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Abstract This review provides a summary of the protein
and RNA biomarkers that have been studied for the
diagnosis and assessment of ischemic stroke. Many of the
biomarkers identified relate to the pathophysiology of
ischemic stroke, including ischemia of CNS tissue, acute
thrombosis and inflammatory response. These biomarkers
are summarized by their intended clinical application in
ischemic stroke including diagnosis, prediction of stroke
severity and outcome, and stratification of patients for
stroke therapy. Among the biomarkers discussed are recent
whole genome studies using RNA expression profiles to
diagnose ischemic stroke and stroke etiology. Though many
candidate blood based biomarkers for ischemic stroke have
been identified, none are currently used in clinical practice.
With further well designed study and careful validation, the
development of blood biomarkers to improve the care of
patients with ischemic stroke may be achieved.
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Introduction

Ischemic stroke is a leading cause of disability worldwide
[1]. Though clinicians are excellent at assessing stroke and
its causes, biomarkers to support a clinical diagnosis of

stroke, identify patients at risk of disease, and guide treatment
and prognosis would be valuable [2]. A biomarker may be a
molecule measured in blood, CSF, or tissue; a recording such
as an EKG or electroencephalograph; or an imaging test. In
this review we will focus on blood based biomarkers and
their application in ischemic stroke. For a peripheral blood
biomarker to be of optimal use, it should be rapid, cost
effective, specific and sensitive, as is the case for troponin in
the assessment of myocardial infarction. Though a biomarker
for ischemic stroke is currently not used in clinical practice,
efforts to develop such a test are ongoing. We present a
summary of this work, focusing primarily on protein and
RNA biomarkers in ischemic stroke. Several recent reviews
on biomarkers in ischemic stroke should be consulted for
additional details [3–5].

In ischemic stroke, the majority of biomarker work has
been performed on single proteins selected because of their
known relationship to ischemic stroke pathophysiology.
Among these include markers of brain tissue damage,
inflammation, endothelium, and coagulation/thrombosis.
These studies are summarized in Table 1. Though many such
proteins are associated with ischemic stroke, the successful
translation to a biomarker useful in clinical practice has
proven difficult. Part of the challenge arises from the
heterogeneity of ischemic stroke. An alternate method to
identify blood biomarkers for ischemic stroke is high
throughput screening of many molecules, such as RNA or
protein. Though there are associated challenges, whole
genome or proteome methods offer the potential to identify
markers with sufficient sensitivity and specificity to be of
clinical use that would otherwise not be readily identified by
our current understanding of stroke pathophysiology. In
RNA expression studies, all of the known RNAs can be
assessed using whole genome platform to identify predictors
of disease. This approach is similar to genome wide
association studies (GWAS) .in which the entire genome is
searched for possible DNA single nucleotide polymorphisms
associated with a disorder. Similar whole proteome studies
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are on the horizon and will likely become more common as
the technology develops. Such whole genome, whole
proteome approaches are advantageous in that many poten-
tial biomarker candidates can be screened rapidly, with
subsequent focused investigation of target molecules found
to be of greatest biomarker promise.

Protein Biomarkers in Ischemic Stroke

Proteomics is the study of the entire complement of
proteins, including protein modifications. Common techni-
ques to study protein biomarkers include Western blot,
immunohistochemical staining, enzyme linked immunosor-

Table 1 Survey of reported ischemic stroke biomarkers and their clinical application

Biomarker Origin Description Application to Ischemic Stroke

CNS Tissue Injury
Biomarkers

S100B Astrocytes Calcium binding protein,
involved in cell cycle
progression & differentiation

Diagnosis [19, 102]

Infarct volume [48, 49, 103]

Stroke severity [48, 74, 103]

Hemorrhagic
transformation [85]

GFAP Astrocytes Intermediate filament protein,
role in cell structure, blood
brain barrier, communication

Diagnosis [22, 104]
Testis, Liver

NSE Neurons Neuronal glycolytic enzyme Diagnosis [102]

Neuroendocrine neoplasms,
uremia

Infarct volume [48]

Stroke severity [103]

NMDA-R Ab Glutamate excitotoxic response Autoantibodies to the NR2A /
NR2B subunits of the
NMDA-receptor

Diagnosis [13, 14]

Stroke severity [13, 14]

MBP Myelin damage Oligodendrocytes,
Schwann cells

Myelination of CNS>PNS Diagnosis [104]

Infarct volume [103]

Stroke severity [103]

Inflammatory Biomarkers CRP Liver synthesis Acute phase reactant, role in
atherotherombosis & ischemic
injury [105]

Diagnosis [106]

Stroke risk [62, 107–109]

IL-6 Cytokine from T-cells+
macrophages

Acute phase response, fever Infarct volume [53–55, 110]

Stroke Severity [110]

END [53, 54]

TNF-α Cytokine, inflammatory cells Inflammation, Acute phase
response

Infarct volume [53]

Stroke Severity [53]

END [72]

VCAM 1 Immunoglobulin Leukocyte-endothelial cell
interaction

Diagnosis [19]

Infarct volume [53]

ICAM 1 Immunoglobulin Leukocyte-endothelial cell
interaction

Infarct volume [53]

Stroke severity [53]

END [72]

MMP2, MMP9 Gelatinase Proteolytic enzymes Degrades collage causing
endothelial damage, plaque
matrix disruption

Diagnosis [19, 20]

Infarct volume [53]

Stroke severity [53]

Hemorrhagic
transformation [77–80]

Lp-PLA2 Inflammatory cells Hydrolyzes oxidized phospholipids
in LDL

Stroke risk [59–63, 111]

ApoC-I ApoC-III Lipoproteins Lipid metabolism Diagnosis [23]

Coagulation / Thrombosis
Biomarkers

Fibrinogen Glycoprotein cleaved by
thrombin to fibrin

Blood coagulation, platelet
activation, acute phase reactant

Stroke risk [112–114]

D-Dimer Breakdown of fibrin blood clot Acute thrombosis Diagnosis [115]

Cardioembolic stroke [35]

vWF Glycoprotein Coagulation, platelet adhesion,
binds factor VIII

Diagnosis [19, 20]

Other Biomarkers Plasma DNA Marker of lyzed ischemic cells Sheered DNA Stroke outcome [116]

Infarct volume [116]

PARK7 Elevated in neurodegenerative
disease

RNA binding protein regulatory
subunit

Diagnosis [117]

NDKA Nucleoside phosphate transfers Diagnosis [117]

B-type neurotrophic
growth factor

Growth factor Growth and differentiation of neurons Diagnosis [20]
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bent assay (ELISA), 2D gel electrophoresis, and mass
spectrometry (matrix assisted laser desorption/ionization
analysis). Using these techniques a number of proteins and
panels of proteins have been identified as biomarkers of
ischemic stroke (Table 1).

Protein biomarkers can be classified by their pathophysi-
ological role in stroke. Markers of ischemic brain injury
include S100 calcium binding protein B (S-100B), neuron-
specific enolase (NSE), myelin basic protein (MBP), and glial
fibrillary acidic protein (GFAP). Brain injury biomarkers are
limited by several factors asmarkers for ischemic stroke. They
are not specific to ischemic stroke, as many disease processes
can damage brain tissue. The blood brain barrier (BBB)
restricts release of these biomarkers into systemic circulation.
As a result, biomarker levels may not correlate with infarct
volume or stroke severity given that the BBB breakdown is
variable between ischemic strokes and the anatomic location
of stroke has different clinical impacts.

Several proteins involved in inflammation and immune
response have also been identified as biomarkers of
ischemic stroke, including C-reactive protein (CRP),
interleukin-6 (IL-6), tissue necross factor-alpha (TNF-α),
vascular cell adhesion protein 1 (VCAM 1), inter-cellular
adhesion molecule 1 (ICAM 1), N-methyl-d-aspartate
(NMDA) receptor antibodies and matrix metalloproteinases
(MMPs) (Table 1). Similarly, molecules involved in acute
thrombosis have also been associated with ischemic stroke,
including fibrinogen, D-Dimer and von-Willebrand factor
(vWF). Finally, there are a number of proteins that have
been associated with ischemic stroke, which as yet do not
have a clear pathophysiological role in the disease,
including PARK7, nucleotide diphosphate kinase A
(NDKA), and B-type neurotrophic growth factor.

Ribonucleic Acid (RNA) Biomarkers in Ischemic Stroke

An approach for identifying RNA biomarkers of disease
emerged from gene chip technologies. Gene expression
analysis allows quantitative assessment of all genes expressed
as RNA in a cell, tissue, or blood. Similar to protein profiles
that have been associated with ischemic stroke, profiles of
genes expressed in ischemic stroke have also been identified
as markers. Genes can be grouped into expression clusters,
and up regulated and down regulated clusters can be used to
characterize functional pathways associated with stroke.

In animals, a specific gene expression profile has been
shown in both brain tissue and blood following ischemic
stroke [6–9]. In humans, brain tissue is rarely available.
Thus, peripheral blood is used as a source of RNA. The
rationale for using peripheral blood is based on the
inflammatory response to brain injury that occurs after
ischemic stroke. Changes in RNA expression patterns are

observed in the inflammatory cells involved in this
response, including polymorphonuclear leukocytes, mono-
cytes, and lymphocytes [10, 11].

Our initial studies of blood in animals showed that the
expression of large numbers of genes changed at 24 hours
after ischemic strokes, hemorrhagic strokes, status epilepti-
cus, hypoxia and hypoglycemia [7]. There were several
important observations that have remained consistent in
subsequent human studies. First, there were a large number
of genes that differed from each type of injury and controls.
Second, no single gene distinguished each type of injury
from the others. Finally, a gene expression profile (group or
set of genes) was required to distinguish each injury from
controls and to distinguish each type of injury from each
other. These studies were the first to demonstrate proof of
principle that gene expression could differentiate ischemic
stroke from a variety of other types of brain injury,
including intracerebral hemorrhage [7].

Clinical Application of Biomarkers in Ischemic Stroke

Biomarkers can be classified by their intended clinical
application [12]. In ischemic stroke, studies have evaluated
biomarkers to distinguish ischemic stroke from stroke
mimics, determine stroke etiology, predict stroke severity
and outcomes including early neurological deterioration
and hemorrhagic complications, and identify patients who
may benefit from specific therapies including decompres-
sive hemicraniectomy and arterial recanalization.

Biomarkers for the Diagnosis of Ischemic Stroke

Presently the diagnosis of ischemic stroke relies on clinical
assessment in combination with neuroimaging. Physicians are
very good at diagnosing stroke, therefore the use of a blood
test to diagnose stroke is generally limited to specific
scenarios where time and/or imaging resources are limited.
In a pre-hospital setting or facilities where acute neuroimaging
is not available, a blood test could guide the triage and
evaluation of acute ischemic stroke. Though a CT scan will
likely be required prior to initiation of thrombolysis, a blood
test that rapidly identifies ischemic stroke could speed patient
transfer to centers and physicians able to perform evaluation
for thrombolysis. Additionally, in a minority of stroke patients
the diagnosis of ischemic stroke remains unclear in spite of
clinical evaluation and imaging. In such a situation, a blood
test could add confidence to a physician’s diagnosis of stroke.

Numerous attempts have been made to develop a blood
test to diagnose stroke using one or several proteins. In
total, over 58 proteins and 7 panels of proteins have been
studied as possible biomarkers for the diagnosis of ischemic
stroke – which are the subject of three recent reviews [3–5].
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In spite of this effort, a blood based biomarker to diagnose
stroke remains to be established. A biomarker that showed
initial promise was antibodies to the NR2A / NR2B subunits
of the glutamate NMDA-receptor (NMDA-R). Elevated levels
of this antibody could distinguish ischemic stroke from
controls at three hours with 97% sensitivity and 98%
specificity [13, 14]. However, NMDA-R antibodies have
also been associated with hypertension, atherosclerosis, prior
stroke, epilepsy, systemic lupus erythematosus and enceph-
alitis. Thus, the specificity of these antibodies to patients with
acute ischemic stroke remains uncertain [15–18].

Panels of proteins also show promise as biomarkers in
ischemic stroke. A panel of four markers (S100B, vWF,
MMP9 and VCAM) were able to distinguish ischemic
stroke from controls with a 90% sensitivity and specificity
[19]. When a similar panel of 5 markers (S100B, vWF,
MMP9, BNGF and MCP-1) was used, ischemic stroke
could distinguish from healthy controls with 92% sensitivity
and 93% specificity [20]. However, the clinical problem is
not whether an ischemic stroke can be distinguished from a
healthy control, but whether an ischemic stroke can be
distinguished from disease that mimics stroke such as
hemorrhagic stroke, seizure, migraine, syncope or hypogly-
cemia [21]. Making this distinction tends to be more
challenging as many of the diseases that mimic stroke can
also influence markers studied. Of significant importance is
distinguishing ischemic stroke from hemorrhagic stroke, due
to the implications in acute thrombolytic therapy. In 135
patients, GFAP was able to distinguish ischemic from
hemorrhagic stroke with 79% sensitivity and 98% specificity

within 6 hours of symptom onset [22]. In a study of 31
patients, apolipoprotein CI and apolipoprotein CIII were
shown to distinguish hemorrhagic from ischemic stroke
with 94% sensitivity and 87% specificity [23]. In a larger
study of 1146 patients, a 4 panel marker (S100B, MMP9,
D-dimer and brain natriuretic factor) was able to distin-
guish ischemic stroke from stroke mimics including
hemorrhagic stroke with 85% sensitivity; however, spec-
ificity was only 34% [24]. Thus, though ischemic stroke
can be identified reasonably well, many non-ischemic
stroke patients are also incorrectly predicted to be
ischemic stroke. The challenge of developing a biomarker
of sufficient sensitivity and specificity for clinical appli-
cations is further demonstrated in an 8 panel biomarker
study. Though the panel could identify patients with
ischemic stroke, the diagnostic performance did not add
to that of an emergency department physician [25].

Whether high throughput screen techniques will identify
blood biomarkers to improve the sensitivity and specificity
of current biomarkers remains to be determined. Prelimi-
nary studies of RNA expression in blood have identified
panels of genes able to distinguish ischemic stroke from
controls. RNA isolated from blood mononuclear cells
identified 190 genes differentially expressed in ischemic
stroke compared to controls. A 22 gene panel of the 190
genes was able to distinguished ischemic stroke from
controls with 78% sensitivity and 80% specificity [26]. A
subsequent study of whole blood RNA identified 1335
genes differentially expressed in acute ischemic stroke
compared to controls [27]. The majority of these genes

Fig. 1 Gene expression profiles to distinguish ischemic stroke from
controls at <3, 5 and 24 hours after stroke onset. Hierarchical cluster plot
of the 1355 genes found to be differentially expressed between ischemic
stroke and controls (FDR0.05, fold change > |1.2|). Genes are shown on
the Y-axis, and patients are shown on the X-axis. Genes that have a high
level of expression are shown in red, and genes with a low level of
expression are shown in green. From the larger list of 1355 genes, a list

of 18 genes (29 probesets) were identified that optimally discriminate
between ischemic stroke and controls. This 18 gene panel could
distinguish ischemic stroke from control with 89% sensitivity and
100% specificity. This 18 gene profile has subsequently been studied in
a larger set of stroke patients and demonstrated similar sensitivity and
specificity (Table 2). This figure is adapted from Tang Yet al. Annals of
Neurology, 2006, pages 1089–1102 [27]
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were expressed in neutrophils and monocytes. An 18 gene
panel of the 1335 genes was able to distinguish ischemic
stroke from controls subjects in all patients at 24 hours
(Fig. 1). More recent RNA expression studies report similar
findings to these first two studies. A study by Barr et al.
described a panel of 9 genes to distinguish stroke from
controls [28]. Despite use of a different microarray platform
(Illumina versus Affymetrix arrays), 5 of the 9 genes had
been previous identified [27, 28]. Thus, these results
represent the first validation of a gene expression study in
ischemic stroke. Further validation has been obtained in for
the 18 gene panel previously reported by Tang et al. [29].
This 18 gene panel predicted a new set of ischemic strokes
(n=70, 199 samples) with 93.5% sensitivity and 89.5%
specificity. A summary of these gene panels is shown in
Table 2. As with the studies of protein biomarkers for stroke
diagnosis, the comparison of greater clinical interest is to
distinguish acute ischemic stroke from disease that mimics
ischemic stroke rather than healthy controls. Though this
study has yet to be performed, a 97 gene profile has been
identified to distinguish ischemic stroke from 75% of
patients with myocardial infarction and 96% of patients
with vascular risk factors. A multigene approach shows
promise as a method to identify acute ischemic stroke,
though further study comparing to a broad range of stroke
mimics is required. Additionally, the use of a profile of
RNA as a biomarker of disease is a recent concept that is
developing. The technology to measure RNA is evolving,
as is the understanding of the many types of RNA that
exist. Indeed, most studies to date have focused on

messenger RNA, whereas more recently described RNA,
such as microRNA and snoRNA, still require further
evaluation as potential biomarkers in stroke [30].

Preliminary whole proteome studies in ischemic stroke
are beginning to be performed. Progress has been slow, in
part due to the developing nature of the technology required
to measure many proteins. Mass spectroscopy is often used,
which, as previously reported, has limitations in biomarker
discovery. This includes sensitivity to method of sample
collection and processing in addition to challenges of data
analysis [31, 32]. A study of brain microdialysates from six
patients with ischemic stroke identified 53 proteins associ-
ated with cerebral infarction [33]. Among these were
glutathione S-transferase P1, peroxiredoxin-1, and S100B.
Another study compared protein expression in brain tissue
from six ischemic strokes to three controls [34]. A total of
132 differential expressed protein spots were identified, 39
of which were characterized by mass spectrometry. As the
technology to perform whole proteome analysis improves,
similar larger proteomic discovery of biomarkers for
ischemic stroke will likely become possible.

Biomarkers of Ischemic Stroke Etiology

Ischemic stroke is often classified by etiology dividing
patients into cardioembolic, large vessel, small vessel, and
cryptogenic causes. This classification system is unable to
determine an etiology of ischemic stroke in as many as 30%
of patients. A biomarker could serve to improve identifica-
tion of ischemic stroke etiology in cryptogenic stroke

Table 2 Microarray studies that have identified panels of genes to
distinguish ischemic stroke from controls. Gene panels represent the
genes that were found to optimally discriminate stroke from controls

in the cohort analyzed. They were derived from larger lists of genes
found to be differentially expressed between ischemic stroke and
controls

Origin of RNA Microarray
Platform

No of
Samples

Genes (gene symbols) Sensitivity /
Specificity

22 Gene Panel [26] Peripheral blood
mononuclear cells

Affymetrix U133A 40 ADM, APLP2, BST1, C1QR1,
CD14, CD163, CD36, CSPG2,
CYBB, DUSP1, ENTPD1,
ETS2, FCGR1A, FLJ22662,
FOS, IL13RA1, KIAA0146,
LTA4H, NPL, PILRA, TLR2

78% / 80%

18 Gene Panel [27] Whole Blood Affymetrix U133
Plus 2.0

60 ARG1, BCL6, CA4, CKAP4,
ETS-2, HIST2H2AA, HOX1.11,
F5, FPR1, LY96, MMP9, NPL,
PYGL, RNASE2 , S100A9,
S100A12, S100P, SLC16A6

89% / 100%

9 Gene Panel [28] Whole Blood Illumina HumanRef-8v2
bead chips

64 ARG1, CA4, CCR7, CSPG2,
IQGAP1, LY96, MMP9, ORM1,
S100A12

—

18 Gene Panel [29] Whole Blood Affymetrix U133
Plus 2.0

237 ARG1, BCL6, CA4, CKAP4,
ETS-2, HIST2H2AA, HOX1.11,
F5, FPR1, LY96, MMP9, NPL,
PYGL, RNASE2, S100A9,
S100A12, S100P, SLC16A6

93% / 95%
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patients, and thus allow initiation of preventative therapy
targeted to the underlying cause.

A number of biomarkers have been found to distin-
guish cardioembolic from non-cardioembolic ischemic
stroke. In 707 ischemic stroke patients, cardioembolic
stroke was predicted by levels of BNP >76 pg/ml with
72% sensitivity and 69% specificity [35]. In the same
study, D-dimer >0.96 g/mL predicted cardioembolic
etiology with a 56% sensitivity and 64% specificity. When
BNP and D-dimer were combined, the positive predictive
value of cardioembolic stroke was 70%. D-Dimer has been
associated with cardioembolic stroke in other studies, with
Ageno et al reporting a D-Dimer level >2.0 ug/mL to be
predictive of cardioembolic stroke with specificity of 93.2%
and sensitivity of 59.3% [36, 37]. A more recent study
confirms these findings [38]. BNP has also been associated
with embolism in patients with atrial fibrillation [39, 40].

Gene expression profiles in blood have also been shown
to distinguish cardioembolic from large-vessel ischemic
stroke. RNAwas isolated from blood and run on Affymetrix
U133 Plus2.0 microarrays. In 33 samples from 11 patients,
a 23 gene panel distinguished cardioembolic from large
vessel ischemic stroke with >95% sensitivity and specificity
[41]. In a larger study of 194 samples from 76 acute
ischemic strokes, a 40 gene panel was able to distinguish
cardioembolic from large vessel ischemic stroke with
>95% sensitivity and specificity at each of 3 hours, 5
hours, and 24 hours after stroke onset [42]. A separate
37-gene profile was identified to differentiate cardioem-
bolic stroke due to atrial fibrillation from non-atrial
fibrillation causes with >90% sensitivity and specificity.
The identified genes elucidate differences in inflammation
between stroke subtypes. When these panels were applied
to patients with cryptogenic stroke, 17% were predicted to
be large-vessel and 41% to be cardioembolic stroke [42].
Of the cryptogenic strokes predicted to be cardioembolic,
27% were predicted to have atrial fibrillation. Further
validation of these profiles in larger cohorts is required.
However, gene expression signatures show potential to
add valuable diagnostic information in the management of
patients with stroke of unknown etiology.

Less is known regarding biomarkers of small vessel
ischemic strokes. One study of 116 patients found CRP to
be significantly higher in patients with large vessel
compared to small vessel ischemic strokes [43]. Lacunar
stroke has also been shown to have higher levels of
thrombomodulin, ICAM-1, tissue factor, and homocysteine
compare to controls, though it is unclear whether this is
different compared to other stroke subtypes [44, 45].
Progression of white matter hyperintensities on MRI which
may reflect small vessel disease has been associated with a
higher plasma level of intercellular adhesion molecule
(ICAM) [46]. A profile of differentially expressed genes

has also been reported for WMH in patients with and
without Alzheimer’s disease [47]. Among 38 subjects with
minimal or several WMH, 50 differentially expressed genes
(p<0.005, fold change>|1.5|) could separate patients by
WMH severity. Identified genes were associated with
oxidative stress and inflammation, suggesting novel targets
for further evaluation in microvascular disease.

Biomarkers of Final Infarct Volume and Outcome

Several biomarkers have been associated with infarct
volume, including S-100B, MMP, IL-6, TNF-alpha,
ICAM-1 and glutamate. These could be useful to predict
clinical outcome in patients with ischemic stroke. However,
it should be emphasized that infarct size may not correlate
with neurologic outcome, as even small infarcts can cause
devastating neurological outcomes when they occur in
certain anatomical regions such as the brainstem.

One might predict that a larger infarct volume would
lead to increased release of CNS tissue biomarkers into
systemic circulation. Missier confirmed this prediction,
showing elevated levels of S-100B and NSE were associ-
ated with final infarct volume [48]. Other studies have
associated infarct volume with S-100B [49, 50] , NSE [50,
51], Tau [51] and glutamate [52]. A larger infarct volume
might also lead to a greater inflammatory response to the
ischemic tissue. This is supported by studies showing
elevated inflammatory markers are associated with infarct
volume, including TNF-α [53], IL-6 [54, 55], ICAM-1
[53], MMP-2 and MMP-9 [53, 56].

Markers to predict outcome would be useful in the
management of ischemic stroke patients as potential
surrogate measures. They could be used to monitor the
course of stroke therapy or direct a specific therapy to a
subgroup of patients most likely to benefit. In 250 ischemic
strokes, IL6 levels were elevated in the 14 patients that died
at one year [57]. In another study, poor stroke outcome was
also associated with IL-6 (OR 2.4, 95% CI 1.4-4.2) and Ln
NT pro BNP (OR 2.2, 95% CI 1.2-4.0) [58]. However,
neither IL-6 nor Ln NT pro-BNP were able to improve
upon outcome prediction achieved by the NIHSS score and
age alone (c-statistic 0.84).

Biomarkers have shown some success in the prediction
of recurrent ischemic vascular following ischemic stroke.
Lipoprotein-associated phospholipase A2 (Lp-PLA2) is
associated with a 2 fold increase in stroke occurrence and
risk of recurrent stroke (adjusted hazard ratio 2.5, 95% CI
1.0-6.4) [59, 60]. Based on several large trials, it has been
approved by the FDA as a predictor of coronary heart
disease and stroke [61]. In the Rotterdam trial, Atheroscle-
rosis Risk In Communities (ARIC) studied elevated levels
of Lp-PLA2 that were associated with an adjusted HR of
2.0-2.1 for stroke [62, 63]. However, in the Women’s Health
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Initiative, the relative increase in stroke risk with elevated
levels of Lp-PLA2 was less, at 1.07 (95% CI 1.01-1.14) [64].
CRP levels have also been shown to be predictive of stroke
risk [62]. Despite the increased risk of stroke predicted by Lp-
PLA2 and CRP, the benefit in terms of improving stroke
outcomes has yet to be demonstrated. Trials of the Lp-PLA2
inhibitor Darapladib are ongoing and are likely to shed light in
this regard.

Biomarkers to Predict Early Neurological Deterioration

Early neurological deterioration (END), defined as worsening
of neurological status from admission to 48–72 hours after
admission, is associated with a number of biomarkers
including glutamate, GABA, ferritin, TNF-alpha, ICAM-1,
MMP, S100B, MMP and nitric oxide [65, 66]. Identifying
patients at risk of END may be useful for initiating therapies
to prevent such worsening.

Both plasma and CSF glutamate levels are elevated in
patients who experience END [67, 68]. Patients
with hemispheric strokes with levels of glutamate in
plasma >200 umol/l and CSF >8.2 umol/l predicted END
with a probability of 92 and 93% respectively [69].
Glutamate may be associated with END because it is a
mediator of increased lesion volume, or an measure of
cellular lysis. Glutamate levels have been associated with
expansion of DWI lesion volumes from admission to 72
hours. Glutamate released from the infarct core may cause
spreading depolarization of peri-infarct tissue, thus increas-
ing metabolic demand of an already compromised tissue.

Inflammatory biomarkers also correlate with END.
Plasma ferritin levels >275 ng/ml independently pre-
dicted END in patients with hemispheric infarcts [69].
IL-6 levels >21.5 pg/ml in plasma and 6.3 pg/ml in CSF
predict END [54]. MMP-9 and MMP-13 independently
predict lesion volume expansion in ischemic stroke [56].
CSF nitric oxide levels >5umol/ml also predict END [70].

For lacunar infarctions, END is predicted by plasma
glutamate concentration >200 umol/l and plasma GABA
concentration <240 nmol/l with a positive predictive
value of 67% and 84% respectively [71]. A ratio of
plasma glutamate to GABA greater than 106 correctly
predicted END in 85% of patients. Another study of
lacunar infarction found TNF-alpha >14 pg/ml and ICAM-
1 >208 pg/ML to correlate with END even after
adjustment for glutamate and GABA concentrations [72].

Biomarkers for Decompressive Hemicraniectomy

Decompressive hemicraniectomy performed on selected
patients with large cortical ischemic infarcts can improve
outcomes when performed early [73]. A biomarker to
identify patients at risk for malignant cerebral infarction

and to predict which patients benefit from such surgery
would be useful. Indeed, S-100B predicts malignant
infarction in patients with MCA occlusions [74]. A plasma
level of S-100B >0.35 g/L predicted malignant infarction at
12 hours with a 75% sensitivity and 80% specificity, and at
24 hours with a 94% sensitivity and 83% specificity. A
second study found cellular-fibronectin (c-Fn) and MMP-9
levels to predict malignant cerebral infarction [66]. Admis-
sion MMP-9 level >140 ng/mL predicted malignant MCA
infraction with 64% sensitivity and 88% specificity.
Admission c-Fn level >16.6 g/ml was even more predictive
of malignant MCA infarction, with a 90% sensitivity and
100% specificity.

Biomarkers of Hemorrhagic Transformation

Hemorrhagic transformation is a significant complication
following ischemic stroke. Identification of patients at
increased risk of hemorrhage could help reduce the
incidence of this complication and potentially allow
extension of the time window for t-PA administration in
selected patients. A number of clinical (age, hyperten-
sion, anticoagulant treatment, hyperglycemia) and radio-
logical (diffusion perfusion mismatch, infarct volume,
proximal occlusion, leukoaraiosis) factors have been
associated with an increased risk of hemorrhagic trans-
formation. Several biomarkers have also been associated
with an increased risk of hemorrhage following admin-
istration of tPA, including MMP-9, c-FN, PAI-1, TAFI
and S100B [75].

The most evidence exists for elevated levels of MMPs
predicting hemorrhagic transformation following ischemic
stroke. MMPs are involved in destruction of microvascular
integrity by degradation of the basal lamina and extracel-
lular matrix [76]. Levels of MMP-9 predict hemorrhagic
transformation in ischemic stroke patients who have and
have not been treated with t-PA [75–80]. Serum MMP-9
levels ≥ 140 ng/ml predicted hemorrhagic transformation in
ischemic stroke patients with a sensitivity of 87% and
specificity of 90% [77]. t-PA itself activates MMP-9 and
thus may promote hemorrhagic transformation. Hypergly-
cemia and diabetes have also been associated with elevated
MMP-9 and the development of hemorrhagic transforma-
tion [81].{Uemura, 2001 #2927 BBB disruption independently
correlates with serum MMP9 levels [82].

Cellular fibronectin (c-Fn) is another factor that has
been associated with increased hemorrhagic transforma-
tion. Cellular-Fn is synthesized by endothelial cells and
is elevated following vascular injury including ischemic
stroke. A study showed c-Fn levels >3.6ug/ml predict the
development of hemorrhagic transformation following t-
PA use with a sensitivity of 100% and specificity of 96%
[83].

Blood Biomarkers of Ischemic Stroke 355



A study of 77 ischemic stroke patients identified lower
levels of plasminogen activator inhibitor-1 (PAI-1) and
higher levels of thrombin-activated fibrinolysis inhibitor
(TAFI) to be associated with hemorrhagic transformation
[84]. In combination, PAI-1 levels >180% and TAFI levels
<21.4 ng/ml predicted symptomatic hemorrhagic transfor-
mation after t-PAwith a sensitivity of 75% and specificity of
97.6%. S100B >0.23 g/L is also associated with an
increased risk of hemorrhagic transformation in ischemic
stroke with a sensitivity of 46% and specificity of 82%
[85]. Identification of hemorrhagic transformation will
become more important once there is a treatment to prevent
it, or testing could be performed in time to impact
hemorrhagic transformation associated with thrombolysis.

Biomarkers of Arterial Recanalization

Recanalization of arterial blood flow is an important predictor
of good outcome in acute stroke. A biomarker potentially
could be useful in selecting patients most likely to benefit from
recanalization therapy. Plasminogen antigen inhibitor 1 (PAI-1)
is a marker of fibrinolysis that has been associated with
recanalization resistance [86]. Levels of PAI-1 <34 ng/ml
predict poor response to thrombolysis. A second study of 63
ischemic stroke found that recanalization with IV-tPA was
predicted by lower levels of α2-antiplasmin and fTAFI
(functional thrombin activated fibrionolysis inihibitor) [87].
A level of α2-antiplasmin >85% predicted recanalization
with a sensitivity of 25% and specificity of 85%.

BioMarkers for Stroke Prevention Therapy

Biomarkers might be useful to better understand treat-
ments for stroke [88]. For example, both aspirin and
Aggrenox produce fast and sustained recovery of plasma
eNOS levels, while Aggrenox but not aspirin was
associated with oxLDL in one small trial [89]. This may
highlight differences in therapeutic benefit between
aspirin and Aggrenox. Another potential application of
biomarkers is to identifying patients with aspirin resis-
tance. Despite the proven benefit of aspirin, the concept
of aspirin resistance has developed from the observation
that some patients do not derive protection from anti-
platelet therapy. Identifying patients resistant to aspirin
might identify a group of patients that derive greater
benefit from alternate stroke prevention therapy. Detect-
ing aspirin resistance is possible by measuring thromo-
boxane A2 production and platelet aggregation [90].
Levels of urine 11-dehydroxythromboxane B2 have been
associated with aspirin resistance. However, it tends to
overestimate the number of patients with aspirin resis-
tance [91]. Point of care measures of platelet function also
have been developed such as the PFA-100 system, mTEG

(modified thromboelastrograph) and RPFA (Rapid Plate-
let Function Analyzer) system. Though these assays can
demonstrate differences in a patient’s response to aspirin,
agreement between assays is variable [92–94]. This may
be due in part to factors other than aspirin that influence
platelet aggregation, such as altered levels of von
Willebrand factor. Additionally, it remains unclear whether
changing therapy in a patient with aspirin resistance is
associated with improved outcomes. Thus further study
is required before clinical decisions are made based on a
biomarker for aspirin resistance. Single nucleotide poly-
morphisms in DNA have been described to guide
clopidogrel and warfarin stroke prevention therapy [95,
97]. Whether a protein or RNA marker could be used in a
similar manner to guide stroke treatment is certainly an
area for further research.

Biomarkers of Ischemic Penumbra

No plasma biomarker of human ischemic penumbra has
been reported. Selection of patients for experimental
recanalization therapy beyond the 3–4.5 hour thrombolysis
window currently is based on clinical and neuroimaging
criteria. A biomarker that could identify those patients with
salvageable brain tissue in acute ischemic stroke could be
of significant clinical utility. In the penumbral area, a
number of molecules have been identified that may aid in
differentiating tissue with reduced cerebral blood flow from
severe ischemic tissue [97, 98]. Glucose tends to be higher
and glutamate lower in penumbral tissue [99]. Cells that
survive ischemia express a number of stress response
proteins including heat shock proteins (HSP-27, HSP-70,
HSP-72), α-B-crystallin, heme oxygenase-1, neuregulin-1,
cyclo-oxygenase-2 and hypoxia-inducible factor-1α [100,
101]. Such proteins serve as tissue markers of ischemic
penumbra in brain. Whether a corresponding biomarker in
blood can be identified requires further study.

Conclusion

A number of blood based biomarkers of ischemic stroke
have been identified and show promise to aid in ischemic
stroke. Many relate to the underlying pathophysiology of
ischemic stroke, including ischemia of CNS tissue, acute
thrombosis and inflammatory response. To date, a
number of biomarkers have been identified to answer
focused clinical questions, however sufficient sensitivity
and specificity for use in clinical practice has not been
achieved. With further well designed studies that undergo
thorough validation, the development of blood bio-
markers to improve the care of patients with ischemic
stroke may yet be achieved.
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