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Abstract Parkinson disease is an inexorably progressive neu-
rodegenerative disorder. Multiple attempts have been made to
establish therapies for Parkinson disease which provide
neuroprotection or disease modification—two related, but
not identical, concepts. However, to date, none of these at-
tempts have succeeded. Many challenges exist in this field of
research, including a complex multisystem disorder that in-
cludes dopaminergic and non-dopaminergic features; poorly
understood and clearly multifaceted disease pathogenic mech-
anisms; a lack of reliable animal models; an absence of effec-
tive biomarkers of disease state, progression, and target en-
gagement; and the confounding effects of potent symptomatic
therapy. In this article, we will review previous, ongoing, and
potential future trials designed to alter the progressive course
of the disease from the perspective of the targeted underlying
pathogenic mechanisms.
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Introduction

Parkinson disease (PD) is a progressive neurodegenera-
tive disease leading to motor deficits mainly in the form
of tremor, rigidity, bradykinesia, and gait impairment.
These motor features are largely attributed to the progressive

loss of dopaminergic neurons in the substantia nigra pars
compacta (SNc); hence, current treatment strategies for PD
have targeted the dopamine system. This approach is remark-
ably effective in ameliorating the dopamine-dependent signs,
especially early in the disease. However, with time, it is
associated with a variety of motor complications. Also,
non-dopaminergic motor and nonmotor features emerge
or worsen and dominate the late stages of the illness,
resulting in increasing treatment-resistant disability. Hav-
ing treatments that are neuroprotective or disease-
modifying would prevent the severely debilitating compli-
cations of advanced PD [1].

There are several obstacles to the successful development
of neuroprotective or disease-modifying therapies. The under-
lying pathogenesis of PD has not yet been fully elucidated, but
likely involves various different cellular processes (Fig. 1).
Hence, a single agent may not be effective against the range of
abnormal pathways that lead to cell dysfunction and death.
Preclinical studies in PD are limited by the lack of animal
models that accurately reflect the clinical course and recapit-
ulate the neuropathological findings of the human disease. For
clinical trials, major hurdles include establishing the proper
drug doses to be tested and selecting the appropriate outcome
measures, as none has the capacity to accurately assess all
aspects of the complex neurodegenerative process. Further-
more, the variable progression of clinical signs and symptoms,
as well as the availability of very effective symptomatic ther-
apies for PD complicate the assessment of efficacy of any
neuroprotective or disease-modifying treatment.

Although sometimes used interchangeably, the concepts of
neuroprotection and disease-modification are not the same.
Neuroprotection implies an intervention that affects disease
pathogenesis and hence preserves neurons from further de-
generation, resulting in a cessation or reduction in evolution of
the disease. Disease modification is also associated with a
positive effect on clinical progression, but does not require
this link with the underlying neurodegenerative process. In
contrast, symptomatic treatments only ease the symptoms of
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the disease for as long as they may provide a pharmacological
effect without influencing its course. Success with the devel-
opment of neuroprotective or disease-modifying treatments
would have an important beneficial impact on the lives of
patients with PD above and beyond the short-term benefits the
symptomatic treatment provides.

Previous and Ongoing Clinical Studies of Neuroprotection
and Disease Modification

Understanding the mechanisms involved in the underlying path-
ogenesis of PD is pivotal for development of neuroprotective
therapies. Several key mechanisms have been implicated,

including oxidative stress and mitochondrial dysfunction, pro-
tein misfolding and aggregation, inflammation, excitotoxicity,
apoptotic cell death, and loss of trophic support [2] (Fig. 1).
Drugs targeting some of these mechanisms have demonstrated
benefit in preclinical studies. Based on these findings, several
clinical trials for patientswith PDhave been conducted (Table 1).
We discuss below the previous clinical trials evaluating
neuroprotective or disease-modifying therapies for PD based
on their putative mechanisms of action.

Antioxidants

Oxidative stress results from an increased presence of reactive
free radicals that occurs either because of an overproduction of
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Fig. 1 Proposed pathogenic mechanisms that may be targeted for
neuroprotective therapies in Parkinson disease (PD). The underlying
pathogenesis of PD has not yet been fully elucidated but several key
mechanisms have been implicated, including 1) neuroinflammation; 2)
N-methyl-D-aspartate (NMDA) receptor-mediated excitotoxicity; 3) al-
tered calcium homeostasis due to increased CaV1.3 channel expression;
4) mitochondrial dysfunction, oxidative stress, and apoptotic cell death;
5) loss of neurotrophic support; 6) α-synuclein (α-syn) misfolding,

accumulation, and aggregation into toxic oligomers with propagation
via a prion-like mechanism; and 7) increased leucine-rich repeat kinase
2 (LRRK2) kinase activity. ATP = adenosine 5′-triphosphate; Ca2+ =
calcium; GDNF = glial-derived neurotrophic factor; GFRα = GDNF
family receptor α; JNK = c-Jun N-terminal kinase; Ret = rearranged
during transfection receptor tyrosine kinase; ROS = reactive oxygen
species. Pointed arrows indicate positive regulation and blunted arrows
indicate negative regulation
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these free radicals or a failure of mechanisms that limit their
accumulation. Oxidative damage has been found in the SNc
of PD patients [3, 4], and oxidative stress can be caused by
reactive oxygen species (ROS) that are produced as a result
of dopamine metabolism [5].

Based on the evident role of oxidative stress in PD
pathogenesis, several clinical trials have been conducted
using several antioxidants, including vitamin E and the
monoamine oxidase B (MAO-B) inhibitors selegiline and
rasagiline. The first major clinical neuroprotective trial in
PD was the DATATOP study [6]. It assessed the effect of
vitamin E and selegiline in patients with early PD. Vitamin
E was selected because it is a powerful lipid soluble anti-
oxidant. Selegiline was studied because, in addition to
enhancing striatal dopamine, MAO-B inhibition also
lessens oxidative stress due to dopamine metabolism. Fur-
thermore, the MAO-B inhibitory effect of selegiline pre-
vents 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine
(MPTP)-induced neurotoxicity in numerous animal models
by blocking its conversion to the toxic 1‐methyl‐4‐
phenylpyridinium ion (MPP+). In addition, selegiline has a
propargylamine moiety that appears to have anti-apoptotic
effects through blockade of glyceraldehyde-3-phosphate
dehydrogenase. The primary endpoint of the DATATOP
study was the time until patients’ required L-dopa treat-
ment, a milestone of disease progression. Patients treated
with vitamin E experienced no benefit, while those treated
with selegiline experienced a significant delay in the need
for L-dopa in comparison with placebo patients, consistent
with a disease-modifying effect. However, the unanticipat-
ed confounder was that selegiline itself likely had mild
symptomatic effects that improved motor symptoms in PD
[6].

Selegiline was also examined in the SINDEPAR study
in which untreated PD patients were randomly assigned
to receive selegiline or placebo in combination with
dopaminergic therapy for 12 months followed by a 2-
month washout period [7]. Patients receiving selegiline
had significantly less deterioration from baseline than
did those on placebo, consistent with a neuroprotective
effect. However, it is possible that the washout period
was not sufficiently long to completely eliminate a long
duration symptomatic effect. Therefore, again it was not
possible to establish that the drug had an effect on the
rate of disease progression. Another study examined the
long term effects of selegiline as monotherapy and in
combination with L-dopa in the early phase of PD over a
period of 7 years [8]. Similar to the earlier trials, the
findings from this suggested that selegiline may slow the
progression of PD. However, the results were hard to
interpret as Unified Parkinson’s Disease Rating Scale
(UPDRS) scores were significantly lower in the
selegiline group after 48 months, but not after 60 months.T
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Furthermore, these scores were only available for 19 pa-
tients in the selegiline arm and 28 on placebo.

Rasagiline is a newer propargylamine derivative and more
potent MAO-B inhibitor than selegiline. Some reports also
suggest that the aminoindan metabolite of rasagiline confer
additional neuroprotective activity [9]. Rasagiline has been
studied using a delayed-start clinical trial design intended to
reduce the confounding effect of symptomatic efficacy. The
TEMPO study evaluated PD patients treated with placebo or
rasagiline [10]. This study’s results suggested that earlier
treatment confers benefit, but the overall duration of this study
was relatively short and the group sizes were modest. A larger
and longer study (ADAGIO study) was conducted to verify
these initial results [11]. There was significant improvement of
the UPDRS motor and activities of daily living (ADL) sub-
scales in the early-start groups for both 1 mg and 2 mg of
rasagiline versus placebo. However, at week 72, the only
significant difference between early-start and delayed-start
groups was for ADL subscores with the 1 mg dose [12]. The
rate of UPDRS deterioration was less than was anticipated
from previous studies and correlated with baseline severity.
The failure of the 2 mg dose and the success of the 1 mg dose
in all three predefined variables have made the interpretation
of these results regarding disease modification difficult. Fur-
ther biological plausibility for the modifying effects of
rasagiline have been proposed based on the evidence that
mitochondrial impairment contributes to dopaminergic neuro-
nal loss in PD and rasagiline has been found to affect numer-
ous mitochondrial mechanisms that prevent apoptotic cell
death [13].

Mitochondrial Enhancers

Production of ROS and resulting oxidative stress can result
from mitochondrial dysfunction. The autosomal recessive
forms of parkinsonism related to mutations in Parkin and
PINK1 have been shown to be linked to mitochondrial abnor-
malities; in particular, impairment in mitochondrial autophagy
(i.e., mitophagy) [14]. The mechanism responsible for mito-
chondrial dysfunction in sporadic PD patients is not yet well
understood. However, several studies have shown that spo-
radic PD patients have a reduction in mitochondrial complex I
levels and activity in their SNc [15–17].

Clinical trials have pursued the investigation of mitochon-
drial enhancers, including co-enzyme Q10 (Co-Q10),
mitoquinone, and creatine, as potential neuroprotective agents
in PD. Co-Q10 is an electron carrier for complexes I and II,
and a free radical scavenger [18]. A pilot study showed that
patients who received the highest dose of Co-Q10 (1200 mg/
day) had significantly less deterioration in UPDRS scores
than patients taking placebo [19]. However, patients in the
high-dose Co-Q10 group also showed short -term improve-
ment in ADL scores after introduction of the drug, consistent

with a symptomatic effect. A study of high dose Co-Q10
(2400 mg/day) was terminated prematurely owing to lack of
efficacy [20]. A powerful mitochondrial antioxidant
mitoquinone failed to slow the progression of PD over a
12-month period [21].

Creatine is a naturally-occurring compound which, when
converted to phosphocreatine, acts as a short term energy
source in tissues with high energy requirements, such as brain.
Creatine supplementation has demonstrated neuroprotective
features in cellular and animal models of neurodegenerative
diseases, including PD [22]. The beneficial effects are be-
lieved to be due to improvement in overall bioenergetics
and/or mitochondrial deficits. A pilot study of early PD pa-
tients compared creatine to placebo for 2 years [23]. No
difference was evident in UPDRS scores or in striatal 123I‐
2β‐carbomethoxy‐3β‐(4‐iodophenyl)tropane (β-CIT) single-
photon emission computed tomography (SPECT) uptake be-
tween the 2 groups. Neuroprotection Exploratory Trials in
Parkinson’s Disease (NET‐PD), sponsored by the National
Institute of Neurological Disorders and Stroke (NINDS), ini-
tially found no evidence for futility of creatine therapy [24].
Subsequently, this group has undertaken a simple, long-term
study strategy in which patients are randomized to creatine or
placebo and followed for a long duration (i.e., 5–7 years)
while concurrently receiving other necessary PDmedications.
This blinded placebo-controlled trial of creatine in PDwill use
a composite endpoint involving a global statistical test
encompassing 5 clinical rating scales to provide a multidimen-
sional assessment of disease progression and potentially pro-
vide higher power to test the hypothesis [25]. Since the review
and acceptance of this manuscript, the NINDS has stopped the
NET‐PD long‐term study of creatine for treatment of early
stage PD. According to the NET‐PD website, an interim
analysis revealed evidence for futility. Continued follow‐up
of subjects was not expected to demonstrate a statistically
significant difference between creatine and placebo. Hence,
the study’s Data Safety Monitoring Board recommended ter-
mination of the study.

Dopamine Agonists and L-dopa

Laboratory studies have shown protective effects of dopamine
agonists on dopamine neurons and their ability to inhibit
apoptosis [26]. Two earlier prospective parallel design
double-blind trials have been performed to evaluate this effect.
Both trials used the rate of decline in surrogate neuroimaging
biomarkers of nigrostriatal function as the primary endpoint to
avoid the confounding factor of potential symptomatic benefit
of the medications. The REAL-PET study compared
ropinirole with L-dopa on PD progression [27], while the
CALM-PD study compared the effect of pramipexole with
L-dopa in early PD patients [28]. Both studies demonstrated
that L-dopa was associated with an approximate 30 % greater
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rate of decline in measures of the biomarker in comparison
with the dopamine agonist. This suggested that possible dis-
ease modification could be attributed to dopamine agonists.
However, there were several important limitations, including
the lack of a placebo control, lack of an extended washout of
the medications and the fact that the clinical status of L-dopa
treated patients improved to a greater extent than that of the
dopamine agonist treated group. Another significant limita-
tion was the inability to prove that these neuroimaging mea-
sures reflect neuroprotection of dopamine systems [29]. The
same results could have been due to L-dopa-induced toxicity
[30] although there has been ongoing debate regarding the
effect of L-dopa on neurons in PD patients. Some believe that
treatment of PD patients with L-dopa potentially promotes
neurodegeneration owing to the production of free radicals
secondary to dopamine catabolism [31, 32], while others have
found a potential neuroprotective effect in animal models
[33, 34].

The ELLDOPA study was designed to try to determine
whether L-dopa is toxic and accelerates the progression of PD
[35]. Patients receiving L-dopa had less clinical deterioration
from baseline than did placebo patients, suggesting a protec-
tive, rather than a toxic, effect. However, SPECT studies
performed as part of this clinical trial demonstrated that pa-
tients who received L-dopa had an increased rate of decline in
uptake of striatal β-CIT (a dopamine transporter ligand) com-
pared with placebo, suggestive of a toxic, rather than a pro-
tective, effect. Therefore, the ELLDOPA study did not resolve
the issue of whether or not L-dopa is toxic in PD [36]. Given
the very robust beneficial effects of L-dopa for motor symp-
toms, the discrepant decline in imaging markers may be better
explained by the artifactual effects on the ligands assessed (see
below). The clinical effects of L-dopa are being studied cur-
rently in a delayed-start design (LEAP study) being conducted
in the Netherlands (R. de Bie, personal communication). This
same study design combined with 123I-FP-CIT SPECT, in the
recently reported PROUD study, failed to support the earlier
suggestions of disease-modifying effects of pramipexole as
the clinical and neuroimaging measures showed no significant
difference between early and delayed pramipexole [37].

Trophic Factors

A contributor to cell death in PD has been the loss of
neurotrophic factors. Nerve growth factor, brain-derived
neurotrophic factor, and glial-derived neurotrophic factor
(GDNF) have been found to be reduced in the SNc of PD
patients [38–40]. GDNF is a potent neurotrophic factor that
supports the survival of dopaminergic nigral neurons and has
been shown to be neuroprotective in animal models of PD [41,
42]. However, a recent study raises concerns about the potential
for treatments such as GDNF to provide benefit in PD. It has
been shown that α-synuclein-induced downregulation of the

transcription factor Nurr1 reduces the expression of RET
(“rearranged during transfection”), the receptor tyrosine kinase
that mediates GDNF signaling, resulting in a blockade of the
effects of GDNF [43]. The applicability of these findings in
humans with PD remains uncertain.

An open-label trial of direct delivery of recombinant
GDNF into the putamen suggested effectiveness [44], while
a randomized controlled study in later stage patients was
halted owing to lack of efficacy [45]. Further studies with
GDNF are ongoing, including investigation into viral-
mediated gene delivery using adeno-associated virus encoding
GDNF (AAV2-GDNF) for advanced PD [46]. A gene therapy
approach using neurturin, a member of the GDNF family, has
been studied [47]. AAV2-neurturin injected initially into the
putamen and later both into the putamen and SNc failed to
provide significant benefit in later stage PD patients. Recently,
PYM50028 (Cogane), a synthetic agent designed to promote
the release of both GDNF and brain-derived neurotrophic
factor, failed to show benefit in a large, placebo-controlled
phase II study [48].

Neuroimmunophilins are intracellular receptor proteins
that bind immunosuppressive drugs like cyclosporine and
FK506. They have been shown to promote neuronal growth
and have demonstrated neuroprotection in animal models
[49–51]. Their exact mechanism of action is not known;
however, it may be associated with glutathione, which has
antioxidant properties and can stimulate neurotrophic factors
[52, 53]. A phase II trial of the neuroimmunophilin ligand
GPI-1485 showed no significant difference of motor symp-
toms in patients with mild-to-moderate PD compared with
placebo. However, there was a non-significant trend of in-
creased β-CIT uptake in patients who were on the highest
dose of GPI-1485 [54].

Other Pharmacologic Agents

Glutamate-mediated excitotoxicity has been implicated as a
pathogenic mechanism in PD and other neurodegenerative
diseases. Excessive activation of N -methyl-D-aspartate
(NMDA) receptors by glutamate results in increased intracel-
lular calcium levels that can activate cell death pathways and
lead to apoptosis [55]. Dopaminergic neurons in the SNc have
high levels of glutamate receptors and receive glutamatergic
innervation from the subthalamic nucleus and cortex. The
potential for excitotoxic damage in PD has led to trials of
agents that interfere with this mechanism. NMDA receptor
antagonists have been reported to induce protective effects in
some, but not all, studies in models of neurodegenerative
diseases such as PD. Riluzole is a drug with multiple mecha-
nisms of action, including inhibition of glutamate release. It
has been found to be well tolerated in a trial for PD patients
[56]. However, a large multicenter study of riluzole in PD
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patients was discontinued because of lack of benefit in the
interim data analysis [57].

Anti-apoptotic drugs such as CEP-1347 and TCH346 [58,
59] could have neuroprotective effects based on their capacity
to block the c-Jun N-terminal kinase signaling pathway and
glyceraldehyde-3-phosphate dehydrogenase translocation, re-
spectively. Unfortunately, trials with these agents were nega-
tive. The failure of TCH346, a propargylamine withoutMAO-
B inhibitory effects, suggests that the possible benefit obtained
with selegiline and rasagiline could be largely dopaminergic
via MAO-B inhibition. Minocycline, a second-generation tet-
racycline long used as an antimicrobial agent, is another anti-
apoptotic drug that has been considered a potential candidate
for neuroprotection. Minocycline is a caspase inhibitor that
has neuroprotective effects against excitotoxicity by inhibiting
activation and proliferation of microglia [60, 61]. It has dem-
onstrated protection against dopaminergic cell loss in both the
MPTP and 6‐hydroxydopamine (6-OHDA) animal models
[62, 63]. An initial phase II trial showed that minocycline
was well tolerated and could not be rejected as futile, setting
the stage for possible phase III trials [24].

GM1 ganglioside is an endogenous sphingolipid that has
been shown to stimulate the repair of the nigrostriatal system
in a variety of animalmodels. Themechanisms bywhich GM1
ganglioside may induce neurorestorative or neuroprotective
effects are not yet clearly defined. A recent randomized con-
trolled delayed start study confirmed earlier evidence for
symptomatic effects, but provided little support for convincing
disease-modifying effects [64].

Lessons Learned from Previous Studies

None of the clinical trials for PD have shown clear disease-
modifying effects, even though several different neuroprotective
and disease-modifying strategies are promising. These studies
have provided important insights into many of the potential
limitations of developing and testing for disease-modifying
therapies in PD.

Animal Models

Toxin-based models using 6-OHDA in rodents and MPTP in
mice and primates have been widely employed in preclinical
studies for PD. Both of these models demonstrate degenera-
tion of dopaminergic nigral neurons and thus have proven
useful in evaluating dopamine-based therapies [65, 66]. How-
ever, these models require the acute administration of toxins
and likely do not reflect the chronic and progressive neurode-
generative course of PD.With the identification of roles forα-
synuclein, parkin, leucine-rich repeat kinase 2 (LRRK2), and
other proteins in the pathogenesis of PD through human
genetic studies, transgenic models based on these genetic

causes of parkinsonism have been developed with some ad-
vantages over the acute toxin models [67, 68]. Another recent
approach is the induction of cell-to-cell transmission of α-
synuclein aggregates using brain inoculation withα-synuclein
fibrils [69]. Regardless, there is no one animal model for PD
that mimics the full pathology and clinical symptomology of
the illness. More accurate animal models would provide great-
er insights into the pathogenesis of PD. It is also hoped that
more clinically relevant models used in the development of
new neuroprotective therapies would allow for improved
translation from preclinical studies to future human clinical
trials.

Clinical Trial Design

One of the major challenges to clinical trials for PD in deter-
mining whether the benefit of a study drug was a result of a
neuroprotective effect has been the potentially confounding
symptomatic or regulatory effects of the study agent. Refine-
ments in clinical trial design have been made to try to address
the issue of separating early symptomatic benefit from
disease-modifying effect of a study intervention. Some trials
have incorporated a washout period before assessing the pri-
mary outcome measure. However, symptomatic drug effects
may be longstanding and outlast the washout period [70]. An
alternative approach has been to use a delayed start design
where one group of patients is started on the therapy several
months before the comparative group [71]. This approach is
based on the assumption that the symptomatic effects would
be similar across the groups at the end of the study. There are
still some potential problems with this approach as longer
treatment may result in increased sensitivity to the drug and
may also result in different rates of drop out between groups,
as patients randomized to placebo in the initial phase of the
trial are more likely to drop out [10].

Another major challenge in these clinical trials has been
determining how to test neuroprotection in a living patient.
Traditionally, clinical measures based on neurological exam-
ination have been used to assess progression (or lack of
progression) of PD. The UPDRS includes clinical examina-
tion of motor function and scales rating patients’ subjective
views of function in daily activities. There are several limita-
tions to this scale [72]. For instance, available symptomatic
treatments have a large effect on the UPDRS score, which
may obscure evidence of neuroprotection. The scale is also
heavily weighted towards motor dysfunction, particularly
tremor-related symptoms. Much of the disability associated
with PD is not considered in the scale, such as that related to
autonomic dysfunction and fatigue. The Movement Disorder
Society has recently revised the UPDRS to make it more
sensitive to subtle motor changes and to capture non-motor
features that are frequently present in the early stages of the
disease [73]. This maymake the scale more useful in assessing
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symptomatic therapies, as well as effective in detecting change
associated with putative neuroprotective or disease-modifying
agents. Given the challenges in defining neuroprotection, the
complexity of the disease, the limitations of earlier trial de-
signs, and the confounding effects of symptomatic therapy, the
NINDS NET-PD investigators have chosen to utilize a “long-
term simple study” design with composite endpoints assessing
quality of life, as well as dopaminergic and non-dopaminergic
clinical features [71]. All of the problems outlined above could
be resolved or improved by the identification of a validated
biomarker that could be used to confirm the diagnosis or to
objectively measure disease progression and drug efficacy.

Biomarkers

Biomarkers are objectively measured characteristics that can
act as indicators of the underlying pathogenic process. Cur-
rently, no biomarkers have been validated for PD, but there is
ongoing research to identify biomarkers that could assist in
more accurate and early diagnosis of PD, as well as allow for
monitoring disease progression and response to therapeutic
interventions. SPECT and positron-emission tomography im-
aging have been used as default measures of dopamine cell
numbers, but these imaging techniques have their limitations.
A concern with both approaches is that the underlying chem-
istry of the radioactive tracers used may be altered by the
pharmacological effects of the treatments under investigation
such that imaging changes may not necessarily reflect changes
in dopaminergic neuron counts. Also, some of the features of
advanced PD do not have a major dopaminergic basis and,
accordingly, will not be captured by dopaminergic tracers [74].
These imaging techniques have not yet been validated as
appropriate surrogate measures of neuroprotection through cor-
relation with neuropathology and/or clinical symptoms [29].

There are several potential candidate markers apart from
neuroimaging. These include protein-based markers, markers
of oxidative stress or inflammation, and measurement of
patterns of variations in genes and proteins (i.e., genomics
and proteomics, respectively). A study evaluating a panel of
seven cerebrospinal fluid (CSF) markers (α-synuclein, DJ-1,
total tau, phosphorylated tau, amyloid β peptide 1–42, Flt3
ligand, and fractalkine levels) demonstrated utility in diagnos-
ing PD, separating PD from controls and other neurodegener-
ative diseases, as well as detecting changes that correlate with
disease progression [75]. Studies in PD have found elevated
levels of circulating interleukins (IL)-6, IL-10, and IL-12 [76],
but more data are needed before markers of oxidative stress
can be considered potential biomarkers. Genomic and prote-
omic measurements are promising, but technically demand-
ing. It is likely that in the near future a biomarker panel might
be developed, possibly combing clinical batteries, imaging,
and “omics”-based measures, as well as other disease-state-
related markers [77].

A biomarker could also be valuable in guiding proper
dosing in drug trials. Typically, doses of study drugs selected
for clinical trials are based on an attempt to reproduce plasma
concentrations in animal models. However, plasma concen-
trations of a drug do not necessarily mirror the concentration
of the drug in the brain. Furthermore, a given agent may be
effective only within a narrow dose range. Thus, it is possible
that negative studies with promising drugs have occurred
owing to the selection of the wrong dose rather than the futility
of the intervention. Choosing an adaptive clinical trial design
can help in this regard, as it allows for many different doses of
the same medication to be tested in a single trial without
negatively affecting the integrity of the trial [78].

Clinicians need to understand the potential pitfalls associ-
ated with the use of biomarkers, either as diagnostic measures
or as surrogate markers. While combining various biomarkers
would hopefully improve diagnostic accuracy, it might risk
diagnosing unaffected people as having PD. Biomarkers
expected to represent disease state could be utilized as the
end point of a clinical trial. However, there could be dissoci-
ation between this surrogate marker and the clinical end-point
it is trying to represent; the treatment might alter the biomark-
er, but not the disease, or it might not alter the biomarker even
though it does alter an important aspect of the disease patho-
physiology that is not assayed by the biomarker [79].

Potential Neuroprotective and Disease-Modifying
Therapies

Our increasing understanding of PD pathogenesis, which is
built upon prior research findings and further augmented by
genetic and epidemiologic discoveries, is leading to novel
approaches to neuroprotection for PD (Fig. 1). Further studies
into antioxidants and trophic factors are continuing. Novel
targets for neuroprotection in PD that are actively being inves-
tigated include the adenosine system, inflammatory pathways,
calcium channels, α-synuclein aggregation, and LRRK2 ki-
nase activity.

Antioxidants

Free radical damage can be associated with increased iron
levels, which are seen in the SNc of PD patients [80]. Cliquinol
is an iron chelator that is associatedwith a reduction in neuronal
death in theMPTPmouse model. Currently, a phase II/III study
is evaluating deferiprone, another oral iron chelator, on iron
overload in the SNc (as assessed by the MRI T2* sequence)
with respect to the clinical progression of PD [81]. If the results
are positive, a larger neuroprotection study could be pursued.

Epidemiological studies have shown that uric acid might be
a potential neuroprotective agent in PD. Uric acid acts as an
antioxidant by scavenging ROS and reactive nitrogen species
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[82]. Studies have shown a decreased incidence of PD among
patients with high serum urate levels [83, 84] and among
patients with gout [85]. In early PD patients, those with higher
plasma urate levels show evidence for slower disease progres-
sion [86], and a recent study showed that patients on diets that
promote high urate levels have a reduced risk of developing PD
[87]. However, the potential benefits of a urate-rich diet have to
be weighed against the risk of developing gout and cardiovas-
cular disease. Inosine is an antioxidant that raises urate levels.
The SURE-PD trial is currently evaluating the disease-
modifying potential of this agent in early PD patients [88].

Zonisamide is an anti-epileptic drug that has been shown to
provide symptomatic benefit in PD patients. In vitro and
animal models have demonstrated that zonisamide has mod-
ulator effects on oxidative stress, intracellular Ca2+ signaling,
and caspase-3 activity [89], as well as neuroprotective effects
in MPTP-induced dopaminergic neuronal degeneration [90].
Currently, the ZONIST trial is investigating the neuroprotection
by zonisamide in early PD [91].

Excessive free radical formation and depletion of glutathi-
one (GSH), the brain’s primary antioxidant, have been dem-
onstrated in PD patients. Some clinicians have been using
GSH intravenously for PD patients. A randomized, placebo-
controlled trial of intravenous GSH in PD proved safe and
well tolerated; however, there was no improvement evidenced
in any outcome variable [92]. Currently, there is lack of
evidence for efficacy and, indeed, lack of data that GSH
actually crosses the blood–brain barrier [93]. Intranasal GSH
is a novel method of delivery that bypasses the obstacles
associated with other delivery methods. Currently, a phase I
study is ongoing in PD patients [94]. Another study is also
underway using proton magnetic resonance spectroscopy to
determine whether levels of GSH are decreased in PD patients
and whether GSH levels increase following daily supplemen-
tation with N -acetylcysteine, a GSH precursor [95]. If suc-
cessful, this study will provide a justification for larger con-
trolled clinical trials.

Polyphenols in green tea are natural antioxidants that may
protect dopamine neurons through inhibition of nitric oxide
and ROS production. Green tea polyphenols were found to be
protective against 6-OHDA in rodents [96] and hence a ran-
domized controlled trial is currently ongoing to assess the
neuroprotective effect of green tea in de novo PD patients [97].

Trophic Factors

Trophic factors continue to hold significant promise for the
future. The strength of this approach is that the biology of the
factors themselves is well known, and it does not rely on a
detailed understanding of the mechanisms of cell death in PD.
Thus, neurotrophic factors may enhance dopaminergic surviv-
al, regardless of the mechanism of cell death. As indicated
above, further studies with GDNF are ongoing. Further

analysis of the results of the AAV2-neurturin studies may
provide insights that will allow this, and related, therapies to
become more effective. One critical issue that may have
compromised these treatments in earlier studies is their use
in the later stages of disease (largely justified by the necessary
surgical intervention). However, to be effective, trophic ther-
apies may have to be applied at a relatively early stage when
there is a sufficient number of surviving nigral neurons con-
tinuing to innervate the striatum. By the time these treatments
were applied in previous studies, nigrostriatal degeneration
may have been too advanced to have benefited from the
provision of trophic support.

Adenosine Receptor Antagonists

Epidemiological studies have shown that caffeine consump-
tion has been associated with a reduced risk of PD. The
association is established especially in men, while in women
it is uncertain, possibly because of interaction with hormone
replacement therapy [98, 99]. Caffeine is a non-selective
adenosine A1/A2A receptor antagonist that acts in the brain
primarily at A2A receptors. Hence, there has been growing
interest in evaluating adenosine receptor antagonists as poten-
tial neuroprotective agents [100]. A2A receptors are highly
expressed within the striatum where their blockade leads to
locomotor activation by reducing inhibitory output of the
basal ganglia indirect pathway. Currently, there are several
selectiveA2A receptor antagonists in development. Istradefylline
has been studied in several phase II and phase III trials [101].
Other A2A receptor antagonists in development are preladenant,
tozadenant, vipadenant, and V81444 [101].These agents are
largely being studied for their symptomatic effects, although
phase III trials of preladenant have been recently terminated
owing to lack of efficacy comparedwith placebo [102].Whether
A2A receptor antagonists have disease-modifying effects re-
mains to be seen.

Anti-Inflammatory Agents

Neuroinflammation has been recognized as an important
mechanism involved in PD pathogenesis [103, 104].
Microglial activation has been found in PD animal models,
as well as in the SNc and striatum of PD patient brains
[105–107]. Pro-inflammatory cytokines, such as IL-1β, IL-
6, and tumor necrosis factor-α, are elevated in the CSF and
basal ganglia of PD patients [108]. Elevated serum levels of
complement proteins have also been detected in PD [109]. It is
not clear whether neuroinflammation plays a primary role in
disease pathogenesis or is entirely secondary. It is also not
certain whether activation of these pathways accentuates or
might even partially retard the degenerative process.

Anti-inflammatory agents are being pursued as potential
disease-modifying treatments for PD. Several animal models
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had demonstrated that certain nonsteroidal anti-inflammatory
drugs have neuroprotective qualities [110]. However, epide-
miological studies have provided conflicting results. An initial
study showed that nonsteroidal anti-inflammatory drug use
lowers the risk of PD by 45 % [111] and a follow-up study by
the same group showed that only ibuprofen had this
neuroprotective effect [112]. Other epidemiological studies
examining this association have shown nonsignificant trends
[113, 114].

An alternative approach to targeting neuroinflammation
may be the use of statins. In addition to lowering cholesterol,
statins have anti-inflammatory effects, including reduction of
tumor necrosis factor-α, nitric oxide, and superoxide produc-
tion by microglia [115], and may also scavenge free radicals
[116]. Simvastatin also reduces dopamine loss in MPTP ani-
mal models [115]. Epidemiological studies have shown that
statin use, particularly simvastatin, is associated with reduced
PD incidence [117, 118]. However, other studies have sug-
gested low low-density lipoprotein cholesterol levels are as-
sociated with increased PD risk [119, 120].

Targeting the peroxisome proliferator activated receptor-γ
has the potential for reducing the production of pro-in-
flammatory cytokines by harmful activated microglia, while
sparing or inducing beneficial activated microglia [121]. The
FS-Zone study conducted by the NINDS-NET investigation is
currently evaluating pioglitazone, a proliferator activated
receptor-γ agonist, for potential disease-modifying effects
[122].

Calcium Channel Blockers

It has been shown that ventral tier SNc dopaminergic neurons,
as well as other selectively vulnerable neurons in PD, have
calcium-dependent pacemaking properties that put them at
risk of damage by oxidative stress. Antagonizing the CaV1.3
channels using the L-type calcium channel blocker isradipine
reverts dopaminergic neurons to a latent juvenile pacemaking
mechanism and protects these cells from both 6-OHDA and
MPTP toxicity [123]. Isradipine has been used as an antihy-
pertensive agent and there are variable epidemiological data
supporting a positive effect of dihydropyridine calcium chan-
nel blockers on the progression of PD [124, 125]. Preliminary
studies have assessed the safety and tolerability of isradipine
in PD [126] and a larger trial evaluating its disease-modifying
effects is being planned.

α-Synuclein-Directed Therapies

There is abundant evidence implicating the protein α-
synuclein in the pathogenesis of PD [127]. Missense muta-
tions in the α-synuclein gene (SNCA), as well as duplications
and triplications of the locus containing SNCA , are associated
with rare familial forms of PD. Polymorphisms in SNCA have

also been identified as risk factors for sporadic PD. The
identification of α-synuclein as a major component of Lewy
bodies and Lewy neurites—the protein aggregates that are
neuropathological hallmarks of PD—led to the discovery of
α-synuclein aggregation as a key event in the disease process.
Soluble oligomers of α-synuclein aggregates are most likely
the toxic forms of α-synuclein that cause neuronal dysfunc-
tion and death in PD. The finding of Lewy bodies within
dopaminergic neurons from healthy fetal mesencephalic grafts
transplanted into the striatum of PD patients has suggested
that α-synuclein pathology may be transmissible. Additional
results from cell culture and animal studies have supported
prion-like spread of α-synuclein [128]. Thus, targeting the
formation, accumulation, and/or spread of toxic forms of α-
synuclein may prove to be neuroprotective in PD [129].

Vaccine-based therapies are being pursued as potential α-
synuclein-directed therapies. Studies on passive or active im-
munization using a transgenic mouse model of PD that
overexpresses human α-synuclein have demonstrated reduc-
tions in α-synuclein oligomer levels [129]. Currently, there is
an ongoing phase I study of active immunization of early PD
patients with PD01A, which elicits α-synuclein antibodies
[130].

Other strategies to reduce toxic α-synuclein and prevent
neuronal death, which are not yet being tested in clinical trials,
include directly blockingα-synuclein aggregation withmono-
clonal antibodies, short peptides, or small molecules [131,
132]. Promotion of chaperone function could also encourage
α-synuclein clearance [133], as could upregulation of the
proteasomal and/or autophagy–lysosomal systems [134]. Re-
duction in the levels of harmful proteins using RNA interfer-
ence technology is a promising strategy for treatment of
neurodegenerative diseases, such as Huntington’s disease
[135] and possibly PD. All of these strategies are at a relatively
early stage of development and await further study before
proceeding to human intervention trials.

Kinase Inhibitors

Mutations in LRKK2 are the most common genetic cause of
autosomal dominant PD to date, resulting in about 2 % of all
cases of PD [136, 137] and up to 40 % in some isolated
populations, such as those in North African regions [138,
139]. LRRK2 is a large multidomain protein that contains
serine/threonine kinase activity. G2019S, the most common
pathogenic mutation of LRRK2, occurs within the kinase
domain and is associated with increased kinase activity [140,
141]. Kinases are generally good targets for small molecule
therapies, and have recently shown promise in clinical studies.
A LRRK2 inhibitor, CZC-25146, prevents mutant LRRK2-
induced injury of cultured rodent and human neurons with
mid-nanomolar potency [142]. Two other inhibitors, GW5074
and sorafenib, showed protection against LRRK2-induced
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neurodegeneration in Caenorhabditis elegans and Drosophi-
la . These findings have suggested that increased kinase activ-
ity of LRRK2 is neurotoxic and hence inhibition of LRRK2
activity could have a disease-modifying effect [143].

Other Pharmacologic Agents

Exenatide, a glucagon like peptide-1 receptor agonist current-
ly used in the treatment of type II diabetes, has been shown to
have neuroprotective/neurorestorational effects in 6-OHDA
and MPTP animal models. A proof-of-concept single blind
trial design was conducted in PD [144] and this treatment will
almost certainly be pursued for potential disease-modifying
effects.

Nicotine use had been proposed as neuroprotective based
on the observation of low prevalence of smoking in PD pa-
tients. However, controlled studies have provided conflicting
results. Currently, two phase II, randomized, controlled studies
of transdermal nicotine are ongoing and will allow the evalu-
ation of potential neuroprotective effects [145, 146].

Erythropoietin (EPO), a hematopoietic cytokine, has been
demonstrated to protect nigral dopaminergic neurons from cell
death induced by 6-OHDA in rodents and it has been hypoth-
esized that anti-inflammation may be one of mechanisms
responsible for EPO neuroprotection [147]. A phase I study
showed EPO to be safe andwell tolerated in PD patients [148].

Granulocyte colony-stimulating factor, a hematopoietic
growth factor, has demonstrated neuroprotection in a PD
rodent model [149]. Currently, a phase II study is evaluating
the potential disease-modifying effect of recombinant granu-
locyte colony-stimulating factor (filgrastim) in early stage PD
[150].

Nonpharmacologic Strategies

Animal studies have shown that “intensive” exercise improves
motor function and may have neuroprotective properties. Cur-
rently, the ParkCycle study is evaluating the effects of aerobic
exercise on cognitive and adaptive plasticity in PD [151].

Surgical Interventions

Deep brain stimulation (DBS) of the subthalamic nucleus
(STN) induces a marked long-term improvement in motor
fluctuations, dyskinesia, and overall quality of life in ad-
vanced PD patients [152, 153]. DBS of bilateral globus
pallidus interna is as efficacious as STN DBS for the manage-
ment of both motor fluctuations and dyskinesia [154, 155].
The mechanism bywhich DBS imparts its beneficial effects in
PD remains unclear, but it has been postulated that disinhibi-
tion and overactivity of the STN due to dopamine deficiency
in PD may be reduced by bilateral STN DBS [156]. In animal
models, it had been suggested that this abnormal STN activity

results in excessive amounts of glutamate release in the SNc
leading to NMDA receptor-mediated excitotoxic cell damage
of dopaminergic neurons that further contributes to neuronal
loss in PD [157, 158]. Therefore, it has been hypothesized that
DBS of the STN may be neuroprotective in PD [159]. In
support of this hypothesis, long-term bilateral STN DBS in
the 6-OHDA rat model of PD showed rescue of dopaminergic
SNc neurons [160]. Currently, there is an ongoing pilot study
investigating whether bilateral STN DBS is a safe and effec-
tive treatment in slowing the progression in patients with early
PD. The results will provide data for the design of a full-scale,
multicenter trial to investigate this hypothesis [161].

Gene transfer of glutamic acid decarboxylase into the STN,
which is believed to modulate the production of GABA and
thus to reduce overactivity of this nucleus, has been demon-
strated to provide symptomatic benefit in late-stage PD [162].
Theoretically, as proposed for STN DBS, this treatment might
also reduce excitotoxic damage in the SNc. To date, this
therapy has not been explored for this purpose.

Stem Cell Therapy

There has been a long standing hope that cell transplantation
therapy could provide a long-term therapeutic option for PD
owing to the perceived relatively specific and localized loss of
neurons in PD. This was supported by animal studies that
showed beneficial effects of such an intervention [163, 164].
The first clinical trial of transplantation therapy was
performed in the mid-1980s [165]. More than 400 patients
worldwide have now been treated with fetal cell transplanta-
tion [166]. Open-label studies showed beneficial effects in PD
symptoms following such transplantations [167]; however,
controlled clinical trials [168–170] showed little benefit com-
pared with the placebo group. There has been a dramatic
progress in stem cell therapy technology in the past decade.
This includes the ability to generate induced pluripotent stem
cells from patient fibroblasts and to differentiate these induced
pluripotent stem cells into dopaminergic neurons that may be
engrafted in vivo [171]. However, the long-term safety and
proven efficacy is missing [172].

One important and critical limitation of cell-based therapies
designed to address the loss of the nigrostriatal dopamine
system is the widespread multisystems nature of PD and the
fact that many of the most disabling and treatment-resistant
features of late stage disease probably have little to do with
this dopaminergic cell loss [173, 174].

Conclusions

Neuroprotection and disease modification in PD remain im-
portant, but elusive, goals. A successful neuroprotective or
disease-modifying treatment could transform PD from a
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relentlessly progressive and disabling disease to a problem
that might be managed with only a modest effect on quality of
life. Current barriers include limited knowledge of the basic
mechanisms of PD, and challenges in the methodology used
to assess disease progression and study outcomes. Overall,
however, the activity aimed at understanding and treating PD
has grown and should, ultimately, result in therapies that will
successfully modify the progressive disease course.
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Since the review and acceptance of this manuscript, the NINDS has
stopped the NET‐PD long‐term study of creatine for treatment of early
stage PD. According to the NET‐PDwebsite, an interim analysis revealed
evidence for futility. Continued follow‐up of subjects was not expected to
demonstrate a statistically significant difference between creatine and
placebo. Hence, the study’s Data Safety Monitoring Board recommended
termination of the study.
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