
REVIEW

A Narrative Review of Diabetic Macroangiopathy:
From Molecular Mechanism to Therapeutic
Approaches

Jiacheng Yin . Xiaoxu Fu . Yue Luo . Yuling Leng . Lianjun Ao .

Chunguang Xie

Received: November 21, 2023 / Accepted: January 11, 2024 / Published online: February 2, 2024
� The Author(s) 2024

ABSTRACT

Diabetic macroangiopathy, a prevalent and
severe complication of diabetes mellitus, sig-
nificantly contributes to the increased morbid-
ity and mortality rates among affected
individuals. This complex disorder involves
multifaceted molecular mechanisms that lead
to the dysfunction and damage of large blood
vessels, including atherosclerosis (AS) and
peripheral arterial disease. Understanding the
intricate pathways underlying the development

and progression of diabetic macroangiopathy is
crucial for the development of effective thera-
peutic interventions. This review aims to shed
light on the molecular mechanism implicated
in the pathogenesis of diabetic macroangiopa-
thy. We delve into the intricate interplay of
chronic inflammation, oxidative stress,
endothelial dysfunction, and dysregulated
angiogenesis, all of which contribute to the
vascular complications observed in this disor-
der. By exploring the molecular mechanism
involved in the disease we provide insight into
potential therapeutic targets and strategies.
Moreover, we discuss the current therapeutic
approaches used for treating diabetic macroan-
giopathy, including glycemic control, lipid-
lowering agents, and vascular interventions.
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Key Summary Points

This review provides a comprehensive
overview of the molecular mechanisms
underlying diabetic macroangiopathy, a
complication commonly seen in
individuals with diabetes.

Type 2 diabetes mellitus accelerates
atherosclerosis and an increased risk of
thrombotic vascular events due to
dyslipidemia, endothelial dysfunction,
poor fibrinolytic balance, and irregular
blood flow.

Tight glycemic management, normal lipid
profiles, frequent physical exercise, a
healthy lifestyle, and pharmaceutical
therapies are useful tools to avoid and
treat diabetic macroangiopathy.

INTRODUCTION

Type 2 diabetes mellitus (T2DM) is a metabolic
disorder with high blood sugar levels due to the
body’s resistance to insulin [1]. T2DM affects
90% of individuals with diabetes and poses a
significant threat to human health, making it a
public health concern globally [2–4]. The com-
plications of diabetes can be characterized on
the basis of their involvement in heart and
brain diseases [5–7]. These complications are
exacerbated by diabetes while the envelopment
of multiple diseases worsens the prognosis
[1, 8]. While recent studies have provided
valuable insights into the pathophysiology of
diabetes complications, the increasing special-
ization in medical research has led to a focus on
individual lesions rather than a comprehensive
understanding of the overall picture. Therefore,
it is crucial to conduct a comprehensive study
that encompasses various systems and angio-
pathies to fully comprehend the complexities of
diabetes complications.

The process of wound healing involves sev-
eral key steps including hemostasis,

inflammation, proliferation, and remodeling
[9]. During the proliferative stage, angiogenesis
occurs which involves the growth of immature,
permeable, and redundant blood vessels
[10, 11]. This process is mediated by proangio-
genic factors, with vascular endothelial growth
factor (VEGF) playing a significant role [12].
Microvasculature resolution factors like protein
sprouty homolog 2 (SPRY2) inhibit the forma-
tion of capillaries, while pigment epithelium-
derived factor (PEDF) is responsible for apopto-
sis-driven pruning of blood vessels during
wound maturation [13, 14].

Diabetes complications are often categorized
into macro- and microvascular angiopathy, and
their consequences are defined by the target
organs [2]. Macrovascular disease which
includes peripheral vascular disorders, myocar-
dial infarction, and stroke is the leading cause of
mortality and morbidity in people with diabetes
[5]. In addition to the traditional mechanisms
of macrovascular disease, i.e., underlying
obstructive atherosclerotic diseases affecting
large arteries, other factors contribute to the
development of diabetic vasculopathy [2]. The
production of advanced glycation end products
and their interaction with specific receptors
leads to the overexpression of various cytokines.
Diabetes also activates hemodynamic pathways
which can be worsened by concurrent systemic
hypertension. Aside from these mechanisms,
hyperglycemia, non-enzymatic glycosylation,
lipid modification, vasculature remodeling, and
growth factor activation all contribute to the
development of diabetic vasculopathy [15, 16].

This article reviews the general pathological
manifestations of macrovascular lesions, the
molecular mechanisms involved in different
target organs, and potential therapeutic targets.
This review will summarize the most recent
research on the significance of proper capillary
growth, function, and maturation in diabetic
wound healing. This article is based on previ-
ously conducted studies and does not contain
any new studies with human participants or
animals performed by any of the authors.
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PATHOPHYSIOLOGY
OF MACROVASCULAR
ANGIOPATHY IN PEOPLE
WITH DIABETES

People with diabetes typically exhibit localized
and systemic vascular problems known as dia-
betic vasculopathy, which are exacerbated by a
variety of comorbidities such as hypertension
[17]. Diabetes increases the chance of develop-
ing coronary artery disease (CAD), peripheral
artery disease (PAD), and cerebrovascular dis-
ease by a factor of 2–4 [18]. People with diabetes
have higher morbidity and mortality rates due
to vascular disease, which accounts for the lar-
gest proportion of cases of death [19]. Figure 1
explains the detailed pathophysiology of T2DM
complications and their consequences.
Advanced glycation products and systemic
inflammation exacerbate diabetes-related
comorbidities. Most macrovascular events take
longer to manifest clinically, but when they do,
they are life-threatening [20]. This emphasizes
the necessity of detecting vascular injury as
early and accurately as possible [21, 22]. Tissues
with elevated contractility, such as the heart,
are at a higher risk of developing macrovascular
problems because arteries, such as the coronar-
ies, become occluded even from physiologic
contractility, which is worse when combined
with pathologic vascular occlusion [2]. The
metabolic, humoral, and hemodynamic vari-
ables that contribute to the distinctive dys-
function of diabetic vasculopathy are all
interconnected [23]. Hyperglycemia-induced
oxidative stress, for example, enhances both
advanced glycation end product (AGE) produc-
tion and protein kinase C (PKC) activation.
Hyperglycemia, non-enzymatic glycation, lipid
modification, vascular remodeling, cytokine
production, and growth factor activation are
theorized to facilitate diabetic vascular injury
[24, 25]. The pathophysiology of these path-
ways is discussed and summarized in Fig. 1.

Hyperglycemia

Persistent hyperglycemia is now acknowledged
as a major contributor to T2DM vasculopathy
development [26]. When combined with other
variables, hyperglycemia may hasten the onset
of atherosclerosis (AS) in people with diabetes.
In addition, hyperglycemia stimulates apopto-
sis, lowers endothelial cell (EC) replication, and
hastens the progression of AS. The glycation of
proteins and lipids in the arterial wall is the
most important of these processes. Glucose-in-
duced damage is caused by advanced glycation,
PKC activation, and sorbitol accumulation.
Early glycated proteins on collagen, intestinal
tissues, and blood vessels undergo a series of
chemical reactions that result in permanent
AGEs (Fig. 1). AGEs possess a plethora of
potentially hazardous chemical and biological
features. They gradually build up with age and
steadily accumulate. The phrase ‘‘AGE forma-
tion’’ refers to the biochemical attachment of
glucose to the amino group of a protein that
occurs without the intervention of an enzyme.
This process produces a reversible material
called a Schiff base, which can subsequently be
rearranged to produce an Amadori product, the
most well-known of which is hemoglobin A1c
(HbA1c). Permanent AGE formation alters
molecule structure, modifies enzyme activity,
reduces the ability of proteins and lipids to
degrade and recognize receptors, and interferes
with normal protein and lipid function [27, 28].
Plasma glucose levels and the degree of non-
enzymatic glycation are significantly associated,
highlighting the importance of monitoring
HbA1c as a useful adjunct in diabetes treatment.
AGEs generate oxidative stress, impair the
function of the vascular barrier, enhance vas-
cular permeability, and improve the adhesion of
VCAM-1, a vascular cell adhesion molecule, by
binding to AGE receptors (RAGE) on ECs. The
expression of VCAM-1 on monocytes, which
may enhance monocyte migration, may con-
stitute one of the early steps of vascular
remodeling [29]. Previous studies have revealed
that mesenchymal stem cells (MSCs), a specific
type of stem cell, are involved in the patho-
genesis of diabetes [30, 31]. Studies have shown
that both type 1 and type 2 diabetes are
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associated with a decrease in the number and
function of circulating and tissue-resident stem/
progenitor cells including MSCs [30, 32]. This
suggests that the macrovascular complications
of diabetes may be partly attributed to a stem
cell vasculopathy, where the impaired stem cell
compartment fails to regenerate dying
endothelial or vascular smooth muscles [31]. In
T2DM, the reduction of vascular stem cells is
directly related to the glycemic level, and this
reduction is also observed in individuals with
impaired glucose regulation [2]. However, it is
unclear whether the decrease or dysfunction of
stem cells is a direct consequence of glucose
level disturbances, and to what extent the
hyperglycemia contributes to this mechanism.

Lipids and Lipoproteins

Lipid metabolism plays a significant role in both
short- and long-term diabetes symptoms and
consequences. In diabetes-related dyslipidemia,
there is an increase in total cholesterol and low-
density lipid (LDL) levels, while high-density
lipid (HDL) levels decrease with the increase in
triglyceride levels [33]. The lipoproteins are
transported through the EC via vascular transit,
which is altered by glycation, oxidation, aggre-
gation, and proteoglycan interaction, or inclu-
sion into immune complexes. There is a
predominance of tiny, dense LDL molecules
that are more prone to oxidation [34, 35]. In the
subendothelial area, LDL molecules are oxida-
tively transformed into reactive oxygen species
(ROS) by macrophages, ECs, and smooth muscle
cells (SMCs). Oxidized LDL (Ox-LDL) promotes
additional conscription of monocytes to the
subendothelial region. Monocytes are activated,
differentiate, and then grow into much larger
macrophages. Foam cells are created when
macrophages accumulate the oxidized lipids in
the vascular wall [36]. These foam cells, in turn,
activate a slew of inflammatory mediators and
growth factors that provoke collagen accumu-
lation and muscle proliferation in the vascular
wall [37]. Ox-LDL accumulates in the cell,
where it is toxic to ECs and affects their shape
and function [38]. Ox-LDL promotes circulating
monocyte adherence to injured endothelium,

causing them to migrate into the vascular
intima. It also enhances the creation of
chemoattractants, which aid in migration [39].
Glycation alters apolipoprotein B, which aids in
LDL receptor uptake, making the LDL particle
more atherogenic. Ox-LDL detected in the
intima is more likely to be linked to local matrix
proteins via glucose-mediated cross-links. Dur-
ing this process, the LDL undergoes an even
more complex oxidation and glycation process
[40]. Ox-LDL also lowers nitric oxide (NO) pro-
duction by blocking NO synthase, which con-
tributes to vasodilation problems [41].

Insulin Resistance

Insulin resistance is a prevalent characteristic of
T2DM and cardiovascular diseases (CVDs).
Recent research has shown that insulin resis-
tance is an independent risk factor for CVD,
affecting almost 80% of people with T2DM [42].
Rising incidence of cardiac infarction,
endothelial damage, and stroke is linked to
insulin resistance [20, 43]. It appears before the
start of diabetes and is related to greater plasma
endothelin and von Willebrand factor (vWF)
levels even in the absence of diabetes. Insulin
resistance induces a rise in blood pressure,
which induces the pathways that include sym-
pathetic nervous system activation, renal
sodium retention, transmembrane action
transport, growth-promoting action of vascular
SMCs, and vascular hyper-reactivity [44, 45].
Patients with insulin resistance produce less NO
and higher levels of angiotensin and endothe-
lin-1 (ET-1). Insulin stimulates NO, which cau-
ses vasodilation and an increase in glucose
uptake. Vascular insulin resistance disrupts
skeletal muscles blood flow [45, 46]. Further-
more, insulin resistance causes AS and impaired
vascular function by reducing fibrinolysis [47].
In patients with insulin resistance, C-creative
protein (CRP) levels are elevated, which blocks
NO production in the endothelium and
increases ET-1 and interleukin (IL)-6 [29].
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Oxidative Stress

The role of oxidative stress in people with dia-
betes vasculopathy is widely accepted. People
with diabetes experience higher oxidative stress
as a result of free radical generation [48]. Free
radicals cause tissue damage in diabetes, which
occurs through many metabolic pathways:
(i) hyperglycemia-induced ROS formation; (ii)
an increase in glucose, unsaturated fat, and
glycated protein oxidation; and (iii) an increase
in glucose auto-oxidation. These pathways
result in increased generation of superoxide
ions (O2

�- ), hydroxyl radicals (OH�), and per-
oxides [49]. Superoxide prevents ECs from
secreting NO and reduces NO in the suben-
dothelial area. ROS causes cross-linking and

fragmentation of lipids and proteins. ROS also
hasten the production of AGE, which delivers
more free radicals that enhance LDL oxidation.
All of these inhibit NO-dependent vasodilation
[50, 51].

Activation of PKC

PKC is an intracellular secondary messenger
that appears to be active in the tissues of
patients with T2DM, such as the heart and
aorta. Upon PKC system activation, intracellular
hyperglycemia showed a link to the patho-
physiology of diabetes complications. In dia-
betes, the beta isoform of PKC is involved in
endothelial-dependent vasodilation abnormali-
ties [29]. It promotes the production of

Fig. 1 Pathophysiology of diabetic macrovasculopathy and
its consequences. SOD superoxide dismutase, ALDH2
acetaldehyde dehydrogenase, PKC protein kinase C, AGEs
advanced glycation end products, VSM vascular smooth
muscle, RAGE receptor for advanced glycation end

products, FFA free fatty acids, TG triglycerides, NF-kb
nuclear factor kappa-B, IL-6 interleukin-6, MCP monocyte
chemoattractant protein, TNFa tumor necrosis factor-a),
ROS reactive oxygen species
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superoxide ions, which react with NO to form
peroxynitrite (ONOO), thus causing tissue
damage and increased production of macro-
phages [52]. The PKC system participates in
both growth factor transcription and signal
transduction. PKC activity in the aftermath of
hyperglycemia promotes platelet-derived
growth factor (PDGF)-B receptor expression in
SMCs and ECs [53, 54]. Furthermore, PKC acti-
vation induces the production of transforming
growth factor (TGF)-b1, a critical growth factor
that governs ECM synthesis. This increases
proteoglycan and collagen gene expression
while lowering the synthesis of proteolytic
enzymes that break down matrix proteins [55].

TGFb1 overexpression is considered to cause
capillary basement membrane thickening and
was one of the first structural anomalies detec-
ted in practically all tissues of the prediabetic
rat.

Growth Factors and Cytokines

Diabetes is connected with the overexpression
and activities of cytokine and growth factors.
The proliferative cytokines epidermal growth
factor and PDGF play a role in macrovascular
damage [56]. Metabolic and hemodynamic
variables appear to combine to increase the

Fig. 2 Diabetic macrovascular angiopathy and its complications. LV left ventricular
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Table 1 Treatments for different conditions as a result of diabetic vasculopathy due to different conditions

Diabetic
complications

Medication Mechanism of action

Hypertension ACE inhibitors: fosinopril, moexipril, quinapril,

ramipril, captopril, enalapril, and benazepril

Increase bradykinin levels by inhibiting the

production of AII. As a result, vasoconstriction is

reduced, salt and water retention are reduced, and

vasodilation (via bradykinin) is increased

Beta-blockers: propranolol, metoprolol, nadolol,

carteolol, atenolol, bisoprolol, acebutolol,

penbutolol, labetalol, carvedilol

Calcium channel blockers: verapamil, diltiazem,

dihydropyridine

Diuretics: thiazide diuretics, loop diuretics,

K-sparing diuretics

AII receptor (type 1) is inhibited competitively.

Loop diuretics and potassium-sparing diuretics

have a more specific effect on AII action but have

little or no effect on bradykinin production or

metabolism. Lower blood pressure via emptying

body salt stores results in a decrease in total blood

volume and CO; initially, peripheral vascular

resistance increases, but decreases when CO

returns to normal (6–8 weeks)

Hyperglycemia

and insulin

resistance

Biguanides: metformin Suspend polysaccharide absorption, and slow down

postprandial glucose excursions

Sulfonyl ureas: chlorpropamide, glibenclamide,

gliclazide, glimepiride, glipizide, gliquidone, and

tolbutamide

Alpha-glucosidase inhibitors: acarbose

Insulin secretagogues

Sulfonyl urea-like agents: repaglinide Insulin sensitizers promote glucose absorption in

adipose and skeletal muscle tissuesThiazolidinediones: pioglitazone, rosiglitazone

Insulin Increases peripheral glucose consumption while

decreasing hepatic glucose output

Dyslipidemia Statins: atorvastatin, fluvastatin, lovastatin,

pravastatin, rosuvastatin, simvastatin

Improve lipid profile and reduce your risk of

atherosclerosis. Lower LDL-C, increase TC/

HDL-C, and decrease apolipoprotein

Fibric acid derivatives: bezafibrate, fenofibrate,

gemfibrozil

Improve your lipid profile and reduce your risk of

atherosclerosis. drop TGs, boost HDL-C, drop

TC/HDL-C, and shift LDL particles from

smaller to larger

Platelet

activation

and

aggregation

Aspirin Antiplatelet effect

Clopidogrel Irreversible ADP receptor blockage on platelet cell

membranesTiclopidine

ACE angiotensin-converting enzyme, ADP adenosine diphosphate, AII angiotensin II, CO cardiac output, HDL-C high-
density lipoprotein cholesterol, LDL-C low-density lipoprotein cholesterol, TGs triglycerides, TC total cholesterol
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Table 2 Different therapeutic trials performed in diabetic mice models

Therapeutics Molecular target Mechanism References

Azelnidipine eNOS Upregulates eNOS and accelerates healing by stimulating NO

production

[157]

Pentoxifylline MMPs, TIMP-1 Lowers expression of MMPs and enhances TIMP-1 [158]

Erythropoietin VEGF Stimulates VEGF and hydroxyproline [159]

Atorvastatin gel Collagen Increases collagen regeneration and epithelization [160]

Substance P IL-8 Induces leukocytes and macrophages [161]

Deferoxamine HIF-1a, SDF-1a, VEGF Upregulates HIF-1a to stimulate neovascularization [162]

Propranolol VEGF, TGFb, IL-8,

MMP-9

Increases cell proliferation, collagen deposition, and blood

vessel density, and reduces inflammatory cells

[163]

Novel nano-

insulin

IL-6, IL-10, TNFa Promote faster wound healing, and balance between IL-6, IL-

10, and TNFa

[164]

Glucophage MMP-9 Stimulates collagen-1 and epithelization to improve healing [165]

GW50516 Peroxisome proliferative-

activated receptor

Reduces ROS activity [166]

Adenine AMP-activated protein

kinase

Activates PPARd, and reduce AGE receptors [167]

MK0626 HIF-1a/SDF-1 Induces healing, angiogenesis, and endogenous progenitor cells [168]

Bee venom Nrf2, Ang-1 and Ang-2

signaling

Enhances collagen and the expression of BD-2, and reduces the

Ang-1 and Nrf-2 signaling

[169]

Adiponectin TGFb Regulates the expression of TGFb to restrain proliferation and

differentiation

[170]

Neurotensin TNFa, IL-1b Improves healing by reducing inflammation, and inducing

fibroblast migration

[171]

MMP inhibitor MMP, TIMP Blocks MM-9 to induce healing [172]

Hyaluronic acid TGFb Accelerates healing by inducing skin remodeling protein,

TGFb, and transglutaminase II

[173]

Angiopoietin-

like receptor

Nitric oxide Improves angiogenesis by inducing NO production [174]

PDGF, TGFa PDGF and TGFa Stimulates fibroblast mitogen and keratinocytes [175]

Ang angiopoietin, eNOS endothelial nitric oxide synthase, HIF-1a hypoxia-inducible factor 1 alpha, IL interleukin, MMP
matrix metalloproteinase, NO nitric oxide, Nrf2 nuclear factor erythroid 2-related factor 2, PDGF platelet-derived growth
factor, ROS reactive oxygen species, SDF silver diamine fluoride, TGFa transforming growth factor alpha, TGFb trans-
forming growth factor beta, TIMP tissue inhibitor of metalloproteinases, TNFa tumor necrosis factor alpha, VEGF vascular
endothelial growth factor
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expression of cytokines and growth factors in
different vascular areas, contributing to the
typical dysfunction seen in diabetic vasculopa-
thy [23]. After migration to the intima, T cell
lymphocytes produce cytokines that affect the
lesion development. Cytokines are produced by
inflammatory cells and fat tissue in wounded
tissue. Cytokines are inflammatory mediators
that can be detected as a CVD marker. During
the inflammatory phase, the release of cytoki-
nes and other inflammatory mediators causes
cell migration. Interactions between inflamma-
tory cells such as neutrophils, lymphocytes,
monocytes/macrophages, and vascular cells
(ECs and SMC) characterize the inflammatory
response. During inflammation, several cytoki-
nes are present, and each has the potential to
influence the nature of the inflammatory
response [29, 57]. Moreover, pro-inflammatory
cytokines may play a role in the destabilization
and disintegration of atherosclerotic plaque, as
well as the overexpression of matrix metallo-
proteinases, which are known to play a role in
vascular remodeling. Pro-inflammatory cyto-
kine levels that are elevated are CVD markers
[58].

DIABETES AND VASCULAR INJURY:
MECHANISM
AND COMPLICATIONS

The relationship between diabetic vasculopathy
and pathological change is closely intertwined.
Both diabetes and AS lead to vascular injury,
initiating the process of injury repair [22, 59]. In
patients with diabetic vasculopathy, vascular
damage is consistently observed, often accom-
panied by multiple comorbidities [1, 9]. Dia-
betic vasculopathy is characterized by several
pathological conditions including endothelial
damage, thrombosis, systemic inflammation,
and impaired vascular tone/function [5, 60].
Moreover, diabetes hinders the natural pro-
gression of tissue restoration throughout the
phases of healing [25]. Vascular problems, par-
ticularly in T2DM, can have systemic repercus-
sions throughout the body. These vascular
deficits might manifest as cardiovascular illness,

which eventually leads to peripheral vascular
disease (PVD), a disorder that compromises the
correct function of the peripheral vessels
[61, 62]. Several mechanisms have been identi-
fied as contributing to poor diabetic foot ulcer
(DFU) healing in previous research, including
microbial invasion, epithelial disintegration,
and reduced immunological function [63]. The
compromised circulatory function of vessels,
which can contribute to insufficient healing, is
one underlying reason that affects all diabetic
ulcers [64]. The mainstream research on vascu-
lar function in diabetic wound healing has
focused on the altered angiogenic phase that
occurs during wound healing in people with
diabetes [8, 14, 18, 64]. Few studies have looked
at the later stages of wound healing to see if
changes in maturity and vascular architecture
play a role in diabetes-related poor healing. The
subsections that follow will discuss the most
prevalent macrovascular issues linked with dia-
betes (Fig. 2), as well as the clinical symptoms
that are linked to macrovascular injury and its
therapeutic strategies.

Coronary Heart Disease

T2DM is closely linked to coronary heart disease
and this substantial link has been demonstrated
in numerous investigations, beginning with the
Framingham study [65]. T2DM affects not just
the incidence of coronary heart disease (CHD)
but also people who have had a coronary
intervention. Stent thrombosis, ST-elevation
myocardial infarction (STEMI), target lesion
revascularization (TLR), and death were exam-
ined in a cohort study of 3655 consecutive
patients with STEMI treated with primary per-
cutaneous coronary intervention (PCI) and
stent implantation (316 patients with DM,
8.6%; 3339 patients with DM, 91.4%) [66].
Diabetes also has a deleterious impact on
patients undergoing coronary artery bypass
graft (CABG) surgery [67, 68]. Another study
compared total operational mortality and 12
morbidity outcomes in 6711 patients with and
without T2DM over 8 years [69].
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Cardiomyopathy

The term diabetes cardiomyopathy (DCM) was
used to describe a cardiac condition character-
ized by aberrant myocardial performance or
structure in the absence of epicardial CAD,
hypertension, or severe valve disease [70, 71].
Diabetes-related cardiomyopathy is distin-
guished by heart hypertrophy and diastolic
dysfunction [72]. Diabetes-related cardiomy-
opathy processes have garnered attention, par-
ticularly because of aberrant cardiac
metabolism, glucotoxicity and lipotoxicity, and
defective mitochondrial function, which causes
oxidative stress and inflammation [70, 73]. The
heart, unlike other organs, has high energy
requirements and the primary sources of energy
for cardiac function are fatty acid oxidation and
aerobic glucose catabolism [74]. Insulin resis-
tance stimulates hepatocyte lipid synthesis and
adipocyte lipolysis, culminating in greater cir-
culatory fatty acids and triglyceride levels. Lipid
accumulation and fatty acid-induced lipotoxic-
ity impair fatty acid oxidation activity in the
heart, thus leading to endoplasmic reticulum
(ER) stress, autophagy, apoptosis, and ventricu-
lar remodeling [74, 75]. The primary diabetic
glycotoxin metabolites are AGEs, which are
linked to the formation and progression of
DCM [76, 77]. These by-products bind to AGE
receptors (RAGEs) promoting the production of
ROS, nuclear factor kappa-B (NF-kb), and pro-
inflammatory cytokines such as IL-1, IL-6, IL-18,
and tumor necrosis factor alpha (TNFa), which
induces the intracellular production of ROS and
initiates oxidative stress [2, 78, 79]. AGEs/
RAGEs are responsible for structural alterations
in the myocardium. RAGEs on EC macrophages
and smooth muscle cells stimulate inflamma-
tory signals via AGEs. This activation promotes
the development of DCM by increasing ROS
generation and decreasing nitric oxide synthesis
[17, 80]. Hyperglycemia inhibits the production
of the JunD-proto-oncogene component as well
as the free radical scavengers superoxide dis-
mutase 1 and aldehyde dehydrogenase 2
[81–83]. Furthermore, this process also regulates
the release of inflammatory substances such as
NFB and membrane cofactor protein-1 (MCP-1),
as well as IL-6 and TNF, all of which contribute

to myocardial deterioration and the advance-
ment of heart failure [84, 85]. Elevated blood
sugar levels enhance the expression of
LncDACH1, which further exacerbates DCM by
promoting mitochondrial oxidative stress and
increasing the degradation of nicotinamide
adenine dinucleotide (NAD)-dependent
deacetylase sirtuin-3 (SIRT) through ubiquiti-
nation-mediated pathways, ultimately leading
to increased mortality. PKC is a G protein-cou-
pled receptor system effector, and vascular Ox-
LDL controls vascular tone. Excess ROS, AGEs,
and diacylglycerol (DAG) may activate PKC,
affecting vascular smooth muscle (VSM) func-
tion and causing vascular hyperresponsiveness
and remodeling as well as the acceleration of
diabetic heart disease (DHD) development
[86–89]. Hyperglycemia activates conventional
inflammatory pathways as well as oxidative
damage [90, 91]. Hyperglycemia increases the
expression of MCP-1 and NLR family pyrin
domain-containing 3 inflammasomes (NLPR3),
causing myocardial fibrosis and cardiac failure,
as well as exacerbating the development of
DCM [91]. Thus, the structural function of the
heart is compromised, which aids in the pro-
gression of DHD, through several molecular
pathways working together.

Arrhythmias and Sudden Death

Chronic hyperglycemia in T2DM produces a
variety of heart function abnormalities, includ-
ing arrhythmias and sudden cardiac death
(SCD). In T2DM, various forms of arrhythmias
are mostly related to cardiac autonomic neu-
ropathy [81, 92, 93]. Among the various
arrhythmias, atrial fibrillation (AF) is the most
common and important cardiac arrhythmia in
clinical practice because of its association with
increased cardiovascular and cerebrovascular
morbidity and mortality [61, 94]. Recent
research has found that people with diabetes are
more likely to have AF. Movahed et al. studied
293,124 patients with diabetes and 552,624
patients with hypertension and found that
diabetes was a significant risk factor for the
occurrence of AF, which can lead to heart
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failure, left ventricular (LV) hypertrophy, and
CAD [95].

Cerebrovascular Disease

One of the most devastating macrovascular
complications of diabetes is stroke. Hyper-
glycemia raises the chance of having a stroke.
This increased risk is widespread among people
with diabetes and has been associated with
worse clinical outcomes (including increased
mortality), especially after the occurrence of the
stroke [96, 97]. Elevated blood glucose levels are
associated with pathological alterations in the
brain and impaired brain function. Diabetes, as
well as pre-DM, can enhance the development
of dementia [76, 97, 98]. However, the imaging
changes do not match the degree of cognitive
impairment, and the process should be investi-
gated further. Diabetic cerebral microangiopa-
thy is characterized by several complex imaging
changes (cerebral atrophy, subcortical microin-
farcts, cerebral white matter hyperintensity,
lacunar infarction, perivascular space, and
cerebral microhemorrhage), as well as wide-
spread deleterious consequences [2, 99].

The central nervous system is extremely
reliant on glucose for energy. A disruption in
carbohydrate metabolism can lead to an
imbalance in cerebral energy metabolism and
encourage lesion formation [20]. In diabetes,
hyperactivation of the sorbitol route increases
aldose reductase activity considerably and sys-
temically. This causes insulin resistance, which
causes extensive oxidative damage and an
increase in inflammatory cytokines [100–102].
By modulating glucagon-like peptide (GLP)-1
receptors and insulin receptor substrate (IRS)
receptors, the insulin receptor signaling system
helps to maintain normal brain and cognitive
processes [103, 104]. In tissue other than the
brain, insulin stimulates the glucose transporter
(GLUT) family of glucose transporters; however,
in the brain, GLUT is directly regulated by glu-
cose or cAMP [105, 106]. Dysfunction of vas-
cular endothelial cells leads to the release of
inflammatory mediators that compromise the
blood–brain barrier (BBB), potentially exposing
the brain parenchyma to neurotoxic proteins.

IL-1, IL-6, IL-10, TNF, VCAM-1, matrix metal-
loproteinase-2 (MMP-2), and MMP-9 are classi-
cal inflammatory mediators that signal vascular
neuroinflammation [107, 108]. P38 stimulates
microglia and enhances nerve cell death by
facilitating the mitogen-activated protein
kinase (MAPK) pathway [109]. Hyperglycemia
triggers inflammatory and adoptive reactions
that expedite ER stress and mitochondrial dys-
function [24, 48, 110]. Moreover, glutamate
serves as a vital excitatory neurotransmitter,
with N-methyl-D-aspartic acid receptors
(NMDA) playing a key role in regulating neu-
rogenesis and synaptic plasticity [111, 112].

Peripheral Vascular (Arterial) Disease

People with diabetes are more likely to develop
PVD, which, although frequently neglected, is
one of the most serious and prevalent vascular
consequences of diabetes. However, represen-
tative data are scarce on PVD in community-
based office practice [67, 113]. In a clinically
supervised cross-sectional study in Germany,
general practitioners used bilateral Doppler
ultrasound to calculate the ankle brachial index
(ABI) of 6880 consecutive, unselected patients
aged 65 years or older [114]. Poorer revascular-
ization results are one of the negative effects of
diabetes on vascular function. It appears that
patients with PAD have a significantly higher
rate of cardiovascular events [115]. A 3000-per-
son Japanese clinical investigation found that
low ABI is an independent risk factor promoting
higher cardiovascular events and mortality in
both individuals with and without diabetes
[116]. PVD raises the incidence of not only
coronary atherosclerotic events but also signifi-
cant adverse limb events such as amputation in
such patients [2]. PVD can cause diabetic foot
syndrome and PAD, both of which have a neg-
ative impact on the quality of life in people with
diabetes [117, 118]. Large artery AS has histori-
cally been thought to predominate in PAD.
Energy and inflammation, oxidative stress,
insulin resistance, AGEs, nerve growth factors,
polyol pathway activation, and hexosamine
and PKC pathway activation are essential
pathogenic variables and processes shared by
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various DM vascular problems [76, 119]. Recent
research has focused on glucose and fatty acid
metabolism, brain metabolism, and exosome
control. Peripheral neuropathy is much more
understood than PVD. Glucose overload and
high fatty acid metabolism result in decreased
ATP synthesis, excessive ROS creation, and poor
mitochondrial activity, all of which contribute
to increased oxidative stress and the formation
of AGEs from glycosylation of diverse proteins
[120, 121]. The vicious circle of these events
enhances ROS generation and ER stress, result-
ing in DNA damage and cell demise. These
mechanisms finally manifest as elevated pro-
inflammatory factors, which in turn drive the
synthesis of AGEs, resulting in oxidative stress
and endothelial dysfunction [122, 123].

NEOVASCULARIZATION:
MECHANISM, STRUCTURAL,
AND FUNCTIONAL
CHARACTERISTICS

Diabetes, unlike diabetic nephropathy and
retinopathy, reduces angiogenesis in wound
healing [89, 113, 124]. Diabetes-related wounds
have reduced vascularity and capillary density
as a result of insufficient angiogenesis [125].
Furthermore, diabetes causes considerable
wound closure delays, and chronic non-wounds
are common. Numerous investigations have
shown that inadequate angiogenesis con-
tributes to the pathologic wound healing seen
in diabetes [126–129]. Many of the described
variations in wound angiogenic response that
are noticed in the context of diabetes are
reviewed below.

Role of the Immune System in Vascular
Wound Healing

In the case of diabetic wounds, the activity of
innate immune cells necessary for wound
healing is disrupted [25, 130]. In typical wound
healing, macrophages undergo a transition
from a pro-inflammatory state to a pro-repara-
tive state, promoting tissue regeneration. How-
ever, in diabetic wounds where macrophages

are deficient, the altered morphology of the
wounds fails to stimulate tissue repair effec-
tively [12, 130, 131]. A recent study showed that
recovery was markedly delayed in db/db mice
[132–135]. Khanna et al. reported reduced effe-
rocytosis as a result of macrophages at the
wound site of db/db mice, resulting in an
enhanced apoptotic burden and inflammatory
profile [136]. Since macrophages are a major
source of VEGF and other pro-angiogenic
mediators in wounds, the observed reduction in
diabetic wound angiogenesis may be connected
to the lack of macrophage presence. A recent
study found that VEGF-A protein and mRNA
levels were considerably lower in wounds of db/
db mice than in healthy controls [137]. A fol-
low-up study by Galiano et al. confirmed that
wounds in db/db mice treated with VEGF-A
healed at a faster rate compared to the control
group. Additionally, the study revealed that the
VEGF-A-treated mice experienced increased
vascular permeability, distorted blood vessels,
and edema until the VEGF therapy was discon-
tinued [138].

Role of MicroRNA in Wound Healing

MicroRNAs (miRNAs) can influence angiogene-
sis and other aspects of wound healing, and
they are expressed differently in diabetic
wounds [139, 140]. The miRNAs are non-coding
and have a known role in post-translational
modifications or gene silencing. During diabetic
wound healing several miRNAs have been
identified with altered expression [141, 142].
MiR26-b is a miRNA that is abundant in diabetic
ECs, and inhibiting it in diabetic wound models
improved wound closure and granulation tissue
formation [143]. Furthermore, decreased
expression of miR-200b, which has been shown
to promote TNF expression, results in enhanced
angiogenesis in diabetic wound skin [144]. In
diabetic mice models, in vivo and in vitro
studies using local miR27-b, which is consid-
ered to influence levels of angiogenic protein
thrombospondin 1 (TSP1) in the wound bed,
demonstrated that miR27-b restoration controls
angiogenesis [145, 146].
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CURRENT DEVELOPMENTS
IN DIABETIC VASCULAR
ANGIOPATHY TREATMENTS

Correcting insulin resistance, and beta cell
dysfunction, normalizing hepatic glucose out-
put, and preventing, delaying, or reversing dia-
betic consequences are all important
components of the optimal type 2 diabetes
treatment plan. The following section discusses
the primary treatment modalities now available
to manage type 2 diabetes: insulin, oral antidi-
abetic medications, and lifestyle adjustment
including suitable diet and exercise programs.
Treatments often advance in a stepwise manner,
starting with lifestyle changes and progressively
adding insulin and one or more oral medica-
tions. The search for viable medicines to address
the large patient population impacted by
chronic, non-healing lesions in diabetes has
been fruitless. In this section, we explore the
available medications that aim to enhance dia-
betic angiogenesis and vascular perfusion.
Despite the progress made in research, moving
from laboratory experiments to clinical trials
and eventually to practical applications, these
treatments have not proven to be the ultimate
solution for healing chronic diabetic wounds
[1]. In addition to hyperglycemia and hyperin-
sulinemia, type 2 diabetes is a diverse illness
with several underlying pathophysiological
processes. It is characterized by dyslipidemia,
hypertension, and hypercoagulability. Table 1
lists the currently available treatment
modalities.

Hyperbaric Oxygen Treatment

Hyperbaric oxygen treatment (HBOT) is one
technique that has been widely used in clinics.
HBOT involves a patient breathing 100% oxy-
gen in a confined chamber with pressures
higher than those seen at sea level. This treat-
ment improves tissue hypoxia and vascular
perfusion, reduces inflammation and edema,
and increases angiogenesis [147]. Numerous
studies in patients with DFU have indicated that
those who receive HBOT have higher recovery
rates and a lower chance of major limb

amputation [148–151]. Unfortunately, HBOT is
too expensive for many patients, and although
it has a 20-year track record in the clinic, it is
still not a full solution for treating non-healing
diabetic foot lesions.

Therapies with VEGF and PDGF

Another therapy strategy has been to employ
growth factors such as VEGF and PDGF. These
molecules, as previously established, are crucial
in the proliferative and maturation phases of
wound healing. Several in vivo diabetic models
have shown that administering VEGF and its
isoforms topically promotes wound healing.
However, in human DFUs, topical VEGF treat-
ment with recombinant VEGF (rh-VEGF) (Tel-
berim) had little effectiveness. In various phase I
studies, patients who received topical VEGF had
better recovery outcomes compared to those
who did not. However, phase II clinical trials
showed no substantial impact, which led to the
discontinuation of the drug therapy
[12, 138, 152, 153]. In 1997, becaplermin
(Regranex) containing recombinant PDGF
became available for the first time. In clinical
research, topical becaplermin treatment resul-
ted in a 43% increase in wound closure over
placebo in patients, as well as a 32% reduction
in time to wound closure and complete healing
of ulcers in 57.5% of patients [154]. Unfortu-
nately, becaplermin has been plagued by
numerous problems. It is an expensive treat-
ment. Furthermore, rash and burning sensa-
tions at the site of application, as well as higher
risks of osteomyelitis and cellulitis, have been
recorded [155]. The most concerning adverse
side effect of the medicine is the possible ele-
vated risk of cancer in users who receive more
than three tubes of topical therapy, prompting
the US Food and Drug Administration (FDA) to
issue a warning. As a result, despite encouraging
findings in animal models, topical growth fac-
tors have yet to translate successfully to the
clinic [153]. While single growth factors have
had limited effectiveness in the treatment of
wounds, platelet-derived therapies have been
proposed as a prospective enhancement since
they supply a variety of factors. Platelets
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contain a high concentration of growth factors
such as PDGF, TGF, FGF-2, EGF, and VEGF.
Platelet derivatives, such as platelet-rich plasma,
platelet gel, and platelet-rich fibrin, have thus
been investigated for repair and regeneration
procedures in both hard and soft tissues. Plate-
let derivatives have several advantages, includ-
ing the multifactorial approach and the ability
to create the derivatives from the patient’s pla-
telets, reducing patient exposure to exogenous
drugs [156].

Aside from growth factors, several intriguing
novel therapeutics for diabetic wounds are now
being investigated. These include the utilization
of cells like stem cells and macrophages, as well
as sophisticated bioengineering technologies to
stimulate tissue healing responses. Table 2 lists
the drugs with their targets and mode of action
as a result of clinical trials performed in mice
studies.

Thiazolidinediones

The oral antidiabetic drugs known as thiazo-
lidinediones offer a cutting-edge strategy for
enhancing glycemic management through
insulin resistance. Furthermore, thiazolidine-
diones have cardiovascular preventive qualities
beyond glycemic management and reduce dys-
lipidemia, thereby decreasing the prevalence of
CV problems [176]. Angiotensin-converting
enzyme (ACE) inhibitors, in addition to antidi-
abetic medications, may postpone or prevent
CV consequences in people with diabetes [177].
In addition to reducing diabetes-related
microvascular and macrovascular problems,
ACE inhibitor medication also seems to
enhance insulin sensitivity and glucose meta-
bolism. ACE inhibitors lower cardiovascular
events in high-risk individuals by 22%, accord-
ing to the Heart Outcomes Prevention Evalua-
tion (HOPE) study. This medication is also
linked to a large (34%) decrease in new diabetes
diagnoses [178].

HMG-CoA Reductase Inhibitors

The benefits of primary and secondary preven-
tion of vascular illnesses have been

demonstrated by treating dyslipidemia in type 2
diabetes with statins (HMG-CoA reductase
inhibitors) [179–181]. Furthermore, several
studies have demonstrated advantages linked to
the use of fibrates. Statins reduce LDL-C,
enhance TC/HDL-cholesterol (HDL-C) and
decrease apolipoprotein B; fibrates decrease
TGs. They also increase HDL-C, decrease TC/
HDL-C, and change the size of LDL particles
from smaller to larger. These medications have
beneficial effects on various components of the
insulin resistance syndrome [182, 183]. They
may affect CV risk variables and reduce CV
mortality in T2DM and patients with insulin
resistance as insulin sensitizers.

SGLTs, DPP4 Inhibitors, and GLP-1RAs
in Diabetes and Vasculopathy

Recent evidence has suggested that sodium-
glucose cotransporter 2 (SGLTs) inhibitors not
only regulate glucose levels but also have a
protective effect on macro- and microvascular
levels [184]. Specifically, the EMPA-REG out-
come trial, which was focused on empagliflozin,
demonstrated that this medication reduced the
risk of developing or worsening nephropathy in
individuals with T2DM who were at high risk
for cardiovascular complications when com-
pared to placebo [185].

Dipeptidyl peptidase 4 (DPP4) inhibitors are
orally administered antidiabetic drugs with low
molecular weight that specifically and rapidly
inhibit DPP enzymatic activity [186]. DPP is an
enzyme found on the surface of most cell types
that can break down various substances,
including GLP-1 and glucose-dependent insuli-
notropic polypeptide (GIP) [187]. Inhibiting
DPP can enhance insulin secretion from pan-
creatic cells and suppress glucagon secretion by
prolonging the effects of GLP-1 and GIP in the
body, thus lowering blood glucose levels. All
DPP inhibitors that have been approved
demonstrate similar effectiveness in reducing
glycemic levels, resulting in a moderate reduc-
tion (0.5–0.8%) in HbA1c [188]. There have
been very few direct comparisons of DPP inhi-
bitors in head-to-head trials. In an 18-week trial
involving 800 patients with inadequately
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controlled type 2 diabetes on metformin, sax-
agliptin 5 mg daily and sitagliptin 100 mg
showed similar reductions in HbA1c (- 0.52%
vs - 0.26%) [189]. While the risk of hypo-
glycemia is low, DPP inhibitors do not provide
cardiovascular benefits, and there have been
concerns regarding their association with heart
failure risk since their clinical use began [186].

The effect of GLP-1 receptor agonists (GLP-
1RAs) on glycemic control varies depending on
whether they are short-acting or long-acting
preparations [190, 191]. Short-acting GLP-1RAs
primarily work by slowing down the emptying
of the stomach, as well as increasing insulin
secretion, leading to a reduction in post-meal
glucose levels. On the other hand, long-term
GLP-1RAs focus on lowering fasting blood glu-
cose levels by stimulating insulin secretion and
reducing glucagon [192]. These differences in
pharmacodynamics, along with the varying
half-lives, may contribute to the differences in
effectiveness observed in clinical trials
[191, 193].

Insulin Therapy

While monotherapy is typically the initial rec-
ommendation, it may be necessary to use
combination therapy with medications that
have additive or synergistic effects to achieve
proper blood glucose control [29]. In the long
term, exogenous insulin maybe required, often
in combination with oral medications, as the
natural progression of the disease is character-
ized by a gradual depletion of beta cells. Fur-
thermore, as a result of insulin resistance and
the prevalence of metabolic syndrome in
patients with T2DM, a comprehensive approach
involving aggressive treatment of arterial
hypertension and dyslipidemia is recom-
mended to minimize the occurrence of dia-
betes-related complications [29, 178].

CONCLUSION

The processes underlying the development of
macrovasculopathy in T2DM are complex and
remain unknown. Diabetes-related metabolic

dysregulation has a negative impact on every
cellular constituent within the arterial wall,
promoting various macrovascular illnesses
through endothelial dysfunction, vasoconstric-
tion, and inflammation. Diabetes can cause
accelerated AS and an increased risk of throm-
botic vascular events due to dyslipidemia,
endothelial dysfunction, platelet hyper-reactiv-
ity, poor fibrinolytic balance, and irregular
blood flow. The initiators of vasculopathy,
which eventually lead to long-term conse-
quences, can be treated and avoided through
tight glycemic management, normal lipid pro-
files, frequent physical exercise, a healthy life-
style, and pharmaceutical therapies.
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