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Abstract Deep brain stimulation (DBS) is a neurosurgical
intervention the efficacy, safety, and utility of which are
established in the treatment of Parkinson’s disease. For the
treatment of chronic, neuropathic pain refractory to medical
therapies, many prospective case series have been reported,
but few have published findings from patients treated with
current standards of neuroimaging and stimulator technology
over the last decade . We summarize the history, science,
selection, assessment, surgery, programming, and personal
clinical experience of DBS of the ventral posterior thalamus,
periventricular/periaqueductal gray matter, and latterly rostral
anterior cingulate cortex (Cg24) in 113 patients treated at 2
centers (John Radcliffe, Oxford, UK, and Hospital de São
João, Porto, Portugal) over 13 years. Several experienced
centers continue DBS for chronic pain, with success in select-
ed patients, in particular those with pain after amputation,
brachial plexus injury, stroke, and cephalalgias including an-
esthesia dolorosa. Other successes include pain after multiple
sclerosis and spine injury. Somatotopic coverage during
awake surgery is important in our technique, with cingulate
DBS under general anesthesia considered for whole or
hemibody pain, or after unsuccessful DBS of other targets.
Findings discussed from neuroimaging modalities, invasive
neurophysiological insights from local field potential

recording, and autonomic assessments may translate into im-
proved patient selection and enhanced efficacy, encouraging
larger clinical trials.
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Introduction

“When one sets out to make a historical survey of surgical
attempts to relieve the tremor and rigor in Parkinson’s disease,
one cannot help feeling that it would have been a far easier
task to list those nervous structures which have not been
attacked”, remarked the pioneer neurosurgeon Lauri Laitinen
[1, 2]. Neurosurgical attempts to relieve intractable pain echo
his sentiment—all structures from peripheral nerve, through
dorsal root, spinal cord, midbrain, and thalamus to cingulate
cortex having been first lesioned and later electrically stimu-
lated or perfused with analgesics or anesthetics (Fig. 1). Yet
chronic pain continues to present a considerable burden to
society, transcending many debilitating medical diseases, in-
cluding cancer, stroke, trauma, and failed surgery [3]. Its
prevalence may be >20 % [4]. Neuropathic pain was recently
redefined as pain caused by a lesion or disease of the somato-
sensory system [5]. Its symptom severity and duration are
often greater than for other types of chronic pain [6], with
5 % of adults debilitated despite analgesic medication [7]. For
such patients, neurosurgery offers several treatments.

Impetus for deep brain stimulation (DBS) was provided in
the mid-1960s by the theoretical paradigm shift initiated by
Melzack and Wall’s gate theory [8], and advances in stimula-
tor technology. Gate theory was first translated into implant-
able peripheral nerve stimulators [9] and then into spinal cord
stimulation (SCS) [10], developed by Medtronic
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(Minneapolis, MN, USA) into a commercially available, per-
manently implantable device [11, 12].

Identification of the periventricular and periaqueductal
gray (PAG) regions as a target for DBS has its origins in
animal research. Reynolds and others were able to perform
major surgery in awake rodents using analgesia induced by
PAG stimulation alone [13, 14]. Pain relief by PAG DBS was
first reported in patients by Richardson and Akil, and then
Hosobuchi [15–18]. Evidence supporting ventral posterior
lateral and medial (VPL/VPM) thalamic nuclei and adjacent
structures as putative targets for DBS came from ablative
surgery [19–22], leading Hosobuchi to treat anesthesia
dolorosa with VPM thalamic DBS [23]. Several others
pioneered thalamic DBS, including Mazars [24–27] and
Adams who, along with Hosobuchi, also targeted the internal
capsule [28–30]. Observations from inadvertent localization
errors and investigations into current spread from the PAG led
others to target more medial thalamic nuclei, including the
centromedian-parafascicular complex (Cm-Pf) [31–34]. The
rostral anterior cingulate cortex (Cg24) was recently targeted
for DBS on the basis of functional neuroimaging demonstrat-
ing its activation and half a century of its lesioning by
cingulotomy in cancer pain [35–38].

The US Medical Device Amendments of 1976 compelled
the US Food and Drugs Administration (FDA) to request DBS
manufacturers to conduct further studies to show the benefits
of DBS for pain; an additional ruling in 1989 required clinical
trials to demonstrate safety and efficacy. Two multicenter
trials were conducted: the first in 1976 using the Medtronic
Model 3380 electrode (196 patients) and the second in 1990
with Medtronic Model 3387 (50 patients) that superseded it
[39]. The two studies were an amalgam of prospective case
series from participating neurosurgical centers, neither ran-
domized nor case controlled, and both suffered from poor
enrollment and high attrition. Other shortcomings included
heterogeneous case mixes with underspecified patient

selection criteria, and subjective and unblinded assessment
of patient outcomes. Confounds arose from inconsistencies
in the deep brain sites stimulated, the numbers of electrodes
used per patient, andthe stimulation parameters chosen.
Improvements made to the later Model 3387 trial included
limiting deep brain sites stimulated to 2 per patient and using
visual analog scores (VAS) to rate pain intensity, but the
number of cases included per center was tiny, with a mean
of 5 and median of 3 patients treated.

Neither trial satisfied study criteria for efficacy of at least
half of patients reporting at least 50 % pain relief 1 year after
surgery. US FDA approval for analgesic DBS was therefore
not sought by the device manufacturer. However, intriguingly,
the large numbers of patients lost to follow-up resulted in a
steady increase with time in the proportion of patients with at
least 50 % pain relief; 2 years after implantation they com-
prised 18 out of the 30 remaining patients (60 %) followed-up
in the Model 3380 trial and 5 out of the 10 in the Model 3387
trial (50 %). Nonetheless, the trials resulted in the US FDA
giving DBS for pain “off label” status, thus precluding its
approval by medical insurers [39–41]. As a consequence, few
clinical investigations into DBS for pain using current tech-
nology and techniques have been reported.

In the last decade only 6 centers, to our knowledge, have
published case series of >6 patients [42–50]. Only about 20
groups worldwide have reported long-term efficacy in up to
83 % of patients with follow-ups of up to 6 years (Table 1). In
contrast, both other centrally implantable neurostimulation
treatments for pain—SCS and motor cortex stimulation
(MCS)—have continued to yield research publications, albeit
mostly of uncontrolled case series [51, 52], with small ran-
domized, controlled, clinical trials in SCS emerging [53–55].

Our experience is that DBS is superior to MCS for selected
refractory pain syndromes [56]. Similarly, we have found
DBS to be more appropriate than SCS for certain pain etiol-
ogies, although few published data exist that control for sur-
geon and patient differences. Two retrospective studies from
the same group have compared all 3 modalities of central
neurostimulation, but the results are obfuscated first by differ-
ent treatments trialed, both between and sequentially within
patients, and second by limited outcome information [57, 58].
Recent reviews attempting to compare the 3 neurostimulatory
therapies have been limited by variable outcomemeasures and
a heterogeneous case mix [59, 60].

Patient Selection

Historically, clinical approaches to DBS have sought to cate-
gorise patients first by cause of pain and second by dichoto-
mizing the pain into such categories as nociceptive or deaffer-
entation, “epicritic” or “protopathic”, peripheral, or central.
Such distinctions are largely unhelpful to our patient selection

Fig. 1 Structures in the pain neuromatrix targeted by ablative neurosur-
gery (in red) and electrical stimulation or neuromodulation (in green).
DBS = deep brain stimulation; PAG = periaqueductal gray
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as a gathering body of human functional neuroimaging and
electrophysiological evidence confirms that chronic pain
arises concomitantly with centrally mediated changes related
to neuronal plasticity, regardless of etiology [61–66]. Thus, it
can be assumed that chronic pain of organic origin following

neural injury and refractory to medical treatment is
largely central pain and thus neuropathic. The chal-
lenges for patient selection for DBS then become 2-
fold. First, the confirmation that the patient’s pain is
neuropathic and neither factitious nor psychogenic.

Table 1 Summary of prospective case series of thalamic and periventricular deep brain stimulation (DBS) for pain

References Patients
implanted (n)

Deep brain target % success: long-term
(initially)

Follow-up time,
months: (mean)

Evaluation method used

[26, 24, 164] 84 PVG/PAG 0 NA Verbal report
121 VPL/VPM 69

[15–17, 125] 30 PVG/PAG 70 1–46 (18) Self-report; NRS

[165] 7 PVG/PAG 16 – Nociceptive stimuli

[166] 6 PVG/PAG 33 6–42 Verbal report

[31] 28 PVG/PAG 76 1–33 (14) NA

[70, 167] 24 VPL/VPM 67 1–47 (10) Verbal report; HRQoL;
analgesic use

[32, 168] 26 PVG/PAG 28 6–54 3 category rating
20 VPL/VPM

[169] 48 PVG/PAG 79 6–42 (36) VAS
12 VPL/VPM

[170–172] 24 VPL/VPM 63 NA 3 category rating; activity;
analgesic use

[173] 41 PVG/PAG 41 NA VAS; HRQoL
VPL/VPM

[18, 126, 144, 174–178] 65 PVG/PAG 77 (82) 14–168 Verbal report; analgesic use
77 VPL/VPM 58 (68)

[179] 141 PVG/PAG 31 (59) 24–168 (80) Verbal report
VPL/VPM

[180] 89 VPL/VPM 67 NA VAS; verbal report; analgesic use

[181, 186] 36 VPL/VPM 30 (61) (48) Nociceptive stimuli

[141, 153] 25 VPL/VPM 14 (overall) NA Verbal report
43 Both

12 Other

[101, 129, 182, 183] 178 PVG/PAG 50 (80) 12–180 (90) VAS; analgesic use; HRQoL
VPL/VPM

[184] 68 PVG/PAG 62 (78) 6–180 (78) VAS, MPQ
VPL/VPM

[151] 12 PVG/PAG NA NA NA

[100] 8 PVG/PAG 63 6–66 NA
3 VPL/VPM 33

45 Both 38

[44] 6 VPL/VPM 83 (42) NRS, nociceptive and placebo
stimuli

[43] 21 PVG/PAG
VPL/VPM

24 (62) 2–108 (24) VAS, use of DBS

[47, 49, 56, 81, 73, 107] 33 PVG/PAG See below (28)
1–32 (13)

VAS, MPQ, HRQoL
15 VPL/VPM 46 (69)

37 Both See above

16 Cg24 73 (93)

[50] 12 VPL 92 (92) 12 (12) VAS, BPI, UWNPS, HRQoL

PVG/PAG = periventricular and periaqueductal gray and adjacent mid-line thalamic nuclei; VPL/VPM = ventroposterolateral and ventroposteromedial
thalamic nuclei; NA = not applicable; NRS = numerical rating scale; HRQoL = health-related quality of life; VAS = visual analogue scale; MPQ =
McGill Pain Quesionnaire; BPI = brief pain inventory; UWNPS = University of Washington Neuropathic Pain Score
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Second, the selection of those with neuropathic pain
who are likely to obtain benefit from DBS.

Essential to the patient selection process is assessment by a
multidisciplinary team consisting, as a minimum, of a pain
specialist , neuropsychologist , and neurosurgeon.
Comprehensive neuropsychologic evaluation forms best prac-
tice in patient selection to exclude psychoses, addiction and
medically refractory psychiatric disorders, and to ensure min-
imal cognitive impairment [67–70]. Outcomes should be
scored using both pain and health-related quality of life indi-
ces preoperatively and at regular follow-up; our methods are
detailed elsewhere [49, 50, 71]. The specific etiology of the
chronic pain appears less important to efficacy than its symp-
tom history, which may involve hyperalgesia, allodynia, and
hyperpathia. The pain must have a definable organic origin
with the patient refractory to or poorly tolerant of pharmaco-
logic treatments. Surgical treatments may have been
attempted, for example peripheral neuroablative or decom-
pressive procedures for trigeminal neuralgia; however, failure
of other neurostimulatory therapies is not a prerequisite for
DBS. Patients tend to have been refractory to medications for
at least 2 years. Our preference is to trial DBS rather than SCS
or MCS in carefully selected patients wherever the etiologies
of chronic pain are consistent with neuronal reorganization at
multiple levels of the central neuromatrix.

Our experience of DBS for pain after upper limb or brachial
plexus injury [72, 73] encourages us to consider DBS as a
first-line treatment for complex regional pain syndromes. A
recent paradigm shift towards central brain reorganization
with autonomic dysfunction as the mechanism underlying
complex regional pain syndromes support the treatment for
brachial and lumbar plexus injuries, and stump pain after
amputation, as well as phantom limb pain [74–78].

Other pain etiologies for which we and others have obtain-
ed good outcomes using DBS are stroke [48, 79]; cephalalgia,
including postherpetic trigeminal neuralgia and anesthesia
dolorosa [47, 80]; multiple sclerosis [43]; genital pain; and
malignancy [73, 81]. We find little merit in the administration
of opiates or naloxone to determine suitability for DBS, al-
though a historical literature exists [46]. Medical contraindi-
cations to DBS include uncorrectable coagulopathy obviating
neurosurgery and ventriculomegaly sufficient to preclude di-
rect electrode passage to the surgical target.

Basic Science

Anatomy

Thalamic and midbrain DBS targets are contralateral to the
painful side of the body, but the anterior cingulate is targeted
bilaterally. Sites for DBS can be divided anatomically, first
into somaesthetic regions of the ventrobasal thalamus (VP);

second into more medial regions surrounding the third ventri-
cle and aqueduct of Sylvius, including the gray matter (PAG)
and medial thalamic Cm-Pf; and third into rostral anterior
cingulate cortex area Cg 24, 20–25 mm posterior to the
anterior horns of the lateral ventricles with electrode tips
abutting the corpus callosum (Fig. 2) [82].

Ultimate adjustment of intracerebral electrode position is
directed by awake patient reports of somaesthetic localization
during intraoperative stimulation. Such subjective information
may alter the final electrode site by several millimeters from
preoperative target co-ordinates. A guiding principle is the
established somatotopic organization of the somaesthetic tha-
lamic and PAG regions. Human microelectrode studies reveal
a mediolateral somatotopy in the contralateral ventroposterior
thalamus, the head of the homunculus being medial and the
feet lateral [83]. Subjective observation of a rostrocaudally
inverted sensory homunculus in contralateral PAG has been
confirmed objectively by our human macroelectrode record-
ings of somatosensory evoked potentials [84, 85]. The PAG
target is found at a point 2–3mm lateral to the third ventricle at
the level of the posterior commissure, 10 mm posterior to the
mid-commissural point. Its pertinent anatomical boundaries in
the midbrain include the medial lemniscus laterally, superior
colliculus inferoposteriorly, and the red nucleus
inferoanteriorly. Sensory thalamic targets are found 10–
13 mm posterior to the mid-commissural point and from
5 mm below to 2 mm above it. The VPM is targeted for facial
pain only and found midway between the lateral wall of the
third ventricle and the internal capsule; the arm area of VPL is
2–3 mmmedial to the internal capsule and the leg area of VPL
1–2 mm medial to the internal capsule. The sensory thalamus
is bordered by Cm-Pf medially; the internal capsule laterally;
the thalamic fasciculus, zona incerta, and subthalamic nucleus
inferiorly; the thalamic nucleus ventralis intermedius anterior-
ly; and the pulvinar thalamic nucleus posteriorly.

Physiology

Awealth of electrophysiological, anatomical, and radiological
evidence in humans and animals, reviewed elsewhere, estab-
lishes both PAG and VP as structures important to pain
perception and the pathophysiology of chronic pain syn-
dromes [86–94]. The subtleties of hierarchical position and
the behavioral function of individual brain structures, whether
sensory-discriminative, attentional, motivational-affective, or
hedonic, are much debated. However, the consensus is to-
wards a pain neuromatrix also involving spinal cord, posterior
hypothalamus, amygdala, and neocortical structures, includ-
ing somatosensory, insular, anterior cingulate, and prefrontal
cortex. Whether pain control is top-down or bottom-up
in its hierarchy is unresolved and often depends upon
the experimental paradigm used. Our human electro-
physiological studies of neuronal coherence have
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utilized somatosensory evoked potentials and statistical
modeling to suggest that PAG exerts ascending modu-
lation upon VP [95].

Central to the rationale for DBS is the concept of aberrant
neuronal firing at the target sites concomitant with the chronic
pain. Human and animal electrophysiological experiments
show increased thalamic neuronal firing in pain [96].
Comprehensive reviews of electrophysiological studies con-
clude that the mechanisms of analgesic stimulation are not
clearly delineated [46, 97–101]. From insights revealed by
basal ganglia microelectrode recordings and DBS for move-
ment disorders reviewed elsewhere [102–104], we postulate
that altered rhythmic activity in VP and PAG neurons is likely
to play an important role in the pathophysiology of central
pain. At either target, our clinical experience is that, in general,
DBS at lower frequencies (≤50 Hz) is analgesic and at higher
frequencies (>70Hz) hyperalgesic [79, 105, 106], supporting a
dynamic model whereby synchronous oscillations in discrete
neuronal populations centrally modulate chronic pain percep-
tion. Analgesic DBS may therefore either disrupt pathological
high-frequency synchronous oscillations or, more likely, aug-
ment pathologically diminished low-frequency synchronous
oscillations in the thalamic and reticular components of a
reticulo-thalamo-corticofugal pain neuromatrix. We have
shown a positive correlation between analgesic efficacy at
either DBS site and the amplitude of slow frequency (<1 Hz)
VP local field potentials [107, 108], allowing for physiologi-
cally modulated artifacts [109]. We also have early evidence
that patients off DBS have characteristically enhanced low-
frequency (8–14 Hz) power spectra of both PAG and VP local
field potentials when in pain [110]. Further research is required
to elucidate if such neuronal signatures could aid patient selec-
tion, in particular if combined with technical advances in
noninvasive functional neuroimaging and electrophysiological
techniques, like single photon emission computed tomography
(SPECT) and magnetoencephalography (MEG), to character-
ize functional neuronal connectivity [111–113].

The PAG is a structure optimally sited anatomically to
integrate interoceptive function, both from adjacent

mesencephalic cardiovascular centers and more distal pain
processing areas. Its autonomic effects have been well studied
in animals [92, 114–117] and changes noted with DBS [101].
We have demonstrated a positive correlation between the
degree of analgesia in patients receiving PAG DBS and the
magnitude of blood pressure reduction [118], and have shown
that whereas dorsal PAG stimulation can acutely elevate blood
pressure, ventral stimulation reduces it [119, 120]. Such find-
ings advance investigations for objective markers of chronic
pain and also the potential selection of patients who may
respond best to PAG DBS. Indeed, our investigations into
heart rate variability changes and preliminary findings from
ambulatory blood pressure monitoring that such blood pres-
sure changes are sustained may provide objective somatic
measures of efficacy that correlate to analgesia [121, 122].

Current thinking is that ventral PAG DBS engages analge-
sia commensurate with passive coping behavior, whereas
dorsal PAG DBS may involve “fight or flight” analgesia with
associated sympathetomimetic effects [118]. However, evi-
dence to substantiate the conjecture that PAG DBS acts via
the augmentation of endogenous opioid release is contentious.
The hypothesis arose from animal experiments that revealed
that stimulation produced analgesia reversed by naloxone
[123, 124], and human studies that also showed elevated
levels of cerebrospinal fluid enkephalins and endorphins with
DBS [18, 125, 126]. However, the cerebrospinal fluid mea-
sures were artifactual [127, 128], and double blinded investi-
gation in humans has revealed no cross-tolerance between
DBS and morphine and similar reversibility between nalox-
one and saline placebo [129], confirming others’ findings [33,
130]. Our human naloxone studies suggest that only dorsal
PAG/periventricular gray DBS may be acting via opioidergic
mechanisms [131].

An obstacle yet to be overcome in the quest to understand
the mechanisms of analgesic stimulation is the lack of ade-
quate animal models of chronic pain [132, 133]. In addition to
their limited homology in chronic pain paradigms, the smaller
brains of rodent and murine models increase targeting inaccu-
racies, in particular for small brainstem structures like PAG.

Fig. 2 Fused magnetic resonance and computed tomographic images highlighting Cg24 electrode placement: (a) axial, (b) coronal, and (c) sagittal
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Such experience emphasizes the important opportunities
presented by patient-based translational research into
DBS to study the mechanisms underlying its efficacious
analgesia.

Clinical Assessment

Our surgical and clinical assessment techniques are detailed
elsewhere [49, 71, 134]. In general, we do not decide between
permanent implantation of PAG, VP, or dual site stimulation
on any criteria other than demonstrable efficacy in each indi-
vidual patient.

Another method favored for evaluating analgesia in single
cases and small groups of patients is the N-of-1 trial
[135–137]. A randomized, placebo-controlled intrapatient tri-
al is conducted whereby the patient receives pairs of treatment
periods during which each intervention—be it DBS on or off,
or different stimulation targets or parameters—occurs once.
The order of treatments is randomized and the effects of
treatment or placebo can be compared between treatment
periods. We have demonstrated the validity of N-of-1 trials
using the VAS, and their concordance with overall MPQ has
been demonstrated for VP, PAG, and dual-target DBS [138].
Blinding and randomization methodologies have also been
adopted by others to investigate the efficacy of thalamic DBS
[44]. However, the process is labor intensive for the clinician
and thus not routinely practicable with limited clinical
resources.

Regarding programming, bipolar 5–50-Hz stimulation is
performed during awake surgery, using pulse widths from 100
to 450 μs and amplitudes 0.1–3 V. VP stimulation aims to
supplant painful sensation by pleasant paraesthesia, and PAG
stimulation seeks to induce a sensation of warmth or analgesia
in the painful area. Adjustment is primarily somatotopic so as
to evoke appropriate topographic responses, but the assessor
should be alert to pyramidal signs suggesting capsular in-
volvement with VP DBS, and with PAG DBS for oscillopia
and reports of visual disturbances caused by superior
collicular involvement or facial paraesthesia arising from me-
dial lemniscus stimulation.

All electrodes are externalized for 1 week of trial stimula-
tion. During this period, the patient records VAS scores at least
twice daily and is kept blinded to DBS settings. Targets are
trialed individually for 1–2 days using the stimulator param-
eters described above to determine which settings of
quadripolar electrode contact polarities confer maximum an-
algesia to the optimal somatic region. Monopolar stimulation
is also trialed if bipolar settings fail to give pain relief. After
this period, both electrodes are trialed together for 1–2 days. If
the patient is satisfied with the degree of pain relief obtained,
full implantation of the efficacious electrode(s) is performed
and DBS commenced at the optimized stimulation

parameters. Ideally, patients leave hospital the day after im-
plantation of the impulse generator, and we endeavor to follow
their progress with clinic appointments at 1 month, 3 months,
6 months, and then every 6 months thereafter. Initially, they
are given a pain diary to record their VAS and stimulator
settings weekly for review at follow-up. In addition to being
able to switch the DBS on and off at will, they are
usually only given control over its amplitude, which is
typically limited by the clinician to a maximum effica-
cious amplitude. In general, low-frequency stimulation
at the lowest efficacious pulse widths and amplitudes
attainable is set with tolerance overcome either by in-
creasing pulse width or amplitude, trying different low
frequencies or even periods of several weeks off
stimulation.

Evidence

There are no recent North American guidelines for DBS
for pain owing to its off-label indication in the USA.
We have contributed to the European Federation of
Neurological Societies’ guidelines on neurostimulation
therapy for neuropathic pain, which concludes that
DBS should be limited to specialist centers willing to
study and report their outcomes owing to the few recent
case series published [139]. The UK National Institute
for Health and Clinical Excellence approves the treat-
ment on the basis of expert opinion and patient-reported
outcomes [140].

Several reviews of DBS for chronic pain have been pub-
lished—many expert, some commentaries, and several sys-
tematic [39, 40, 45, 46, 59, 60, 97, 98, 101, 139, 141–163].

Our systematic searches have identified a number of pri-
mary studies [15–18, 24, 26, 31, 32, 43–45, 47, 49, 50, 56, 70,
73, 81, 101, 107, 125, 126, 129, 144, 151, 153, 164–186].

Published case series of at least 6 patients using current
DBS targets are listed in Table 1 and their efficacy summa-
rized. Where the same authors reviewed their clinical data
more than once, only their latest or largest patient series was
considered. Pain relief scores showing≥50% improvement or
verbal ratings of “good” or “excellent” after surgery were
considered successful outcomes, and patients not permanently
implanted included as failed outcomes. However, not all au-
thors reported such failures, leading to overestimation of
efficacy in some reports. The literature is also obfuscated by
varying and often simplistic or subjective outcome measures,
and a paucity of double-blind, placebo-controlled studies. To
our knowledge, only 5 groups, using current standards of
target localization and currently available models of deep
brain stimulators in all patients with adequate follow-up and
description of outcomes, have published studies of at least 6
patients [43–45, 49, 50].
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Discussion

Although not a new therapy, DBS has evolved over the last
decade, concomitant with advances in both stimulator tech-
nology and neuroimaging techniques, and by corollary im-
provements in efficacy and reductions in complications. Few
centers have published detailed studies of patients treated
during the last decade. Our results suggest that DBS gives
analgesia most consistently to patients with pain after ampu-
tation, either phantom or stump, cranial and facial pain, in-
cluding anesthesia dolorosa, and plexopathies. Our experience
of pain after stroke reveals greatest efficacy for stroke patients
complaining of burning hyperaesthesia [48, 79]. Therefore,
the stroke case series illustrates how important patient selec-
tion is to outcome. Consistent with the notion that chronic
pain states confer specific central neuropathic changes are
results showing poor DBS efficacy for spinal cord-related
pa in , for example f rom fa i l ed back surge ry.
Predominantly, spinal injuries, and hence spinal neuro-
pathic changes, are unlikely to respond favorably to
PAG or thalamic brain stimulation, but may be relieved
by Cg24 DBS. Conversely, causes of chronic pain not
traditionally treated by DBS, for example visceral pain
in which PAG changes are described using functional
neuroimaging [187, 188], have the potential to be ame-
liorated by DBS and are worthy of further study.

Investigations both into the mechanisms of DBS and using
deep brain recording to elucidate pain processing mechanisms
have yielded considerable advances. Future insights will arise
from complementary information gathered using new tech-
nologies. Diffusion tensor imaging using magnetic resonance
imaging to trace neuronal connections has shown connectivity
between PAG and thalamic structures, and may elucidate
differential somatotopic connections [189, 190], and also have
the clinical utility to aid targeting in functional neurosurgery
[191]. MEG enables whole brain changes to be mapped with
spatial resolution comparable with functional magnetic reso-
nance imaging but with a temporal resolution of the order of
milliseconds [94]. Our initial investigations have revealed
activation of pain processing neocortical areas during analge-
sic DBS having filtered out artifactual interference from stim-
ulation [111, 112, 192]. Therefore, globalMEGmeasurements
combined with local deep brain recording hold promise for
revealing much about pain processing and DBS-related mech-
anisms, beyond wider neurosurgical applications [193], to-
wards identifying predictors of efficacy, and enhancing treat-
ments. Nevertheless, complimentary functional neuroimaging
modalities such as single photon emission computed tomog-
raphy have roles in characterizing whole brain changes with
DBSwith excellent deep brain structure penetration compared
with present MEG studies, albeit with more limited temporal
resolution and characterization of metabolic correlates of neu-
ronal function [113].

The large variability of results in case series of DBS for
pain to date reflects not just limitations in pain assessment
tools and study design and execution, but individual differ-
ences between patients as to what constitutes success. A good
outcome may be the removal of a particular component of
pain, for example burning hyperaesthesia, without quantita-
tive reduction in pain scores. Such pain relief may serve to
unmask other types or components of pain elsewhere, such as
muscular allodynia, as has been described after stroke [194].
Conversely, complete pain eradication by DBS may even
accompany unease, motor complications, or other sequelae
precipitating intolerance of stimulation. Thus, clinicians must
characterize patients’ pain qualitatively, as well as quantita-
tively, and investigators should endeavor to include quality of
life measures in outcome assessment.

Contemporary case series suggest that between 25 % and
50 % of patients successful during trial stimulation do not
experience long-term success beyond 1 year after surgery. To
address this predicament, alongside improving case selection,
further challenges are to identify predictors of long-term effi-
cacy and to investigate the putative phenomenon of tolerance.
Progressive increases of stimulus amplitude or insertion of a
second electrode have proven unhelpful [184]. Our experience
[79], and that of others [195], is that tolerance is often over-
come by subtle alterations of pulse width by 30–90 μs or
frequency by 5–15 Hz, or both, and by either cycling stimu-
lation or having stimulation breaks—periods off DBS lasting
from days to months as required. Such experience is in con-
trast to DBS for movement disorders where it has been
established that rebound of tremor with time can be overcome
by ramping up thalamic stimulation parameters [196]. It is
possible that the unmasking of other discomfort such as mus-
cular allodynia by relief of burning hyperaesthesia can be
overcome by “deramping” DBS. A good positive correlation
found between frequency and amplitude in long-term follow-
up of poststroke pain DBS and a reduction in both amplitudes
and frequencies of stimulation over time in patients achieving
pain relief supports such a hypothesis [79].

There remain groups of patients presently refractory to
thalamic or PAGDBS or whose pain, for example whole body
pain lacking distinct somatotopy or pain after spinal cord
injury, makes them poor candidates for the procedure. We
have successfully implanted DBS into the anterior cingulate
cortex in such patients with the rationale of reducing the
emotional saliency of pain perception while not seeking to
alter its nociceptive component [82, 197]. Such work draws
upon a wealth of literature, and our own positive clinical
experience of anterior cingulotomy for cancer pain [38,
198]. We expect that anterior cingulate DBS will not only
become established as a viable novel target in DBS for chronic
pain, but also that its use and related translational investiga-
tions will yield many neuropsychological insights into emo-
tion, attention, and executive function.
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As clinical indications and clinician and patient awareness
of DBS continue to increase, the costs of both the technology
and its implantation will decrease, making the therapy more
widely available. While it is unlikely that DBS will be as
widespread and inexpensive as cardiac pacemakers, it may
be comparable in cost to SCS within 5 years. A priority is to
demonstrate cost-effectiveness by ensuring rigorous and
evidence-based studies of DBS for pain and redressing the
challenges of past failed trials. A combination of tailored
evidence-based methods on intensively studied small cohorts
must occur alongside the co-ordination of multicenter clinical
trials with standardized selection, implantation, and outcome
data collation protocols. Only then can DBS for pain become
re-established as a widely used therapy rather than one re-
served for a select handful of experienced, specialist centers
willing to carefully study their patients and publish their
results.
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