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Abstract Post-traumatic epilepsy accounts for 10–20 % of
symptomatic epilepsy in the general population and 5 % of all
epilepsy. During the last decade, an increasing number of
laboratories have investigated the molecular and cellular
mechanisms of post-traumatic epileptogenesis in experimental
models. However, identification of critical molecular, cellular,
and network mechanisms that would be specific for post-
traumatic epileptogenesis remains a challenge. Despite of that,
7 of 9 proof-of-concept antiepileptogenesis studies have dem-
onstrated some effect on seizure susceptibility after experi-
mental traumatic brain injury, even though none of them has
progressed to clinic. Moreover, there has been some promise
that new clinically translatable imaging approaches can iden-
tify biomarkers for post-traumatic epileptogenesis. Even
though the progress in combating post-traumatic
epileptogenesis happens in small steps, recent discoveries
kindle hope for identification of treatment strategies to prevent
post-traumatic epilepsy in at-risk patients.
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Introduction

Traumatic brain injury (TBI) refers to a brain injury caused by
an external mechanical force such as a blow to the head,
concussive forces, acceleration–deceleration forces, blast in-
jury, or a projectile missile, such as a bullet [1]. TBI is
recognized as a critical public health problem worldwide [1,
2]. According to the World Health Organization, TBI will
surpass many other diseases as the major cause of death and
disability by the year 2020 [3]. Though the problems experi-
enced by those suffering TBI are often not visible (e.g.,
impairments in memory or cognition), the disease is often
referred to as the “silent epidemic” [4].

TBI can be classified based on the injury mechanism [5].
Depending on the characteristics of the mechanical force
(amplitude, duration, velocity, acceleration), injury can be
static or dynamic. The severity of brain injury is commonly
rated using the 15-point Glasgow Coma Scale (GCS), which
assesses 3 major parameters: verbal, motor, and eye-opening
reactions to stimuli [6]. In mild TBI, the GCS score is ≥13, in
moderate TBI it is 9–12, and in severe TBI it is ≤8. Impor-
tantly, the same injury severity may represent different path-
ological and clinical endophenotypes that depend on the inju-
ry mechanism (e.g., static vs dynamic) or distribution and type
of damage (e.g., gray vs white matter) (see [7]). In some
endophenotypes, post-traumatic epilepsy (PTE) is a signifi-
cant life-compromising component [8].

In this review we will summarize the concepts and mecha-
nisms proposed to be associated with the development of PTE,
existing animal data, and key questions that remain open.

From TBI to PTE

Process of Epileptogenesis in Humans

Epilepsy is a disorder of the brain characterized by an endur-
ing predisposition to generate epileptic seizures, and by the
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neurobiological, cognitive, psychological, and social conse-
quences of this condition. The definition of epilepsy requires
the occurrence of at least one unprovoked seizure [9]. De-
pending on the time delay from the TBI to the occurrence of
the first seizure, post-TBI seizures have been categorized into
immediate (<24 h), early (1–7 days), or late seizures (>1 week
after TBI) [8]. Thus, when TBI is associated with one unpro-
voked late seizure it qualifies for diagnosis of PTE.

PTE accounts for 10–20 % of symptomatic epilepsy in the
general population and 5 % of all epilepsy [10, 11]. Based on
epidemiologic studies on civilian or military populations,
most of which were conducted before modern imaging era,
the risk factors for PTE include old age, penetrating injuries,
injury severity (GCS<10), biparietal or multiple contusions,
intracranial hemorrhage, frontal or temporal location of the
lesion, >5 mm brain midline shift, duration of coma >24 h,
loss of consciousness >24 h, prolonged length of post-
traumatic amnesia, multiple intracranial procedures, and the
occurrence of early post-traumatic seizures [10, 12–17]. Re-
lated to methodology, many of the identified risk factors
directly or indirectly reflect the severity of brain injury, and
strengthen the view that the risk for PTE increases with the
severity of TBI.

The latency from the TBI to the occurrence of the first
seizure can vary largely. Epidemiologic studies show that a
30-year cumulative incidence of epilepsy is 2.1 % for mild,
4.2 % for moderate, and 16.7 % for severe injuries [8, 18].
After the first late seizure, 86% of patients have been reported
to develop a second seizure within 2 years, suggesting the
establishment of an epileptogenic process [19]. Moreover, the
risk of developing epilepsy remains higher for a longer period
of time after severe than moderate TBI (10 vs 30 years) [8].
Further, recent magnetoencephalography studies have re-
vealed that some patients without reported seizures after mild
TBI have epileptiform spikeswhen assessed at 12–140months
after TBI [20].

Information on genetic risk factors for outcome from TBI
are emerging, but few studies have assessed the linkage of
genes to PTE [21]. One study found that the ApoE4 allele is
associated with a 2.4-fold increased risk of late post-traumatic
seizures after moderate-to-severe TBI [22]. This was not,
however, confirmed by another study [23, 24]. The study by
Anderson et al. [24] also did not reveal any association be-
tween PTE and polymorphism in HP2-2. Wagner et al. [25]
found two single nucleotide polymorphisms in the adenosine
A1 receptor that were associated with later seizures in civilian
population of patients with severe TBI. More recently, they
reported that polymorphisms in the GAD1 gene (but not in
GAD2) were associated with the occurrence of late post-
traumatic seizures [26]. One study found an association
between variation in a gene encoding methylenetetrahy-
drofolate reductase and the risk of PTE in a military
population [27].

The detailed information about the endophenotypes of
patients that associate with the highest risk of PTE would be
of great value for attempts to model PTE in clinically relevant
ways. Such information would also guide the search of mech-
anisms and biomarkers (or surrogate markers) for
epileptogenesis.

Process of Epileptogenesis in Experimental Models

Data from several laboratories are now available to demon-
strate that several models commonly used to investigate the
molecular and cellular mechanisms of TBI have chronically
lowered seizure threshold or even spontaneous seizures
(Table 1). Chronically increased seizure susceptibility to
chemoconvulsants or electroshock has been demonstrated in
weight-drop, fluid-percussion (FP), controlled cortical impact
(CCI), and closed skull models of TBI (Table 1). Chronic
spontaneous seizures were reported after FP- and CCI-
induced TBI, both in rats and mice. Acute epileptiform
activity/seizures (up to 3 days after injury) has been reported
in a rat model of penetrating ballistic injury [28–31] and blast
injury [32], but whether late spontaneous seizures develop
after these injury mechanisms remains to be studied. So far,
studies have not found acute/late seizures after repeated mild
concussive TBI [33]. We will next focus on models in which
spontaneous seizures develop after TBI.

Epilepsy in the FP Model

Lateral FP-induced TBI produces both focal and diffuse
(mixed) brain injury [34]. It reproduces several aspects of
human TBI, including focal contusion, petechial
intraparenchymal and subarachnoid hemorrhages, tissue tears,
and traumatic axonal injury. The sequelae include blood–
brain-barrier disruption, white matter damage, neuronal loss,
gliosis, altered cerebral metabolism, altered cerebral blood
flow, and altered brain electrical activity. The damage appears
most severe in the ipsilateral cortex, hippocampus, and thala-
mus, but milder lesions can also be detected contralaterally.
More chronic network alterations include neurogenesis with
axonal and dendritic plasticity. The molecular and cellular
changes can continue for weeks and months, and they associ-
ate with behavioral impairments and cognitive comorbidities
[35].

Kharatishvili et al. [36] monitored adult Sprague–Dawley
rats with lateral FP injury (FPI) over a period of 12 months
with periodic 24/7 video electroencephalography (EEG), and
demonstrated that 50 % of rats developed PTE. The seizures
were partial or secondarily generalized, and lasted for about
60–110 s. A substantial proportion of animals had lowered
seizure thresholds. These data have now been reproduced by
several laboratories (Table 1). Rostral parasagittal FP was also
reported to trigger epileptogenesis and the occurrence of
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spontaneous seizures [37, 38]. Data from several laboratories
show that lateral FP can trigger increased seizure susceptibil-
ity, which can be detected after administration of pentylene-
tetrazol (PTZ) or kainate. Lateral FPI also triggers suscepti-
bility to seizures induced by PTZ as well as spontaneous
seizures in mice [39, 40].

Epilepsy in the CCI Model

CCI injury to the lateral cortex causes a focal brain injury that
is associated with a spectrum of contusion injuries, including
intraparenchymal petechial hemorrhages that are accompa-
nied by epidural and subdural hematomas. Histologic analysis
reveals widespread cortical gray matter damage, as well as
axonal injury in the adjacent white matter, corpus callosum,
and capsula interna. Degeneration is present not only in the
cortex, but also in the hippocampus and thalamus.These ana-
tomical changes associate with a spectrum of cognitive and
motor deficits [34]. Recently, elegant studies from Hunt et al.
[41, 42] demonstrated that CCI-induced TBI in the lateral
cortex triggers the development of PTE in CD1 mice. Behav-
ioral seizures were observed in 20 % of animals with mild
injury and in 36 % with severe injury when observed 42–
71 days after injury. Guo et al. [43] complemented these data
by showing that up to 50 % of CD1 mice developed epilepsy
by 4 months after CCI (impact depth=2 mm) when continu-
ously monitored by video-EEG. Our data show also increased
susceptibility to PTZ-induced seizures and the occurrence of
electrographic spontaneous seizures after lateral CCI injury in
C57BL/6J mice [39]. Statler et al. [44] monitored rats
with lateral CCI at postnatal day 17 with video-EEG
over a period of 4–11 months after TBI. They reported
that 88 % of rats developed epileptiform spiking, and
13 % of animals (1 of 8) had spontaneous recurrent
seizures. Recently, Yang et al. [45] recorded spontane-
ous epileptiform activity in cortical slices that were
taken from rats that had experienced CCI injury 14–
16 days earlier at postnatal day 24.

Mechanisms of PTE

The aftermath of TBI consist of several phases, including
primary injury, evolution of the primary injury, secondary
injury, and regeneration [46, 47]. Primary injury occurs at
the moment of TBI and is accompanied by massive distur-
bance of the cellular ion homeostasis, release of the excitatory
neurotransmitters, and exacerbation of excitotoxicity. The
secondary injury occurs in the hours and days after the prima-
ry injury, and is an indirect result of the insult. It includes a
complex set of molecular changes and cellular processes,
some of which may also be relevant to post-traumatic
epileptogenesis. However, few reports have specificallyTa
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linked the observed post-injury molecular changes with
epileptogenesis. Further, little is known of whether the alter-
ations contributing to epileptogenesis are separate or overlap-
ping comparedwith those relevant to post-injury recovery [46,
48, 49]. For example, PTZ (30 mg/kg)-induced seizures in rats
that had experienced lateral FPI 2 weeks earlier exacerbated
cortical damage [50]. Another report, however, suggests that
exposure of rats with moderate central FPI to PTZ kindling
(once daily injections of 25 mg/kg) beginning at 24 h post-
injury improved performance in the Morris water-maze when
tested at 25–29 days after TBI [51].

Even though data from human PTE is meager, available
studies show hippocampal neurodegeneration, as well as
mossy fiber sprouting [52]. Approximately 53 % of patients
with post-traumatic temporal lobe epilepsy have mesial tem-
poral lobe sclerosis on magnetic resonance imaging (MRI). It
is, however, important to note that it is not uncommon that
TBI results in multifocal pathology [53, 54]. Moreover, Vespa
et al. [55] suggest that hippocampal atrophy detected at the
chronic post-injury phase could be caused by (prolonged)
seizures at the acute post-TBI phase. Tomkins et al. [56]
pointed out the possible role of BBB damage in PTE by

showing that cortical BBB permeability was higher in TBI
patients with epilepsy than those without, whereas the size of
cortical lesion did not differ. Interestingly, a recent analysis of
the resected pericontusional cortex demonstrated remarkable
degeneration of subpopulations of inhibitory neurons, but no
information was available about whether any of these patients
developed epilepsy in follow-up [57, 58].

What are the molecular changes underlying circuitry reor-
ganization during epileptogenesis? We recently conducted a
meta-analysis of published gene array data after TBI and
status epilepticus (SE) [59]. When the lists of genes regulated
during post-TBI and post-SE epileptogenesis were compared,
only 46 out of 624 regulated genes were found to have
abnormal regulation in more than one study. Seventeen of
46 genes (40 %) were regulated in both SE and TBI models,
indicat ing similari ty in molecular events during
epileptogenesis between different etiologies. The genes regu-
lated by both SE and TBI were CALM3, CAMK2B, CTSB,
CTSS, DBI, DNAJC3, DNAJC5, GABRD, GFAP, GRN,
HPCA, IL6R, NPC2, NPTX2, PTPN6, S100B, and SPARC.
One interesting subcategory of molecular reorganization is the
development of various types of channelopathies, which, to

Table 2 Effect of traumatic brain injury (TBI) on histone modifications, DNAmethylation, and levels of microRNAs (miRNA) in experimental models
and in humans

Model Species Tissue Timing Finding Reference

Histone modification or DNA methylation

CCI Rat (P17) HC <72 h H3 acetylation ⇩, H3 methylation ⇩ [88]

Weight-drop Rat Cx <96 h Methylation ⇩ [89]

Weight-drop Rat Cx ≤14 days Dnmt1 localization in astrocytes [90]

CCI Mouse HC ≥ 4 weeks H3 acetylation +0 [91]

CCI Rat (P17) HC ≤14 days Methylation of IGF-1B promoter ⇧ [92]

Increase in H3 activation marks at promoter and exon 5
region of IGF-1B

microRNAs

Parasagittal FPI Rat Cx <72 h Altogether: 5⇩, 19⇧ [93]
miR-21 ⇧ at all time points

CCI Rat HC 3 and 24 h Altogether: 50⇩, 35⇧ (of 444) [94]
8 verified (signal transduction, transcriptional regulation,
proliferation, differentiation)

Severe TBI Human (n=47) Plasma ASAP Altogether: 33⇩, 19⇧ (of 875) [95]
8 miRNAs in TBI only (miR-16, miR-92a, miR-765)

CCI Rat HC <15 days miR-21 (enzyme-linked receptor signaling, transcriptional
regulation, developmental processes)

[96]

Parasagittal FPI Rat Cx <24 h Altogether: 8⇩, 7⇧ (of 388) [97]
Modified by therapeutic hypothermia

Mild TBI Human (n=9) PBMC ? 18 regulated (of 1500) [98]
3 diagnostic for mTBI

Blast injury Mouse Cerebellum 6 h miR-132⇩ [99]
cholinergic anti-inflammatory signaling

CCI = controlled cortical impact; FPI = fluid-percussion injury; HC = hippocampus; Cx = cortex; PBMC = peripheral blood mononuclear cells; ASAP =
as soon as possible; Dnmt1 = DNA methyl transferase 1; IGF-1B = insulin-like growth factor 1B
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date, have been demonstrated to affect both gamma
aminobutyric acidA receptors and sodium and potassium
channels (see [60]). Further studies are needed to reveal
whether any of these genes form a target to combat post-
traumatic epileptogenesis.

In addition to changes in transcription, post-translational
modifications and epigenetic changes have been described
after TBI (Table 2 and references therein). In most of the
studies assessing histone modifications, DNA methylation,
or microRNAs the analysis has been done within 72 h of
TBI, and none of the reports has specifically addressed the
contribution of changes to epileptogenesis. As only two stud-
ies have been conducted for human TBIs, the data available do
not allow any comparisons of experimental and clinical
findings.

Biomarkers for Epileptogenesis After Brain Injury

Currently, we have no biomarkers to identify patients at risk
for PTE. Also, studies available on candidate biomarkers that
can possibly be used to diagnose TBI and predict post-injury
functional outcome provide no information on whether the
TBI biomarkers could be used as PTE biomarkers [61, 62].

The most promising data related to biomarking
epileptogenesis come from imaging studies. Long-term MRI
studies have indicated that the progression of pathology has a

different temporal course in the cortex, hippocampus,
and thalamus [63, 64]. In addition to apparent neurode-
generation, long-term alterations include changes in
axons/myelin, as well as in the vasculature [65, 66].
Importantly, not only epileptogenesis, but also the extent
and temporal progression of neuropathologic changes,
vary among animals [63].

So far, correlations have been found between increased
seizure suscept ibi l i ty and diffus ion changes or
hypometabolism by arterial spin-labeling in MRI in the hip-
pocampus [65, 66]. Recently, Schultz et al. [67] reported that
abnormalities in the surface morphology of the ipsilateral
hippocampus present at 1 week after lateral FPI predicted
the occurrence of epilepsy 6 months after TBI [67]. We
recently investigated whether quantitative T2, T1ρ, and diffu-
sion (Dav) assessed with MRI at 9 days, 23 days, or 2 months
after TBI in the peri-lesional cortex, thalamus, and hippocam-
pus would predict seizure susceptibility in the PTZ test at
12 months after TBI [68]. Our data showed that the highest
predictive value for the development of seizure susceptibility
at 12 months post-TBI was achieved by co-assessment of the
Dav in the peri-lesional cortex and the thalamus 2months after
TBI. Importantly, assessment of individual MRI parameters in
the peri-lesional cortex or the thalamus at 9 days after TBI also
provided high sensitivity and specificity for the predic-
tion of increased seizure susceptibility at 12 months
after TBI (Fig. 1).

S1

Dorsal
edge 

Ventral 
edge

PrhCx

Thalamus

A

MRI ROI AUC Sensitivity at 90% Specificity

S1 cortex 0.881 63%

Perirhinal cortex 0.929 80%

Thalamus 0.893 77%

Hippocampus 0.857 67%

C

Hippocampus

B

S1
PrhCx
HC 
Th

T1

T1

T2

T1

Fig. 1 (a) Coronal T2-weighted
image from a rat with lateral fluid-
percussion-induced TBI 23 days
earlier, demonstrating the regions
of interests (dashed lines), from
which T2 and T1σ (c) were
analyzed. (b) Receiver–operating
characteristics for parameters in
(c). Note that including data from
the hippocampus (HC) for the
calculation of the area under
curve (AUC) did not increase
sensitivity. (c) Summary of
parameters with the highest
sensitivity at 90 % specificity
9 days after TBI regarding
prediction of seizure
susceptibility 12 months after
TBI. *P≤0.05, **P≤0.01 AUC
compared with the area under
diagonal line. For details, see
[68]. PrhCx = perirhinal cortex;
S1 = somatosensory cortex 1,
Th=thalamus
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Taken together, studies from different laboratories provide
great hope that it will be possible to follow specific molecular
or network changes related to epileptogenesis, and that the
first applications of MRI biomarkers could become available
for preclinical use.

Proof-of-Concept Antiepileptogenesis Studies After TBI

A large number of preclinical trials have been conducted to
improve motor and cognitive recovery from TBI, but none of
these studies has assessed seizure susceptibility or epilepsy as
an outcome measure [59, 69]. Recently, however, 9 studies
have made attempts to modify post-traumatic epileptogenesis
in experimental models (Table 3). The first was the study
conducted by Echegoyen et al. [70], who induced

epileptogenesis by lateral FP-induced TBI, and administered
the cannabinoid receptor 1 antagonist, SR141716A
(Rimonabant) as a single injection 2 mins after injury. The
threshold for kainate-induced seizureswas assessed at 6 weeks
after TBI. The TBI-associated reduction in the latency to
kainate-induced seizures was prevented by SR141716A. Al-
so, the total time spent in seizures after kainate administration
was reduced in the SR141716A group compared with the
vehicle group. Importantly, no positive effect of treatment
was found if SR141716Awas administered 20mins after TBI.

Chrzaszcz et al. [71] used the closed-skull midline impact
model of TBI in mice and administered minozac, a small
molecule that suppressed the increased production of pro-
inflammatory cytokines in glial cultures, at 3 or 6 h after
injury. One week after TBI, minozac-treated mice showed
less susceptibility to electroconvulsive shock-induced seizures

Table 3 Disease-modifying effects of different treatments after traumatic brain injury (TBI) in experimental models

Drug Mechanism Model Disease-modifying effect Reference

Antiepileptogenesis Comorbidity
modification*

SR141716A CB1 receptor antagonist Lateral FPI-induced TBI in rats Seizure susceptibility to kainate ⇩ n.d. [70]

Minozac Reduction of pro-
inflammatory cytokine
production by activated glia

Closed skull TBI (CD1 mouse) Seizure susceptibility to PTZ and
electroshock ⇩

Yes [71]

Ketogenic diet Multiple Lateral FPI-induced TBI in rats No effect on fluorothyl-induced
seizures

n.d. [72]

Hypothermia Multiple Parasagittal FPI-induced TBI in rats Seizure susceptibility to PTZ ⇩ n.d. [74]

Focal passive
cooling

Multiple Parasagittal FPI-induced TBI in rats Yes n.d. [75]

Creatine Reduction of oxidative stress Parasagittal FPI-induced TBI in rats No effect on seizure susceptibility
to PTZ

Yes [76]

Ceftriaxone Stimulation of glutamate
transporter in astrocytes

Lateral FPI-induced TBI in rats Yes Yes [78]

Rapamycin mTOR inhibition Controlled cortical impact in CD1
mice

Yes Yes [43]

Treadmill
exercise

Reduction of oxidative stress Parasagittal FPI-induced TBI in rats Seizure susceptibility to PTZ ⇩ Yes [80]

mTOR = mammalian target of rapamycin; FPI = fluid percussion injury; PTZ = pentylenetetrazol; n.d. = no data

*Included change in biochemical or structural pathology

Table 4 Summary of clinical trials including development of seizures after traumatic brain injury as primary or secondary outcome. Data were collected
from www.clinicaltrials.gov

Study Identifier Status PTE

Seizure prophylaxis with lacosamide NCT01110187 Terminated Secondary outcome

Levetiracetam to prevent PTE NCT01463033 Completed and reported [100–102] Secondary outcome

Preventing epilepsy after TBI with topiramate NCT00598923 Unknown Secondary outcome

Use of biperiden for the prevention of PTE NCT01048138 Not yet recruiting Secondary outcome

Allopregnanolone for the treatment of TBI NCT01673828 Recruiting Secondary outcome

Prevention of post-traumatic seizures with levetiracetam NCT00566046 Terminated Secondary outcome

Effects of huperzine A in treatment of moderate-to-severe TBI NCT01676311 Not yet recruiting Secondary outcome

PTE = post-traumatic epilepsy; TBI = traumatic brain injury
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than sham-operated rats. Whether minozac treatment prevents
long-term increase in seizure susceptibility and the occurrence
of late seizures remains to be explored.

Schwartzkroin et al. [72] triggered lateral FPI to 8-week-
old rats and administered a ketogenic diet for 3 weeks after
injury. Seizure susceptibility to flurothyl was no different from
that in rats on a standard diet when assessed 3 and 6 weeks
after discontinuation of the ketogenic diet. It should be noted,
however, that TBI had no effect on seizure susceptibility to
flurothyl (seizure threshold, seizure duration) when injured
and sham-operated animals on a standard diet were compared.

Hypothermia is considered to be a promising therapy that
improves structural and functional outcome measures after
experimental and clinical TBI [73]. Atkins et al. [74] induced
moderate parasagittal FPI in adult rats. Animals were kept
under normothermic or moderate hypothermic temperatures
for 4 h starting 30 mins after injury. Susceptibility to PTZ-
induced seizures was tested 12 weeks after TBI. Behavioral
analysis of data indicated a reduced number of induced sei-
zures during the 60-min period after PTZ injection. The be-
havioral severity of seizures was not affected. Recently,
D’Ambrosio et al. [75] started a 5.5-week focal passive
cooling of the peri-lesional cortex 3 days after TBI, causing
a 2 °C decrease in the temperature of the peri-lesional cortex.
They found a remarkable reduction in the number and dura-
tion (from 9.1 s to 3.2 s) of electrographic ictal episodes (for a
description, please see [75]), which lasted beyond the cooling
treatment, that is, for >10 weeks after TBI [75].

Saraiva et al. [76] induced parasagittal FPI in adult Wistar
rats. At 30 mins after TBI, they initiated a treatment with
creatine (300 mg/kg, once per day, p.o.) for up to 4 or 7 days
in order to reduce oxidative stress and gain neuroprotection.
One day after the end of creatine administration (i.e., 4 or
8 days after TBI), a PTZ seizure susceptibility test was per-
formed under EEG. The data obtained did not reveal any
effect of creatine treatment on seizure susceptibility.

Ceftriaxone is a β-lactam antibiotic with good BBB pene-
tration. It is a potent stimulator of glutamate transporter 1
expression in astrocytes [77]. Goodrich et al. [78] induced
lateral FPI in adult Long–Evans rats and started cetriaxone
treatment (200 mg/kg, once a day, i.p.) 30 mins after TBI for
7 days. At 12 weeks post-TBI, the occurrence of epileptiform
activity was assessed using a 24-h EEG recording. They found
a remarkable decrease in peri-lesional astrocytosis and resto-
ration of the decreased post-TBI glutamate transporter 1 ex-
pression. The seizure frequency was lower in the ceftriaxone-
treated animals than in controls (151 seizures/24 h vs 47
seizures/24 h). Also, seizure duration was shorter in the cef-
triaxone group than in controls (from 22.7 s to 18.5 s).

Rapamycin, a mammalian target of rapamycin inhibitor,
has shown disease-modifying effects in several genetic and
acquired epilepsy models, even though there are also contra-
dicting results (see [79]). Guo et al. [43] induced CCI in adult

CD1 mice. Rapamycin treatment (6 mg/kg, once a day, i.p.)
was started 60mins after TBI and continued for 4 weeks.Mice
were continuously monitored by video-EEG. Rapamycin re-
versed the hyperactivation of mTORC1 pathway, reduced
neurodegeneration, and reduced the rate of development of
PTE and decreased seizure frequency. However, it did not
affect the latency to the occurrence of the first spontaneous
seizure after TBI or seizure duration.

Silva et al. [80] investigated the effect of physical exercise
on the development of epilepsy after TBI. Treadmill exercise
(5 mins + 5 mins + 20 mins each day) was started 7 d after
induction of parasagittal TBI in adult male Wistar rats, and
continued for 4 weeks (5 days a week). A PTZ seizure sus-
ceptibility test performed 3 days after the end of the exercise
period showed reduced seizure susceptibility. Histologic anal-
ysis of brain tissue did not reveal evidence of neuroprotection.
However, favorable effects were observed on markers of
oxidative stress.

Taken together, proof-of-concept studies in experimental
models have shown that post-TBI seizure susceptibility can be
modified by treatments affecting different targets, which is in
line with the complexity of molecular and cellular changes
underlying post-traumatic epileptogenesis. There are also sev-
eral previous, recently completed, or new studies that aim to
prevent epilepsy after TBI in humans ([81]; Table 4). Interest-
ingly, however, there is no overlap between treatments applied
in preclinical laboratories and in the clinic. The challenge is
how to harmonize the antiepileptogenesis efforts made in
laboratories and clinics to take favorable proof-of-concept
studies to clinical practice. The roadmap prepared by the
International League Against Epilepsy/American Epilepsy
Society task force was recently provided to guide such efforts
[82].

Conclusions

Recent advances in model development provide a platform for
studies that aim at a better understanding of the molecular and
cellular mechanisms leading to PTE. Experimental imaging
studies have offered encouraging results to maintain a spirit
that discovery of biomarkers that can be used to predict and
diagnose post-traumatic epileptogenesis is possible. Finally,
several proof-of-concept studies have already had favorable
results, suggesting that post-TBI seizure susceptibility can be
modified. Even though the progress happens in small steps,
prevention of PTE appears as a feasible goal.
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