting survival benefits. Early pre-
clinical work has demonstrated that immunotherapy may po-
tentially hold the same promise for GBM, but more studies on
the patient level are required to validate its true efficacy. With
this said, clinical trials on translating immune checkpoint in-
hibitors and utilizing other forms of immunotherapy in GBM
are currently being undertaken, and many more could be on
the horizon. As GBM can develop multiple immunoresistance
mechanisms, combinations using multiple checkpoint inhibi-
tors with or without other immune-based strategies may be the
most effective means in generating the most robust antitumor
immune response. With this quick introduction, it will also be
paramount to understand how immunotherapy regimens can
be successfully incorporated into the current SOC for GBM.

Required Author Forms Disclosure forms provided by the authors are
available with the online version of this article.
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