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Abstract
Clinically relevant postoperative pancreatic fistula (CR-POPF) is a life-threatening complication following pancreaticoduo-
denectomy (PD). Individualized preoperative risk assessment could improve clinical management and prevent or mitigate 
adverse outcomes. The aim of this study is to develop a machine learning risk model to predict occurrence of CR-POPF after 
PD from preoperative computed tomography (CT) scans. A total of 100 preoperative high-quality CT scans of consecutive 
patients who underwent pancreaticoduodenectomy in our institution between 2011 and 2019 were analyzed. Radiomic and 
morphological features extracted from CT scans related to pancreatic anatomy and patient characteristics were included as 
variables. These data were then assessed by a machine learning classifier to assess the risk of developing CR-POPF. Among 
the 100 patients evaluated, 20 had CR-POPF. The predictive model based on logistic regression demonstrated specificity 
of 0.824 (0.133) and sensitivity of 0.571 (0.337), with an AUC of 0.807 (0.155), PPV of 0.468 (0.310) and NPV of 0.890 
(0.084). The performance of the model minimally decreased utilizing a random forest approach, with specificity of 0.914 
(0.106), sensitivity of 0.424 (0.346), AUC of 0.749 (0.209), PPV of 0.502 (0.414) and NPV of 0.869 (0.076). Interestingly, 
using the same data, the model was also able to predict postoperative overall complications and a postoperative length of stay 
over the median with AUCs of 0.690 (0.209) and 0.709 (0.160), respectively. These findings suggest that preoperative CT 
scans evaluated by machine learning may provide a novel set of information to help clinicians choose a tailored therapeutic 
pathway in patients candidated to pancreatoduodenectomy.
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Introduction

Postoperative pancreatic fistula (POPF) is one of the most 
frequent and serious complications following pancreaticodu-
odenectomy, occurring in up to 20% of resections [1–3]. 
Despite advances in operative technique and improvements 
in perioperative management, clinically relevant fistulas 
(CR-POPF) are still the major cause of postoperative mor-
bidity and mortality and can have a significant impact on 
length of hospital stay and associated costs [4, 5]. Identify-
ing patients at increased risk of developing CR-POPF is a 
key element in tailoring treatment decisions and prevent-
ing or mitigating adverse outcomes and several risk scores 
have been proposed to help achieve this aim [6–11] These 
models, however, have limitations, with the main one being 
that, although they are based on well-established risk factors, 
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parameters are assessed subjectively (e.g., pancreatic paren-
chyma texture) and/or intraoperatively (e.g., blood loss, pan-
creatic duct diameter). For effective decision-making pur-
poses, a reproducible risk profiling model should be based 
on characteristics that can be assessed both pre-operatively 
and in an objective manner.

The occurrence of CR-POPF is related to pancreatic fea-
tures (e.g., pancreatic parenchyma texture, Wirsung’s duct 
size) and patient frailty [6–8, 12–15]. A preoperative com-
puted tomography (CT) scan can provide insights into these 
anatomical features and also aspects of patient frailty, such 
as sarcopenic obesity [16]. The advent of machine learning 
provides a unique possibility to measure and analyze these 
factors through quantitative image analysis [17].

In this investigation, we aimed to develop a reliable and 
reproducible machine learning-based multimodal risk model 
capable of predicting CR-POPF by combining radiomic 
features and morphologic features correlated to surgical 
complexity and patient frailty assessed by preoperative CT 
images with patient characteristics.

Materials and methods

Study design

We designed an image-processing pipeline to detect and 
extract features from a predetermined set of slices from each 
abdominal CT scan. Patients’ clinical data were retrieved 
from a prospectively maintained database and were com-
bined with the radiomic and geometric features extracted 
after the CT annotation process. The pipeline allowed the 
assessment of surface/volumes of pancreas, fat, muscle and 
bone, proceeding through calculation of fat/muscle ratio 
(sarcopenia) in relevant CT images, according to the flow-
chart shown in Online Resource 1. These data were then 
assessed by a machine learning classifier trained with super-
vised learning techniques to assess the risk of developing 
CR-POPF.

This study was approved by the institutional review 
boards of our institution (n° 11/20). All analyzed data were 
deidentified.

Patients

A total of 641 consecutive patients who underwent pancrea-
ticoduodenectomy for pancreatic malignancies in our institu-
tion between 2011 and 2019 were screened. Of these, 205 
patients had preoperative CT scans in our center: 59 were 
excluded because of neoadjuvant chemotherapy (n = 57) or 
radiotherapy (n = 2), 37 had a CT scan more than 40 days 
before surgery, 2 had pancreatitis, 4 for peripancreatic 

collections and 3 for severe artifacts. A total of 100 patients 
were included in the study.

All the included patients underwent contrast enhanced 
CT (CECT) scans according to the National Comprehensive 
Cancer Network (NCCN) criteria within 40 days before sur-
gery and without severe artifacts [18]. All pancreaticoduo-
dectomies were performed by dedicated surgeons with an 
open approach in a high-volume center with more than 150 
pancreatic resections per year. A two-layer termino-lateral 
pancreatico-jejunal anastomosis was performed in every 
patient.

Postoperative complications were defined according to 
Clavien-Dindo classification with grade III or higher con-
sidered as major [19]. CR-POPF was classified according to 
the International Study Group for Pancreatic Fistula (ISGPF) 
classification [20].

Variable selection

We based the selection of predictor variables on a priori 
hypotheses guided by literature and clinical knowledge 
[6–13, 15, 21]. Patient variables included gender, age 
(years), height (m), and weight (kg).

CT features

Two experienced radiologists labelled all the CECTs 
acquired in portal phase (with a delay of 70 s after contrast 
injection) using MD.ai (https://​www.​md.​ai), a cloud-based 
platform offering real-time collaboration and exportation of 
annotations and images.

CT segmentation of pancreatic parenchyma

Radiologists contoured pancreatic parenchyma of the body 
and tail of the pancreas by freeform region of interest (ROI) 
to extract radiomic features [22–25] (Fig. 1). The left border 
of the portal axis was chosen as landmark between the head 
and the body of the pancreas.

Pancreatic duct annotation

Radiologists annotated anterior–posterior pancreatic duct 
diameter, in the plane orthogonal to the axis of the duct 
itself at the landmark between the head and the body of 
the pancreas with the label ‘Wirsung main’. The annota-
tion was reproduced in the upper and lower slice with the 
labels ‘Wirsung up’ and ‘Wirsung down’. The surface area of 
the Wirsung section (mm2) was estimated using the surface 
defined by each Wirsung line, as in the Online Resource 2 
in the supplemental contents.

https://www.md.ai
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Skeletal muscle and fat tissue annotation

Skeletal muscle and not adipose tissue (e.g. small and big bowel) 
were segmented using freeform ROIs on two CT slices located at 
the lower face of the third lumbar vertebrae and the lower face of 
the third and fourth intervertebral discs (Online Resource 3).

Using thresholding methods, we defined the following sets 
of levels: Hounsfield unit (HU) skeletal muscle: − 29 to 150 
HU; subcutaneous and intramuscular adipose tissue: − 190 
to − 30 HU; visceral adipose tissue: − 150 to − 50 HU (Online 
Resource 4). Area values obtained by each ROI were evalu-
ated and total abdominal muscle (TAMA, cm2/m2), visceral 
fat (VFA, cm2), and subcutaneous fat areas (SFA, cm2) were 
calculated [26].

Radiomic feature extraction

Radiomic features for pancreas parenchyma and skeletal 
muscle tissues were extracted with pyradiomics (v. 2.0), an 
open-source package developed and operating in Python and 
deployable in our pipeline [27]. The following sets of radiomic 
features were considered: first-order statistics; shape-based 
(3D); shape-based (2D); gray level co-occurrence matrix 
(GLCM); gray level run length matrix (GLRLM); gray level 
size zone matrix (GLSZM); neighboring gray tone difference 
matrix (NGTDM); gray level dependence matrix (GLDM). 
Images were not filtered before extracting radiomic features.

Statistical analysis

Population split

The study population was split using tenfold cross-validation 
250 times to obtain the best configuration of parameters and 

another 250 times to test performances. The whole dataset 
was differently divided each time into ten parts: nine acted 
as training cohorts and the tenth was the validation cohort, 
in which the algorithm settings were tested. This procedure 
was repeated with a different folder chosen for validation 
each time; after using all tenfolds for testing a specific con-
figuration, an averaged result was obtained. After repeat-
ing this procedure 250 times, validation results from these 
simulations were evaluated to obtain the best parameters 
setting for the pipeline. All configurations’ numerical values 
were retrieved by following a randomized parameters search 
[28]. Once the best configuration was found, the algorithms 
performances were evaluated, using the above-mentioned 
configuration, with a nested cross-validation phase to obtain 
averaged validation results.

Algorithm

The proposed pipeline consisted of several steps, which were 
feature imputation, feature scaling, feature selection, dataset 
augmentation, search of classifier with its specific parameter, 
and training and testing of the selected classifier.

For the feature selection step, no dimensionality reduction 
technique was used directly to keep features interpretable, 
so a regularization, using LASSO was performed to shrink 
the coefficient of less important features to zero [29]. Since 
our dataset was imbalanced for events, a dataset augmen-
tation technique (Synthetic Minority Oversampling Tech-
nique, or SMOTE) was adopted to generate more samples 
for the minority class [30]. Finally, we tested as classifiers 
two machine learning models: an L1 regularized logistic 
regression model and a random forest model.

Dichotomous data are expressed as absolute numbers and 
continuous data as median and interquartile range (IQR).

Variable importance

We evaluated variable importance by the coefficient relative 
value for the logistic regression model and impurity-based 
feature importance for the random forest model, as shown 
in Online Resource 5.

Evaluation

We used scikit-learn version 0.23.2 package, a Python 
machine learning library, to classify patients in a supervised 
setting, using considered data (patients, CECT annotations, 
radiomics features) as input features, as reported in previous 
publications [27, 31, 32].

The performance of models was evaluated with the 
commonly used metrics of area under-the curve (AUC), 
specificity, sensitivity, and positive predictive value (PPV) 

Fig. 1   Contrast-enhanced CT of the abdomen with contoured pancre-
atic parenchyma (body and tail) by freeform region of interest (ROI) 
in axial image
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and negative predictive value (NPV). Further metrics are 
reported in Online Resource 6.

Results

Study population

Of the 100 patients included in the study, 35 were female 
and 65 were male, and median age was 67.4 years (range 
57.7–74.5). The majority of patients had pancreatic ade-
nocarcinoma (PDAC) (n = 61), although the cohort was 

mixed and included patients with ampullary adenocar-
cinoma (n = 19), cholangiocarcinoma (n = 9), pancreatic 
neuroendocrine tumor (NET) (n = 5), duodenal cancer 
(n = 2) and benign lesions of the pancreatic head region 
(n = 4). Demographic and clinical characteristics and data 
regarding postoperative complications are summarized in 
Table 1.

The overall rate of CR-POPF occurrence was 20%, with 
grade B and grade C incidence of 15% and 5%, respectively. 
The median hospital length of stay was 13 days (range 9–21) 
for the whole population, 21 days (16–21) in patients with 
grade B POPF and 38 days (25.5–40.5) in patients with 

Table 1   Baseline characteristics

* Others (duodenal carcinoma, pancreatic NET, ampullary NET, fibrosis)

Overall (n = 100) NO POPF (n = 62) Biochemical leak (n = 18) CR- POPF

B (n = 15) C (n = 5)

Sex, no. (F/M) 35/65 20/42 8/10 6/9 1/4
Age (year), median [IQR] 67,42 [57,66–74,54] 65,48 [57,55–74,43] 68,70 [30–75] 65,65 [25–75] 73,24 [57,69–81,96]
BMI (kg/m2), median [IQR] 23,73 [7,21,24–26] 22,83 [20,47–25,04] 24,94 [23,47–25,04] 26,02 [23,73–29,37] 25,42 [21,97–28,83]
Weight (kg), median [IQR] 69,5 [57–78] 66 [55–75,5] 71 [61–80] 72 [65–77] 65 [5–85]
Height (m), median [IQR] 1,69 [1,60–1,75] 1,69 [1,60–1,76] 1,65 [1,61–1,75] 1,65 [1,55–1,75] 1,7 [1,60–1,75]
ASA score, no.
 1–2 68 42 11 12 3
 3–4 32 20 7 3 2

Texture, no.
 Hard 48 45 3 - -
 Soft 52 17 17 15 5

Intraoperatively main duct 
diameter, median [IQR], 
mm

4 [3–5] 4 [3,25–6] 4 [3–5] 3 [2–4] 3 [2,5–3,75]

Intraoperative Blood loss 
(mL), median [IQR]

350 [200–525] 300 [200–500] 300 [200–450] 500 [300–800] 400 [400–550]

Operative time (min), 
median [IQR]

494 [447–542] 470 [435–528] 530 [479–580] 513 [482–547] 520 [495–599]

Histopathological diagnosis
 PDAC 61 49 6 5 1
 Ampullary carcinoma 19 5 7 5 2
 Cholangio-carcinoma 9 3 1 4 1
 Other* 11 3 4 1 1

Complications
 Overall 56 19 18 14 5
 Minor < 3 34 14 14 6 -
 Major > 3 22 5 4 8 5
 Reoperation 5 2 2 0 1
 LOS (days), median 13 [9–21] 10 [8–14, 25] 18 [13,75–20,75] 21 [16–26] 38 [5–40]
 Readmission 10 3 3 2 2

Mortality
 30 days 1 0 0 0 1
 90  days 3 1 1 0 1
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grade C POPF. Twenty-two patients developed major post-
operative complications classified as grade III or higher 
according to Clavien-Dindo classification.

Prediction model performance

The model demonstrated an AUC of 0.807 (0.155), speci-
ficity of 0.824 (0.133) and sensitivity of 0.571 (0.337) in 
predicting the occurrence of a CR-POPF, (Fig. 2). PPV was 
0.468 (0.310) and NPV was 0.890 (0.084). The ten most 
significant positive coefficients for CR-POPF prediction 
included seven related to the shape of the pancreas and radi-
omics features, two related to sarcopenia and one related to 
the position of the Wirsung duct. The ten most predictive 
negative coefficients included five related to sarcopenic fea-
tures, three to the pancreas shape and to radiomics, one to 
patient anthropometrics (height) and one to the main diam-
eter of the Wirsung duct (Fig. 3).

A model based on the random forest approach resulted 
in a loss of sensitivity. AUC was 0.749 (0.209), specificity 
was 0.914 (0.106), and sensitivity was 0.424 (0.346); PPV 
and NPV were 0.502 (0.414) and 0.869 (0.076), respec-
tively (Fig. 2). The most significant coefficients utilized in 
the random forest model for CR-POPF prediction are shown 
in Fig. 4.

The logistic regression model was also tested to assess 
its ability to predict a length of hospital stay longer than the 
median duration. We observed an AUC of 0.709 (0.160), 
specificity of 0.633 (0.206), sensitivity of 0.715 (0.209), 
PPV of 0.646 (0.173), and NPV of 0.732 (0.179). Regarding 
the 10 most significant positive prognostic characteristics, 
eight were related to the pancreas shape and to radiomics 
features, and two were related to sarcopenia. Interestingly, 
these characteristics are not the same as those observed in 
the prediction model for CR-POPF. Similarly, among the 
most significant ten negative prognostic factors, five were 
related to sarcopenia, only one to shape and radiomics of the 
pancreas, one to patient anthropometrics (height) and three 
to the characteristics of the Wirsung’s duct.

CR-POPF greatly overlaps with major postoperative com-
plications after pancreaticoduodenectomy, so we also tested 
our model to predict any postoperative major complication. 
As expected, the ability to predict major complications was 
only slightly reduced, with an AUC of 0.690 (0.209), speci-
ficity of 0.801 (0.149), sensitivity of 0.436 (0.347), PPV 
of 0.373 (0.327), and NPV of 0.846 (0.093).

Discussion

Accurate preoperative risk profiling of patients at high-risk 
of developing CR-POPF after pancreaticoduodenectomy is 
fundamental in optimizing perioperative management and 

preventing or mitigating adverse events. Furthermore, risk 
stratification contributes to preoperative risk assessment, 
critical in deciding upon the best surgical approach in frail 
patients.

Our aim is to develop a risk model from the preopera-
tive CECT, which is reproducible, immediate, applicable 
across healthcare settings, and designed to identify clini-
cally relevant pancreatic fistulas. This new approach may 
help to overcome the limitations of previous proposed 
scores and potentially play a role in the identification 
of patients who could benefit from an upfront surgical 
approach rather than neoadjuvant therapy or prehabilita-
tion protocol, or even to be excluded from surgery. Our 

Fig. 2   Logistic regression (A) and random forest (B) receiver operat-
ing characteristic (ROC) for POPF prediction
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study has shown that the machine learning model has the 
ability to identify patients that are a low risk of develop-
ing a CR-POPF. Moreover, the model can also predict if 
the postoperative length of stay of the patient will be in 
the median range.

Previous studies have reported other machine learning 
models to predict postoperative complications after surgi-
cal procedures but, to the best of our knowledge, only a few 
studies have focused on predicting outcomes after pancre-
atic resection, [33, 34]. Using a prospective database of 110 

Fig. 3   Logistic regression: top 
significant ten coefficients, posi-
tive (A) and negative (B) 
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patients undergoing pancreatoduodenectomy, 55 with and 
55 without POPF, Kambakamba et al., evaluated the prog-
nostic signature of machine learning-based texture analysis 
to estimate pancreatic consistency based on preoperative 
non-CE CT scan. Results were similar to our model, with a 
sensitivity of 76%, specificity of 64%, and an AUC of 0.78 
for POPF prediction. This demonstrates the feasibility and 
reproducibility of this approach, even if this only evaluated 
pancreatic parenchyma [35]. Han et al. evaluated medical 
records of 1769 patients underwent pancreatoduodenectomy, 
221 of whom had POPF, and developed a platform based 
on a machine learning algorithm for POPF prediction that 
incorporated both subjective and intraoperative variables 
[36].This model also showed good predictive ability with 
the support of machine learning models but is dependent on 
intraoperative data.

Limitations

Our study has several limitations. First, we consider a 
small sample size, which is related to our strict selection 
criteria and to the exclusion of a large number of patients 
with CT scans performed elsewhere, since ours is a refer-
ral center. Second, our model was specifically designed 
to assess CR-POPF. For this reason, when applied to dif-
ferent outcomes, such as length of stay or overall post-
operative major complication, there is a partial decrease 
in reliability. Third, the major ability of the model is in 
ability to predict patients unlikely to develop a CR-POPF, 
while its PPV is less robust due to its suboptimal sen-
sibility. Despite that, the identification of a subgroup of 
patients unlikely at low-risk of POPF is clinically relevant. 
Strategies that aim to improve the recovery and reduce the 

intensity of care for these patients could be implemented, 
while it may also allow clinicians to focus attention on 
high-risk patients. Our next steps will be focused on the 
refinement of the model, including more cases from exter-
nal cohorts, and on the automation of the entire process. 
We plan to enhance the accuracy of the prediction and 
made it available automatically at the end of the preopera-
tive CT scan.

Conclusions

To our knowledge, our study is the first to develop a 
machine learning model that combines radiomic features 
correlated with surgical complexity and patient frailty 
obtained by preoperative CT scan to predict the occur-
rence of a CR-POPF. Our machine learning risk model 
appears to be a reliable tool for risk prediction in patients 
undergoing pancreaticoduodenectomy, performing well in 
excluding subjects at risk of developing a CR-POPF. This 
novel approach, may provide an individualized, objec-
tive and reproducible risk stratification that can be easily 
implemented in clinical practice, enhancing effectiveness 
by allowing more tailored approaches rather than one-size-
fits-all approach.
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tary material available at https://​doi.​org/​10.​1007/​s13304-​021-​01174-5.
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Fig. 4   Random forest model for 
POPF prediction: top significant 
ten coefficients
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