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Abstract Amyotrophic lateral sclerosis is a progressive neuro-
degenerative disease of the motor neurons without a known cure.
Based on the possibility of cellular neuroprotection and early
preclinical results, stem cells have gained widespread enthusiasm
as a potential treatment strategy. Preclinical models demonstrate
a protective role of engrafted stem cells and provided the basis
for human trials carried out using various types of stem cells, as
well as a range of cell delivery methods. To date, no trial has
demonstrated a clear therapeutic benefit; however, results remain
encouraging and are the basis for ongoing studies. In addition,
stem cell technology continues to improve, and induced plurip-
otent stem cells may offer additional therapeutic options in the
future. Improved disease models and clinical trials will be essen-
tial in order to validate stem cells as a beneficial therapy.
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Introduction

Amyotrophic lateral sclerosis (ALS) is a progressive neurode-
generative disorder affecting motor neurons (MN5) in the cor-
tex, brainstem, and spinal cord that causes weakness and at-
rophy of skeletal muscles [1]. While traditionally considered a
purely motor disease, neuronal abnormalities in the prefrontal
and temporal cortex may also lead to frontal executive dys-
function, with about 15 % of patients manifesting
frontotemporal dementia [2]. The worldwide incidence of
ALS is 24 cases per 100,000 persons, although there is some
ethnic variation [3]. The disease is sporadic in about 85 % of
cases and is familial in about 15 % of cases [4]. The average
survival is 3—5 years from symptom onset [1]. Riluzole, the
only Food and Drug Administration-approved medication for
ALS, has at best modest effects [5]. Owing to the relentless
nature of the disease, many therapeutics have been tested;
however, most have been without success [6, 7]. Thus, interest
in the potential of stem cell-based therapies has been increas-
ing considerably in recent years.

The initial proposed use of stem cells as a therapy for ALS
stemmed from the possibility of MN replacement and consid-
ered several stem cell types. All stem cells possess the capac-
ity for self-renewal and undergo asymmetric division to give
rise to a daughter cell that is capable of developing a pheno-
type other than that of the parent cell. Embryonic stem cells
are totipotent and able to generate all cell types, whereas plu-
ripotent stem cells give rise to a particular subset of cells [8].
Neural progenitor cells (NPCs) are pluripotent stem cells that
possess an ability to achieve characteristics of neurons or glia
in daughter cells [8, 9]. Given the versatility of embryonic and
pluripotent stem cells, an opportunity arose to harness stem
cells for the generation of new MNs for a disease like ALS
with selective MN loss. Early attempts at MN replacement
using NPCs and embryonic stem cells, however, were fraught
with difficulty [10-12]. Although NPCs can successfully



Stem Cell Therapy for ALS

429

recapitulate normal MN development, stem cell-derived MNs
must survive in a potentially diseased microenvironment, in-
tegrate into descending and local circuits of motor control,
grow projection axons that travel over a meter in some cases,
and form functional neuromuscular junctions [10, 12]. Thus,
present studies have redirected focus away from MN replace-
ment to a “neighborhood theory”, where stem cells offer a
local neuroprotective role to prevent the degeneration of
existing MNs.

Mechanisms by which stem cells may provide neuropro-
tective support include the paracrine expression of neuro-
trophic factors, differentiation into nondiseased supporting
non-neuronal cells, including astrocytes and microglia, and
differentiation into modulatory neurons that synapse on dis-
eased MNs [13]. Sources of stem cells that continue to gener-
ate interest for therapeutic potential in ALS are embryonic
stem cells, NPC lines derived from fetal or adult tissues, and
non-neural progenitor cells that may moderate the MN micro-
environment [14]. This has effectively translated into several
human therapeutic trials, which have employed the induction
of peripheral blood stem cells (PBSCs) by granulocyte
colony-stimulating factor (G-CSF) treatment, autologous
transplantation of mesenchymal stem cells (MSCs) derived
from the bone marrow, transplantation of olfactory
ensheathing cells (OECs), and, most recently, transplantation
of fetal-derived human spinal cord stem cells (HSSCs) and
human fetal cortex-derived NPCs modified to secrete glial-
derived neurotrophic factor (GDNF).

This review will briefly touch on preclinical studies
(Table 1) relevant to stem cell-based paradigms that have been
successfully translated to clinical trials (Table 2). While the
preclinical literature is vast regarding stem cells and their ap-
plication in ALS, the relative paucity of clinical trials under-
scores both the challenge of our current in vitro and animal
models, as well as the difficulty in conducting well-designed
clinical trials for this disease. Still, many novel strategies are
gaining traction and significant achievements in stem cell ther-
apy for ALS are on the horizon.

Transitioning from Early Preclinical Studies to Current
Transplantation Paradigms

The mutant Cu®*/Zn*" superoxide dismutase (SOD1)-G93A
transgenic mouse and rat have served as the basis for much of
the preclinical work in ALS stem cell therapy. These animals
are based on the first identified gene underlying familial ALS
[92], and recapitulate the progressive weakness and muscle
wasting associated with selective MN loss characteristic of
the disease. In the carliest studies, a survival benefit was dem-
onstrated in irradiated SOD1-G93 A mice treated with human
umbilical cord blood [93, 94]. Follow-up studies also showed
that transplanted human cord blood along with

immunosuppression with cyclosporine delayed disease pro-
gression and that the transplanted cells were detected in the
brain and spinal cord [25, 26]. From these beginnings arose
many strategies to harness the potential of stem cells for ALS.

Given that the goal of early stem cell therapies for ALS
were directed at MN replacement, the finding that MNs de-
rived from mouse embryonic stem cells could be grafted into a
chick spinal cord and synapse with muscles was exciting [95];
however, results of similar studies in rodent models of ALS
were not met with the same success, likely related to features
of both ALS, as well as the challenges of reconstructing the
motor system as mentioned above. For example, SOD1-G93A
rats that underwent grafting of mouse embryonic stem cells
into the spinal cord only exhibited a transient motor improve-
ment that may have been due to trophic support provided by
the grafted MNs to the degenerating endogenous MNs [11].
Thus, this transient improvement instead served as a spring-
board for studies focused on the neighborhood theory, which
promotes beneficial neuronal synaptic interactions and the
creation of a microenvironment that is supportive of existing
MNs [10, 12]. This concept is important, especially consider-
ing the notion that ALS may not be a cell autonomous disor-
der, and that, in at least the mutant SOD1 form of the disease,
toxicity is not limited to the MNs but also affects surrounding
microglia and astrocytes, which can be manipulated with stem
cell therapy [30, 96-98].

Evidence supporting the potential therapeutic benefit of
altering the MN microenvironment was the focus of a number
of studies that aimed to modify non-neuronal cells and offer
neurotrophic factor support. Injections of hematopoietic stem
cells into a mouse model that undergoes selective MN degen-
eration did not result in the formation of primary neural tissue,
but did result in functional improvements thought to be related
to a neuroprotective effect from GDNF produced by the
grafted cells [22]. Further support of the microenvironment
was demonstrated in chimeric mice produced by injecting
wild-type embryonic stem cells into SOD1-G85R or G37R
mutant mouse blastocysts. In this chimeric model, it was dis-
covered that mutant SOD1-expressing MNs exhibited
prolonged survival when surrounded by wild-type non-neuro-
nal cells [99]. Other studies have focused on specific non-
neuronal cells. In a study of astrocytes, SOD1-G37R mice
with reduced mutant SOD1 expression in astrocytes exhibited
delayed microglial activation that resulted in slowed disease
progression [100]. Further animal models supporting the ther-
apeutic benefit of wild-type astrocytes involved the transplan-
tation of glial-restricted precursors into the cervical spine of
SOD1-G93A mice. The result of this intervention was
prolonged survival with reduced MN loss and slowed progres-
sion of motor functional declines [44]. Benefits in survival are
also noted when cells modified to secrete GDNF are injected
in mutant SOD1 rodent models. Interestingly, implantation of
human MSCs engineered to secrete GDNF into skeletal
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Stem Cell Therapy for ALS

= 5 g S % muscle were also able to support MN survival in the spinal
7 g“ é ; % ; % cord [39], with synergistic effects attributed to vascular endo-
g § £ E’D ; E § § thelial growth factor (VEGF) production [191]. Ther(?fore, the
S Z E : % _i g 2 ability of surrounding non—neu.ronal cells in the splngl cord
é’ § \ 5 é 3 S ? and at the neuromuscular ju.nctlon appears tolplay an impor-
228 ¢ tant role in ALS pathogenesis, and the properties of sterp cells
—_— B S 3 é are thereby ideally suited to achieve the goal of modulating the
2 g é e S 20-5 MN microenvironment. '
E é £ i; § Li e ‘E < 5; 'q?: Several stem cell types have since been examined’for their
%D % % § é% a@ *“-'2 § % 5 potential efficacy in preclinical ALS model§, ingludmg st.em
g # g % § 3 cells obtained directly from bone marrow. Direct implantation
i 2 «§ é of nondiseas.ed bone marrow into bone marrow of SOD1-
= 5 9E2 G93A mice improved surv1va1., an effect linked to the pres-
Eﬂ =& é ; Eé % ence ot}’1 non-neilron;ll[ 20(6))}ISL ciilfrlvled f.rotm the-g?;ﬂ?:;zilgj
= g 2FC2 sue in the spinal cor . Likewise, intraperi -
E’ “%g gf r;;‘:*“ tation of wri)ld-type bone marrow into SOD1-G93A mice Te-
€ = § % ‘;173 sulted in extensive incorporation of transplanted cells. as mi-
- S =2 'go croglia with improved animal survival [18]. Enriching the
é g % g é E population of transplanted cells for c-kit+ stem cells.allowgd
y é ; £ % ;ﬂ % the infusion of cells periphera(lilly int9 SIODI_G??[?] ml‘:ﬁ’ with
s | £8 EE= again improved function and survival associated with non-
g § gg § § E % ngéuronal cells that migrated to the spinal cord [23]. Similarly,
= £ | & 8 £ 23 crossing SOD1-G93A mice with mice unable to generate my-
§ ED §o § eloid or lymphoid cells slowed the disease course following
§ g 3 %§ subsequent bone marrow transplantation with wild-type
% & 2 Tﬁ N SOD1-expressing cells, and this study further demonstrated
é g —ﬁi‘g E g that microglia in the mice receiving wi}djtype bon‘e marrow
= “ % é‘ = ﬁ transplants produced less superoxide, nitrite, and n1tra§e, and
= ‘e % were therefore less neurotoxic [102]. Thus, thesc? egper}m.ents
g £ ';, % E L again showed that MN pathology is not necessar.ﬂy 1ntr.1ns1c to
E E § % g E § the MN, but may additionally rely on interactions with sur-
TE=3 rounding glial tissue.
;f z 8, E; = é EZDE:? Anotlgle% potential source of stem cells are QECS isolateFi
Eb ﬁ < § =§ £ E % % E : f:j from the olfactory bulb, as they represent a relatively acces's1—
% < BEES50 S 3 E g ble source of endogenous NPCs. These cells showed promise
= - Lgfgg 25 in early models of spinal cord injury, where they promoted
E < § g“i L§ axonal regrowth and rem?/ehnatlon [103, 104]. Interestingly,
Z’ G g S 2= g transplantation of OECs .1solated frf)m the olfactory ‘bult.) of
g% é 8 se2g § green fluorescent protem-expressm.g C57BL/§ mice 1nto
i I 'E E % _Lc:’ % SODI1-G93A animals prolonged survival, and this effect was
%f %0 &? § i R not associated with the formation 9f neur(.)muscular Junctl(.)ns
£ . 5 g % E S 2 7: in SOD1-G93A mice [43], suggesting again that the for'matlon
g EE Qo é 55 @ Lé % j:f of interneurons,fast(riocytes(,1 i/r{lﬁ even oligodendroglia may
z 37 E2EE rovide support for disease .
- i gif Eﬁ é 5 % ’ Studies I1)J1I;ing NPCs derived from elsewhere in the nervous
2 4 £ E % E é system have lent further credence to a strategy of suppor.tlng
;% ; ,%D E § § é existing MNs via trophic supporF. Inone stu(.iy, mouse-derived
5| © = %‘ f’; 5 = ; NPCs selected for those expressing the Lewis X surfaf:e mark-
% gy § s 5 é % er and the chemokine receptor CXCR4 supported native MNS
g S7 |2 ;i‘ é} S ; via VEGF and insulin-like growth factor-I (IGF-I)-r;l;dlated
S £ .
: 8 . = g § g ‘§ neuroprotect.lv'e pathways [46]. Subs\f]:%uce}rlit ;llsseoofavu;rrlzg
2|5 | 588 3E2% 2 NPCs modified to overexpress VI favor
el > SE£8ED antiapoptotic pathways over proapoptotic pathways in native
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MNs [48], and human NPCs modified to secret GDNF were
able to confer protection when transplanted into the spinal
cords of SOD1-G93A rats [53], although this did not result
in continued muscle innervation [54]. Similarly, experiments
with transplanted GDNF or IGF-1-secreting human NPCs res-
cued MNs but again did not result in improvement of motor
performance or lifespan in SOD1-G93A rats [49]. Taken to-
gether, these experiments demonstrated that NPCs are able to
rescue native MNs via local trophic signaling rather than re-
placing MNs, although more work to attain a more robust
effect will be required to observe functional benefit.

Along the lines of creating a neuroprotective neighbor-
hood, the human fetal spinal cord stem cell line NSI-
566RSC has been studied for use in cellular therapy [14]. This
cell line was derived from an 8-week fetal spinal cord and has
the advantage of reduced teratoma formation risk compared
with embryonic stem cells, as they are partially differentiated
NPCs. When grafted into the SOD1-G93A rat spinal cord,
these cells form both neurons and glia, synapse with native
MN:ss, and elaborate a range of neurotrophic factors [14]. Fur-
thermore, grafting of these cells resulted in a delay in onset
and progression of disease symptoms and increased the
lifespan of experimental animals [50]. Notably, the grafted
cells formed gamma-aminobutyric acid-ergic neurons that
synapsed with neighboring MNs in the ventral horn, although
they did not form synaptic connections outside the spinal cord
[51, 58]. Therefore, with the ability to form glial cells and a
diversity of neuronal synaptic contacts around diseased MNss,
NPCs such as NSI-566RSC have the advantage of being able
to tackle the multifaceted local physiologic derangements seen
in ALS.

Overall, the preclinical studies (Table 1; reviewed in [105])
underscore the potential for stem cells to modulate the micro-
environment in ALS. Along with the many detailed mecha-
nistic studies that have been performed using the various cell
types described above, these preclinical data have formed the
foundation for early clinical trials that seek to harness the
unique attributes of stem cells to rescue diseased MNs.

Clinical Studies

Translation of stem cell therapy from the laboratory to the
clinical realm requires 1) propagation of an easily accessible
source of progenitor cells; 2) efficient delivery of cells to the
affected areas; and 3) the ability of the cells to survive and
integrate into local circuits, such that degenerating cell popu-
lations can be replaced or aberrant physiology reversed. In
terms of the first requirement for suitable stem cell sources,
recent studies have focused on the use of G-CSF-induced
PBSCs, bone marrow-derived MSCs, OECs, and NPCs. The
second point has also been addressed by a number of tech-
niques for the collection and delivery for each stem cell

population, with delivery methods including intravenous,
intra-arterial, intrathecal, intracerebral, and intraspinal routes.
And, finally, to the third requirement, stem cell integration
must be quantifiable on a clinical scale. For ALS, this includes
measurements of function such as the ALS Functional Rating
Scale-Revised (ALSFRS-R), respiratory parameters, and sur-
vival, as well as the enrollment of adequate numbers to detect
improvements in comparison with control treatments. To date,
most studies are proof-of-concept or safety trials, and, as such,
are conducted without placebo control groups. Likewise, the
study sizes are small and are not powered to determine clinical
efficacy. Thus, none of the reviewed studies make firm con-
clusions regarding improvements in the ALS disease course;
however, these clinical studies represent an important first step
in the development of stem cell therapies for ALS. In the
following sections, the published studies involving the appli-
cation of stem cells for the treatment of ALS in humans (sum-
marized in Table 2) will be reviewed.

Granulocyte-Colony Stimulating Factor and Peripheral Blood
Stem Cells

G-CSF is a hematopoietic growth factor that can mobilize
CD34+ hematopoietic stem cells from the bone marrow to
the peripheral blood, resulting in a population of PBSCs that
can be collected for later use [63, 65, 106]. These CD34+
PBSCs were initially identified after cancer patients received
hematotoxic chemotherapy [106], and it was later shown that
these circulating hematopoietic progenitor cells could migrate
into the central nervous system (CNS) and provide support for
diseased MNs [107]. G-CSF itself is suggested to have a neu-
roprotective effect [108]. Thus, a number of strategies were
implemented using G-CSF to mobilize or collect and redis-
tribute PBSCs to the CNS in ALS.

Based on the presumption that PBSCs can migrate into the
CNS, subcutaneous G-CSF was given to 13 patients, resulting
in a slowing of disease progression evidenced by ALSFRS-R,
as well as maintenance of compound muscle action potential
amplitudes [61]. Another study in 17 patients comparing sub-
cutaneous G-CSF with a placebo control arm showed elevated
CD34+ PBSCs, but no difference in disease progression [62].
Similarly, the STEMALS trial utilized subcutaneous G-CSF
along with a 5-day course of mannitol with the hopes of in-
creasing permeability across the blood—brain barrier in 26 pa-
tients [63, 64]. Again, there was an increase in circulating
CD34+ PBSCs, and in this trial a decrease in the proinflam-
matory cytokines monocyte chemoattractant protein-1 and in-
terleukin-17, but no change in ALSFRS-R. Enriching the
number of circulating PBSCs by first collecting and then
readministering CD34+ cells induced by G-CSF has also been
attempted. One study utilized subcutaneous G-CSF in § pa-
tients prior to PBSC isolation and peripheral infusion, and
while no adverse effects were reported, clinical and imaging
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measures did not seem to be significantly affected [65]. Final-
ly, an aggressive strategy was attempted in 6 patients with
ALS who received total body radiation followed by peripheral
infusion of G-CSF-primed PBSCs from human leukocyte
antigen-matched siblings [67]. Patients were immunosup-
pressed with methotrexate and tacrolimus, and subsequent
graft-versus-host disease occurred in half of the patients. Al-
though donor hematopoietic stem cells entered the CNS at
sites of MN degeneration and engrafted as immunomodulato-
ry cells, no clinical benefit was detected and the study was
halted owing to a lack of benefit and impaired quality of life.

In contrast to the above G-CSF studies, others have exam-
ined more invasive procedures for PBSC delivery in order to
bypass the blood—brain barrier. An early study tested 3 pa-
tients using a protocol of subcutaneous G-CSF therapy and
isolation of CD34+ stem cells followed by intrathecal admin-
istration of the collected stem cells and showed minimal ad-
verse effects [66]. Alternatively, a separate group focused on
CD133+ cells mobilized by G-CSF followed by direct injec-
tion of the cells into cortical motor areas of the brain utilizing a
frame-based or frame-less stereotactically guided needle [68,
69]. In the initial study, 10 patients were enrolled and com-
pared with 10 control patients not accepting treatment or who
applied after the study period [68]. One patient died within
10 days of surgery from a myocardial infarction. The treat-
ment group showed an improvement in baseline ALSFRS-R
scores; however, the control group had a higher ALSFRS-R
score at baseline limiting a comparison. An additional 67 pa-
tients were then evaluated after having undergone the same
procedure [69]. Two postoperative deaths were reported, and
no outcome data were reported, but these serious adverse
events suggest that further use of frontal cortex injection
should be approached cautiously to minimize patient risk.

Overall, these G-CSF studies appear to demonstrate clini-
cal safety, with a suggestion of clinical efficacy in some cases
as well, and, based on preclinical models, this is an area that
demonstrates therapeutic potential. It is clear, however, that
these trials struggle with the technique of stem cell delivery,
balancing widespread yet inefficient distribution of blood-
borne PBSCs against expedient yet risky surgical methods.
Hence, moving forward, this method of therapy will benefit
from some agreement on G-CSF delivery strategies, as well as
good clinical trial design utilizing large numbers of well-
defined patient populations and standardized outcome
measures.

Bone Marrow-Derived Hematopoietic Progenitor Stem Cells

Bone marrow-derived MSCs are another source of therapeutic
potential in ALS [74]. MSCs may exert neuroprotective ef-
fects via paracrine, or “bystander”, mechanisms, such as the
release of anti-inflammatory, anti apoptotic, and neurotrophic
factors, and by influencing other cell types to take on a
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protective phenotype [109, 110]. MSCs further offer the ad-
vantages of 1) being an easily obtainable source; 2) possessing
the ability for expansion in vitro; 3) lacking a requirement for
immunosuppressive therapy to prevent rejections; and 4) hav-
ing a reduced risk of malignant transformation [70]. Of note, it
has also been suggested that MSCs are able to differentiate
into neuron-like [111, 112] and glia-like [112, 113] lineages,
although some have questioned this ability [114].

A number of studies have attempted to harness the potential
of MSCs as a treatment for ALS. One study intrathecally
administered MSCs obtained by bone marrow aspiration in
19 patients, and while all patients received MSCs via intrathe-
cal lumbar puncture, 9 of the 19 patients also received intra-
venous MSCs [70]. No serious adverse events and a 6-month
period of disease stability was reported following the proce-
dure. In another study, 10 patients underwent isolation of bone
marrow-derived MSCs, which were then administered intra-
thecally via lumbar puncture [71]. Again, the procedure was
without serious adverse events; however, while some patients
demonstrated stability of ALSFRS-R scores, others
showed a decline from baseline. In addition, bone
marrow-derived MSCs are the focus of an ongoing
phase II clinical trial at the Mayo Clinic, Massachusetts
General Hospital, and University of Massachusetts spon-
sored by Brainstorm-cell Therapeutics (Clinic Trial
NCT02017912). In this study, patients are randomized
to receive an intramuscular and intrathecal injection of
autologous bone marrow-derived MSCs that are propagated
ex vivo and induced to secrete neurotrophic factors. The study
plans to enroll 48 patients and will evaluate safety and efficacy
of the intervention.

Many other groups have also attempted more invasive
methods of introducing MSCs in to the CNS. A case in
which an Ommaya reservoir was utilized for intraventricu-
lar delivery of bone marrow-derived MSCs reported no
adverse events [72]. Consecutive phase I studies in Italy
in which bone marrow was obtained from the iliac crest
and expanded in vitro prior to direct surgical implantation
of the cells into the dorsal spinal cord involved 9 patients
initially [73, 74], followed by an additional 10 patients
[76], for a total of 19 patients [75]. In these studies, the
procedure was well-tolerated and led to a slowed disease
course in 6 patients; 4 of these patients were the youngest
in the trials, and 2 subjects had a lower MN-predominant
form of the disease. Thus, the authors suggested that
slowing of the disease course in these subjects may have
been a reflection of the disease phenotype and not the
therapy. Another group, in Spain, evaluated 11 patients fol-
lowing injection of autologous bone marrow-derived MSCs
into the spinal cord [77, 78]. No serious adverse events
were reported nor were there any reported changes in the
disease course; however, MNs near the areas of grafting
showed fewer degenerative signs on histopathology. Finally,
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a study in Turkey assessed patients following various routes
of bone marrow-derived MSC administration and indicated
that the procedure was safe, and in some cases motor im-
provement was also reported. [79].

Alternatively, the combination of MSCs from the bone
marrow combined with T-cell vaccination has also been stud-
ied [80]. In this procedure, MSCs that were obtained from 7
patients were differentiated into NPCs and infused intra-
arterially 48 h after a third T-cell vaccination dose. No serious
adverse events were reported and some patients experienced a
transient improvement in symptoms.

In summary, bone marrow-derived MSCs remain a viable
source of cells that confer the advantage of easy expansion
and manipulation in vitro for subsequent autologous trans-
plantation. While the currently reported approaches for
grafting bone marrow-derived MSCs have tended to be more
invasive, these strategies circumvent some of the limitations
of intravenous administration seen in the G-CSF studies.
Moving forward, however, it will be important to determine
therapeutic differences between G-CSF-induced PBSCs and
bone marrow-derived MSCs, as well as to determine the op-
timum collection and delivery procedures.

OECs

OECs have been studied in China based on the preclinical
evidence studying NPCs obtained from olfactory tissue [84].
In 1 study, fetal OECs were injected into the bilateral corona
radiata in a nonrandomized, nonblinded cohort of patients
[84]. At 4 months, reporting by the patients or caregivers
indicated a reduction in disease progression rates. In a larger
study involving 507 patients receiving intraspinal and
intracortical injections (with many undergoing multiple
intracortical injections), short- and long-term outcomes were
reported [85, 86], reflecting a statistically significant increase

in ALSFRS-R scores following the injections, but no im-
provement in pulmonary function tests. Notably, 7 Dutch pa-
tients with ALS who underwent the procedure in China were
evaluated at their local institution and showed no improve-
ment in symptoms [81]. Similarly, a patient followed in the
USA who underwent the procedure had an acceleration in
disease progression and also suffered from a possible brain
hemorrhage and vasogenic edema at the injection site [82].
Moreover, a postmortem study examining brain tissue from
2 patients who underwent the procedure showed graft encase-
ment and did not show evidence of axonal regeneration, neu-
ronal differentiation, or myelination to suggest an alteration of
ALS neuropathology [83].

Based on preclinical models, while the studies involving
OECs may deserve further attention, these studies have not
utilized good clinical study design, especially given the large
number of patients enrolled. More objective measures aside
from the ALSFRS-R did not show improvements and these
nonblinded studies may be influenced by a number of types of
bias. Thus, this therapy should continue to be evaluated with
close scrutiny, with a need for further support from well-
designed clinical studies.

NPCs

Based on the promising preclinical data mentioned above, a
phase I, first-in-human, Food and Drug Administration-
approved clinical trial utilizing NSI-566RSC has recently
been completed [14, 8789, 91]. In this study, 12 patients
underwent unilateral or bilateral lumbar intraspinal transplan-
tation surgeries and 6 patients received unilateral cervical
intraspinal transplantation surgeries following a risk-
escalation design. Of note, 3 patients received both lumbar
and cervical transplants; therefore, the phase I study involved
a total of 15 patients (Table 3). The study demonstrated safety

Table 3 Phase I and II trial
design for the first-in-human,
Food and Drug Administration

Phase [ trial design

Group  Number of patients

Subject details

Injection target  Injection details  Final cell dose

-approved cliqical tr}'al utili;ing Al 3 Nonambulatory Lumbar 5 unilateral 5%10°
NSI-566RSC in patients with . 6
amyotrophic lateral sclerosis A2 3 Nonambulatory Lumbar 10 bilateral 1x10
B 3 Ambulatory Lumbar 5 unilateral 5x10°
CE 3 Ambulatory Lumbar 10 bilateral 1x10°
Cervical 5 unilateral 5x10°
D 3 Ambulatory Cervical 5 unilateral 5x10°
Phase 1II trial design
Group  Number of patients  Injection target Number of injections Final cell dose
A 3 Cervical 10 bilateral 2x10°
B 3 Cervical 20 bilateral 4x10°
c 3 Cervical 20 bilateral 6x10°
D 3 Cervical 20 bilateral 8x10°
E 3 Lumbar and cervical ~ 20 bilateral for each target 16x10°
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and tolerability of the surgical procedure using a customized
injection platform with a floating cannula designed to reduce
risk of injury to the spinal cord given cardiorespiratory motion
[89, 91], and anatomical injection accuracy to the ventral horn
was determined using presurgical magnetic resonance imag-
ing evaluation (Fig. 1; [10]). As of the final outcome
reporting in early 2014 [91], 6 patients died owing to dis-
ease progression, and 1 died from an unrelated congenital
heart defect. Moreover, while the study was not designed
to evaluate efficacy, preliminary analysis of disease moni-
toring in a majority of patients demonstrated slowed dis-
ease progression in multiple clinical measures, with the
greatest effect on disease progression seen in those patients
who received the highest number of injections/cells (Fig. 2;
[91]). Briefly, ALSFRS-R measurements for the cohort of
patients receiving both lumbar and cervical injections (up-
per panel, Fig. 2a) were converted into data points
reflecting the change in ALSFRS-R per year for various
9-month windows (lower panel, Fig. 2a). For example, the
presurgical window reflected disease progression rates pri-
or to the initial lumbar surgery (green window), and win-
dows following the transplantation surgery reflect changes
in ALSFRS-R over set time frames postsurgery (see repre-
sentative blue windows). Of note, the timing of the second
transplantation surgery in which cells were delivered into
the cervical targets are indicated by the vertical dashed

Fig. 1 Accurate anatomical targeting of stem cell delivery. a. T2-
weighted magnetic resonance imaging scan showing a sagittal view of
the spinal cord and the position of the conus medullaris and lumbar
enlargement. b. Axial view of the spinal cord at the level of T12. c.
Precise needle placement into the ventral horn of the spinal cord is
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lines. Taken together, this analysis reflects an improvement
in the rate of decline in ALSFRS-R following both the
lumbar and cervical stem cell transplants [as demonstrated
by positive slope peaks (Fig. 2a)]; however, this benefit
decreases over time [as noted by the trough in the plot
(Fig. 2a)], suggesting that there are apparent windows of
benefit, which result following cellular transplantation
(Fig. 2b).

The promise of this trial has been further underscored by
the recent in-depth postmortem analyses available for 6
patients [90]. DNA from transplanted cells was detected
in the spinal cord of all samples near the injection sites,
and nests of stem cells could also be visualized on histol-
ogy (Fig. 3; [90]). Notably, the 5 patients who demonstrat-
ed a slowed progression or stabilization of disease in this
phase I trial were all treated within approximately 2 years
of symptom onset and had no bulbar features, suggesting
that early intervention may provide a better response to this
modality of stem cell treatment [91]. Again, this highlights
the potential for stem cells to rescue native MNs, although
the window for neuroprotection closes as the disease
progresses.

Given the safety and feasibility established in the phase I
trial, a phase II study began in September 2013 and ended in
July 2014. The phase II trial was designed to identify the
maximum tolerated dose of stem cells coupled with the

calculated from a magnified image of part b. Estimated measurements
of spinal cord diameter (6.02 mm) and distance from the dorsal root entry
zone to the ventral horn (4.08 mm) are shown. Scale: 1 cm per grid
division. d. Schematic of targeted injection of stem cells into the spinal
cord. Reproduced from Boulis et al., Nat Rev Neurol 2011;8:172-6, [10]
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Fig. 2 Preliminary analysis of potential windows of human spinal stem
cell (HSSC) biological activity in subjects 10—12. To identify the most
biologically active period of the injected HSSCs, postsurgery data points
for group E subjects were divided into a series of 9-month windows,
beginning each month postsurgery, and slopes were calculated across
each window. Slopes were also calculated using Amyotrophic Lateral
Sclerosis Functional Rating Scale-Revised (ALSFRS-R) data points for
the presurgical window. a The top panel demonstrates ALSFRS-R scores
for group E subjects during the presurgical period (green) and
representative ranges associated with the various sliding postsurgical 9-
month windows (dark blue). The bottom panel demonstrates the slopes
obtained for each sliding window, with the x-axis corresponding to the
first month for each 9-month window (i.e., window 1 corresponds to

maximum tolerated number of cervical and lumbar injections
(Table 3). There were 5 treatment groups with 3 patients per
group, whereby Group A received a dose of 2 million cells via
5 bilateral cervical injections (10 total), Group B progressed to
4 million cells injected in 10 bilateral cervical injections (20
total), and Groups C and D received 6 and 8 million cells,
respectively, in 20 cervical injections. The final group, group
E, then received 20 injections of 8 million cells into both
cervical and lumbar regions, for a total of 16 million cells.
All surgeries have been completed and final outcome moni-
toring and data review are underwayj; it is anticipated that an
initial safety report is forthcoming, and planning is ongoing
for future trials with this therapy to assess efficacy.

months 1-10 postsurgery, window 2 corresponds to months 2—11
postsurgery, window 3 corresponds to months 3—12 postsurgery, etc.).
The first plotted slope for each subject corresponds to their presurgical
progression rate. Slope values higher than the presurgical slope at
baseline represent improved or attenuated progression rates during the
designated window. Note that the starting month of the final sliding
window for each patient coincides with the dates of the second surgery,
which occur at 17.5, 19.0, and 16.6 months after the initial cohort C
surgery (time 0) for subjects 10, 11, and 12, respectively. (b) The
presurgical slope and postsurgical slopes associated with the window
correlating to the peak benefit windows for both the lumbar and
cervical postsurgery time frames are summarized. Reproduced from
Feldman et al., Ann Neurol 2014;75:363-73 [91]

Induced Pluripotent Stem Cells

The ability to reprogram differentiated cells into an
embryonic-like state, thus generating induced pluripotent
stem (iPS) cells, was first demonstrated in 2006 [115], and
has opened the door for attractive disease modeling and ther-
apeutic strategies in ALS. Notably, the possibility of generat-
ing pluripotent iPS cells as a therapeutic option eliminates
ethical concerns, as well as the risk of tissue rejection. Early
preclinical studies demonstrated the successful grafting of hu-
man iPS cells into rat spinal cords, which gave rise to NPCs
and, in particular, to astrocyte-like cells [116]. Given the rel-
atively early state of this technology, however, no clinical
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Fig. 3 Gross and histological analysis of male amyotrophic lateral
sclerosis (ALS) spinal cord. Gross image of the spinal cord shows the
cord surface at the site of human spinal cord stem cell (HSSC) transplant
(a, b). The vascular anatomy between intraoperative videos (a)
corresponds to the postmortem tissue (b). Cross-section of the cord
shows no visible tissue disruption (c¢). Histological staining with

trials using iPS cells are underway, although it is likely that
iPS cells will play an increasing role in ALS research in the
near future. Additionally, as it has been shown that iPS cells
can be generated from human dermal fibroblasts [117, 118]
and many groups are capitalizing on this chance to produce
embryonic-like iPS cells from patients with MN disease such
as ALS [119-122]. Thus, the clinical potential of patient-
derived iPS lies in the ability for patient-specific disease
modeling, high-throughput drug screening, and perhaps even-
tually gene editing and cell replacement therapy [122, 123].

Conclusions and Future Directions
The results of preclinical studies supported the utilization of
stem cell therapies as a means to modify the disease course in

ALS. As previously mentioned, although early goals were set
on MN replacement, preclinical models now suggest that the
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hematoxylin and eosin (d, g), Luxol fast blue (e, h), and
immunohistochemistry for glial fibrillary acidic protein (f, i) of 8-Im
spinal cord sections from patient 4 are shown. Nest of putative HSSCs
are outlined in (d—f). Scale bars: 1 mm (d—f); 50 Im (g—i). Reproduced
from Tadesse et al., Ann Clin Transl Neurol, in press [90]

mechanistic benefits of stem cells in ALS favor a neighborhood
theory, where secreted factors from stem cells support diseased
MNs. Many results from animal models, however, have yet to
be confirmed in human studies, and in order to realize the full
potential of stem cells, further advancements are needed in
terms of both therapeutic optimization and clinical trial design.

Moving forward, while stem cell therapeutic trials in humans
are currently using a variety of cell types, state-of-the-art ad-
vances in disease modeling will advance our ability to deter-
mine which strategies represent viable treatment strategies. No-
tably, the ability to model ALS using iPS cells is a promising
frontier because, at this time, our preclinical models mainly
focus on animal models based on SOD1-G93A. Given that
mutations in SOD1 only represent a very small fraction of all
ALS cases, and that pathologic features may vary from familial
and more frequent sporadic forms of the disease, SOD1-G93A
models may not allow us to understand the full risks and ben-
efits of potential stem cell therapies. By establishing iPS cell
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lines derived directly from patients with ALS, physiologically
relevant and high-throughput in vitro evaluation of treatments
will allow us to further characterize ALS disease mechanisms
and further understand how stem cells act as modifiers.

Next, although unrelated to stem cell therapies directly, the
diagnostic delays of around 1 year typical of ALS also hinder
therapeutic windows [124]. It is likely that the microenviron-
ment is already compromised at the time symptoms develop
and even more so when ALS is diagnosed; therefore, improv-
ing the time to diagnosis as a means to achieve earlier institu-
tion of therapy is essential in order to confer the best possible
opportunity for MN rescue. The development of more robust
biomarkers, including electrodiagnostic testing, transcranial
magnetic stimulation, and advanced imaging techniques will
complement advances in stem cell therapy by allowing earlier
detection of disease, as well as more detailed assessments of
therapeutic benefits [125, 126].

Notably, the selection of optimal outcome measures is also
a challenge not unique to stem cell studies. As highlighted
above and in Table 2, most studies to date, including our
own, have focused on the safety and tolerability of the stem
cell therapy, with efficacy remaining a secondary end point.
As these trials mature and safety is established, efficacy out-
comes will be expected. Assessment of MNs, graft survival,
and migration of stem cells in vivo, however, is currently not
directly possible, making surrogate endpoints essential. The
topic of disease measurements has been the subject of a recent
review [125], and is also covered elsewhere in this issue of
Neurotherapeutics. Hence, while a full discussion of outcome
measures is outside the scope of this review, a few points
deserve attention. First, unlike drug trials, pharmacokinetic
and pharmacodynamic markers are not available. Some
groups have assessed the presence of circulating cells in the
blood, although this type of evaluation is not applicable to all
stem cell delivery mechanisms. In upcoming trials with cellu-
lar therapies enhanced to secrete growth factors, functional
measures of these cells may be appropriate. As in many
ALS trials, ALSFRS-R and survival remain viable endpoints
but do not have specificity for evaluating therapy-specific ef-
ficacy measures. In other words, while ALSFRS-R can pro-
vide a good measure of patient function, it does not provide
specific insight into the MN microenvironment. This high-
lights the importance of an autopsy to assess, in appropriate
cases, graft survival and pathologic alterations in response to
the therapy. The drawback is that an analysis of the native MN
survival may only reflect those MNs that would have survived
regardless of the intervention. Some groups have also tried to
demonstrate stem cell migration via tagging procedures, and
while this can show the location of these stem cells, it does not
prove efficacy. As a result, we must still rely on surrogate
markers. In our trial we are particularly excited about the
potential insight that spinal cord MRI could provide, and cer-
tainly the modalities of diffusion tensor imaging and MR

spectroscopy may be useful for other varying stem cell deliv-
ery methods as well.

Finally, good clinical trial designs will be essential to fully
understand the effects and mechanisms of stem cell therapies.
To date, only rare stem cell trials have advanced to a point
where control groups are integrated into the study design or
efficacy is being evaluated. Double-blinded, randomized,
placebo-controlled studies may be possible with certain para-
digms, but, with increasing invasiveness of procedures, the
ethics and utility of sham procedures/surgeries becomes prob-
lematic. Still, for stem cell therapy to remain a legitimate
treatment avenue, rigorous adherence to principles of clinical
trial design must remain paramount. Now is a time when sci-
entific innovation, bioengineering technologies, and medical
expertise have reached a threshold, thus allowing stem cell
therapy for ALS to be realized. Opportunities for new discov-
ery remain close, and a time when stem cell therapy may turn
the tide against ALS hopefully remains just over the horizon.
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