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ABSTRACT

Introduction: Oxidative stress plays a central
role in the development and progression of
vascular complications in patients with type 2
diabetes mellitus (T2DM). We have previously
shown that markers of glucose variability eval-
uated by continuous glucose monitoring (CGM)

are positively associated with oxidative stress in
patients with T2DM. However, the evaluation
of the glycemic variability by CGM remains a
time- and money-consuming procedure.
Therefore, this study investigated the indepen-
dent correlates of oxidative stress among vari-
ous other clinical markers routinely measured
in primary care.
Methods: This was a retrospective cross-sec-
tional study with 234 T2DM patients to exam-
ine which clinical variables, including 1,5-
anhydro-D-glucitol (1,5-AG) and glycated albu-
min (GA), were independently associated with
oxidative stress. Oxidative stress was measured
using the diacron-reactive oxygen metabolites
(d-ROMs) test. The relationships between
d–ROMs and clinical factors, such as blood
glucose, glycated hemoglobin (HbA1c), 1,5-AG,
GA, lipid parameters, and blood pressure, were
examined.
Results: Multiple stepwise regression analysis
revealed that 1,5-AG (inversely), GA, triglyc-
erides, use of metformin and being female were
independently associated with d-ROMs. When
patients with T2DM were stratified into two
groups with HbA1c\ 8.0% and HbA1c C 8.0%,
1,5-AG (inversely), HbA1c, use of metformin
and being female were independently associ-
ated with d-ROMs in diabetes patients with
HbA1c\ 8.0%, whereas GA, fasting plasma
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glucose and being female were independently
associated with d-ROMs in patients with
HbA1c C 8.0%.
Conclusion: Our present study suggests that
1,5-AG and GA are the strongest correlates of
oxidative stress in patients with well and poorly
controlled T2DM, respectively.

Keywords: 1,5-Anhydro-D-glucitol; Diacron-
reactive oxygen metabolites; Glycated
albumin; Oxidative stress; Type 2 diabetes
mellitus

Key Summary Points

Why carry out this study?

Some studies previously showed that
markers of glucose variability evaluated by
continuous glucose monitoring (CGM)
are positively associated with oxidative
stress in patients with type 2 diabetes
mellitus (T2DM). However, evaluation of
the glycemic variability by CGM remains a
time- and money-consuming procedure.

It is probable that 1.5-AG and GA could
have additional clinical value for
evaluating the glucose variability.

We investigated the independent
correlates of oxidative stress among
various clinical markers routinely
measured in primary care, including
HbA1c, 1.5-AG and GA in patients with
T2DM.

What was learned from the study?

1,5-AG for well-controlled T2DM patients
and GA for poorly controlled T2DM
patients are useful in estimating oxidative
stress.

INTRODUCTION

Oxidative stress has been shown to play a cen-
tral role in the development and progression of

vascular complications in patients with type 2
diabetes mellitus (T2DM) [1, 2]. Since intermit-
tent hyperglycemia has greater triggering effects
on oxidative stress generation, subsequently
evoking endothelial dysfunction, compared
with chronic sustained hyperglycemia [3, 4],
glucose variability is considered a risk factor and
therapeutic target for vascular complications in
T2DM [5, 6]. Indeed, our previous cross-sec-
tional study revealed that markers of glucose
variability evaluated by continuous glucose
monitoring (CGM), such as mean amplitude of
glycemic excursions, are positively associated
with oxidative stress in patients with T2DM [7].
Moreover, we have found that improvement in
glucose variability is correlated with reduction
in oxidative stress levels in patients with T2DM
[8]. These observations suggest that assessment
of the glucose variability by CGM could help
identify high-risk diabetic patients who would
benefit from intensive therapy. However, eval-
uation of the glycemic variability by CGM
remains a time- and money-consuming
procedure.

Measurement of glycated hemoglobin
(HbA1c) is the gold standard method for
assessing glycemic control, but HbA1c values do
not reflect the glucose variability [9–11]. Actu-
ally, compared with HbAlc, 1,5-anhydro-D-glu-
citol (1,5-AG) and glycated albumin (GA) have
been associated with postprandial hyper-
glycemia and could reflect the glucose variabil-
ity in patients with T2DM [9–11]. Since 1,5-AG
and GA have also been shown to predict future
cardiovascular events in patients with T2DM
[12–14], it is probable that 1,5-AG and GA could
have additional clinical value for evaluating the
glucose variability. Therefore, in this study, we
investigated the independent correlates of
oxidative stress among various clinical markers
routinely measured in primary care, including
HbA1c, 1,5-AG and GA, in patients with T2DM.

METHODS

Subjects and Ethics

This retrospective cross-sectional study inclu-
ded 234 outpatients aged[20 years who visited
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the Showa University Hospital from October
2013 to December 2018 for the treatment of
T2DM. T2DM was defined according to the
Japan Diabetes Society [15]. We included
patients in whom oxidative stress, HbA1c, 1.5-
AG and GA levels were measured and patients
with diet therapy or stable oral hypoglycemic
and/or insulin treatment for C 3 months before
the measurement of oxidative stress levels.
Informed consents were obtained from all the
patients. We excluded any patients who were
using steroids or anti-inflammatory drugs;
patients with diabetic ketosis and coma within
3 months before the study; patients with severe
infection or trauma, malignancy, an estimated
glomerular filtration rate (eGFR) \ 30 ml/min/
1.73 m2 according to the Cockcroft-Gault for-
mula [16] and severe liver dysfunction; and
patients treated with the inhibitors of sodium-
glucose co-transporter 2 and acarbose as well as
pre- and post-surgery patients and pregnant
women. This study complies with the principles
laid out in the Declaration of Helsinki of 1964
and its later amendments. The study protocol
was approved by the ethics committee of the
Showa University School of Medicine (no.
2839). This study used an opt-out method, as
shown on our hospital website and the poster at
the Showa University Hospital, and subjects
could opt out of the study at any time.

Clinical and Biochemical Analysis

The following clinical and laboratory parame-
ters were measured on the morning after a
minimum 8 h of fasting, as described previously
[17]: body mass index (BMI), low-density
lipoprotein cholesterol (LDL-C), high-density
lipoprotein cholesterol (HDL-C), triglycerides
(TG), eGFR, blood pressure, fasting plasma glu-
cose (FPG), HbA1c, GA and 1,5-AG. Plasma
oxidant capacity against N,N-diethyl para-
phenylenediamine was also measured using the
d-ROMs test. Clinical data (age, sex, smoking
status, duration of diabetes, diabetes therapy
and antihypertensive/lipid-lowering drugs)
were retrieved from medical records.

Laboratory Measurements

Oxidative stress was measured using the
d-ROMs test (F.R.E.E. System, imported by LTD
Tokyo from Diacron International s.r.l. Gros-
seto, Italy) as previously described [18, 19]. In
accordance with the Wismerll kinetic proce-
dure, the change in absorbance per minute was
expressed as arbitrary units after correction
(U.CARR, where 1 U.CARR = the oxidant
capacity of a 0.08 mg/dl H2O2 solution; normal
range = 250–300 U.CARR). Intra- and inter-as-
say coefficients of variation were 2.1% and
3.1%, respectively. Serum total cholesterol,
LDL-C, HDL-C, TG and creatinine levels were
measured using an automated analyzer
(BM6070; Japan Electron Optics Laboratory,
Tokyo, Japan). Plasma glucose was measured
using the glucose oxidase method, and HbA1c
was measured using high-performance liquid
chromatography [20]. The 1,5-anhydro-D-glu-
citol level was measured by a colorimetric
method (Nippon Kayaku, Tokyo, Japan). Serum
GA level was measured by an enzymatic method
using a Lucica GA-L kit (Asahi Kasei Pharma
Corp., Tokyo, Japan).

Statistical Analysis

Data are presented as mean ± standard devia-
tion (SD). Simple linear correlations were cal-
culated by determining the Spearman’s
correlation coefficient. Multiple stepwise
regression analysis was then performed with
d-ROMs as a dependent variable. Independent
variables included sex (female), age, duration of
diabetes, BMI, smoking status (current), use of
insulin, glucose-like peptide-1 receptor ago-
nists, dipeptidyl peptidase-4 inhibitors, sul-
fonylureas, a-glucosidase inhibitors, metformin,
thiazolidine, statins, angiotensin II receptor
blockers, eGFR, FPG, HbA1c, 1,5-AG, GA, GA/
HbA1c ratio, HDL-C, LDL-C, TG, systolic blood
pressure and diastolic blood pressure. Analyses
were performed using SPSS version 22 for Win-
dows (IBM Corp., Armonk, NY, USA), with
p\0.05 indicating statistical significance.
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RESULTS

Clinical Characteristics

The baseline clinical characteristics of the 234
patients are shown in Table 1. The 234 partici-
pants had a mean age of 63.6 ± 12.5 years, had
an HbA1c level of 7.8 ± 1.4% and had had
diabetes for a duration of 12.7 ± 10.3 years. The
study group included more men (n = 149) than
women (n = 85), and, on average, the partici-
pants were slightly overweight (BMI = 25.9 ±

5.1).

Relationship of d-Roms With Markers
of Diabetic Control and Non-Glycemic
Metabolic Variables

Table 2 shows the correlations between glucose
metabolic variables and d-ROMs by univariate
analysis. In all patients, significant correlations
were observed between d-ROMs and LDL-C
(r = 0.167; p = 0.010), TG (r = 0.194; p = 0.003),
FPG (r = 0.235; p\0.001), HbA1c (r = 0.416;
p\0.001), 1,5-AG (r = - 0.438; p\ 0.001) and
GA (r = 0.352; p = 0.001). In patients with
HbA1c\ 8%, significant correlations were

Table 1 Baseline clinical characteristics of subjects

Clinical characteristics Mean – SD,
n (%)

Age (years) 63.6 ± 12.5

Sex (male) 149 (63.7)

Body mass index (kg/m2) 25.9 ± 5.1

Smoking (%) 44 (18.9)

Duration of diabetes (years) 12.7 ± 10.3

Hypertension 166 (70.9)

Dyslipidemia 182 (77.8)

Blood pressure (mmHg)

Systolic 127.4 ± 20.9

Diastolic 73.6 ± 12.2

Low-density lipoprotein cholesterol

(mg/dl)

95.9 ± 34.4

High-density lipoprotein cholesterol

(mg/dl)

49.4 ± 15.0

Triglycerides (mg/dl) 129.8 ± 69.0

Estimated glomerular filtration rate (ml/

min/1.73 m2)

78.1 ± 20.8

Fasting plasma glucose (mg/dl) 135.5 ± 33.8

HbA1c (%) 7.8 ± 1.4

1,5-AG (lg-ml) 8.6 ± 5.8

GA (%) 20.0 ± 4.1

GA/HbA1c ratio 2.6 ± 0.3

d-ROMs (U.CARR) 338.6 ± 66.3

Diabetes therapy

Diet alone 26 (11.2)

Metformin 82 (35.0)

SU 48 (20.5)

Glinide 9 (3.8)

a-GI 52 (22.2)

Thiazolidine 18 (7.7)

DPP-4 inhibitor 89 (38.0)

GLP-1 receptor agonist 72 (30.8)

Insulin 88 (37.6)

Table 1 continued

Clinical characteristics Mean – SD,
n (%)

Statin therapy 136 (58.1)

Angiotensin II receptor blocker 122 (52.1)

Macroangiopathy 59 (25.3)

Neuropathy 126 (54.7)

Retinopathy 76 (32.5)

Nephropathy 102 (43.6)

1 U.CARR (arbitrary unit) = the oxidant capacity of a
0.08 mg/dl H2O2 solution
d-ROMs diacron-reactive oxygen metabolites, FPG fasting
plasma glucose, HbA1c hemoglobin A1c, 1,5-AG 1,5-an-
hydro-D-glucitol, GA glycated albumin
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observed between d-ROMs and TG (r = 0.172;
p = 0.040), HbA1c (r = 0.421; p\ 0.001) and
1,5-AG (r = - 0.515; p\0.001). In patients
with HbA1c C 8%, significant correlations were
observed between d-ROMs and FPG (r = 0.325;
p = 0.002), HbA1c (r = 0.252; p = 0.015), GA
(r = 0.458; p\0.001) and the GA/HbA1c ratio
(r = 0.343; p = 0.001).

A multivariate stepwise regression model was
used to analyze the independent factors that
affect oxidative stress (Table 3). In all patients,

1,5-AG, sex, GA, TG and use of metformin were
independently correlated with d-ROMs
(R2 = 0.313). Furthermore, we stratified diabetic
patients into two groups according to their
HbA1c value. In patients with HbA1c\8%, 1,5-

Table 2 Correlations between d-ROMs and markers of
diabetic control and non-glycemic metabolic variables

Total
(n = 234)

HbA1c < 8%
(n = 142)

HbA1c ‡ 8%
(n = 92)

Age 0.015 0.050 0.072

BMI 0.068 0.097 - 0.132

Duration

of

diabetes

- 0.018 0.064 - 0.082

SBP - 0.055 - 0.091 0.162

DBP - 0.005 0.007 0.040

LDL-C 0.167* 0.124 0.061

HDL-C - 0.061 0.075 - 0.160

TG 0.194* 0.172* 0.144

eGFR - 0.022 - 0.128 0.086

FPG 0.235** 0.109 0.325**

HbA1c 0.416** 0.421** 0.253*

1,5-AG - 0.438** - 0.515** - 0.119

GA 0.352** 0.158 0.458**

GA/

HbA1c

ratio

0.029 - 0.106 0.343**

Values represent Spearman’s correlation coefficients
SBP systolic blood pressure, DBP diastolic blood pressure,
LDL low-density lipoprotein, HDL high-density lipopro-
tein, TG triglyceride, eGFR estimated glomerular filtration
rate, FPG fasting plasma glucose, HbA1c hemoglobin A1c,
1,5-AG 1,5-anhydro-D-glucitol, GA glycated albumin
*p\ 0.05, **p\ 0.01

Table 3 Linear multivariate analysis with changes in
d-ROMs as dependent variables

Dependent variables: d-ROMs
(U.CARR)

b

coefficient
t value p value Full-

model
R2

Total \0.001 0.313

1,5-AG - 0.325 - 4.793 \0.001

Sex 0.244 4.404 \0.001

GA 0.176 2.602 0.010

TG 0.155 2.721 0.007

Use of

metformin

- 0.126 - 2.235 0.026

HbA1c\ 8% \0.001 0.272

1,5-AG - 0.483 - 6.605 \0.001

Sex 0.211 3.026 0.003

HbA1c C 8% \0.001 0.283

GA 0.363 3.643 \0.001

Sex 0.236 2.657 0.009

FPG 0.205 2.051 0.043

Multiple stepwise regression analysis, with d-ROMs as the
dependent variable, adjusted for sex (female), age, duration
of diabetes, body mass index, smoking status (current), use
of insulin, glucose-like peptide-1 receptor agonists, dipep-
tidyl peptidase-4 inhibitors, sulfonylureas, glinides, a-glu-
cosidase inhibitors, metformin, thiazolidine, statins,
angiotensin II receptor blockers, estimated glomerular fil-
tration rate, FPG, HbA1c (only used in statistical analysis
for all type 2 diabetes), GA, 1,5-AG, GA/HbA1c ratio,
HDL-C, LDL-C, TG, SBP and DBP
d-ROMs diacron-reactive oxygen metabolites, TG triglyc-
eride, FPG fasting plasma glucose, HbA1c hemoglobin
A1c, 1,5-AG 1,5-anhydro-D-glucitol, GA glycated albumin,
SBP systolic blood pressure, DBP diastolic blood pressure
*p\ 0.05, **p\ 0.01
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AG and sex were independently correlated with
d-ROMs (R2 = 0.272). In patients with HbA1c
C 8%, GA, sex and FPG were independently
correlated with d-ROMs (R2 = 0.283).

DISCUSSION

To the best of our knowledge, no previous
studies have investigated the association
between oxidative stress and various glycemic
markers, including fasting plasma glucose,
HbA1c, 1,5-AG and GA, simultaneously in
patients with T2DM. The present study
demonstrated that oxidative stress is associated
with 1,5-AG and GA in patients with T2DM. In
addition, the present study demonstrated that
oxidative stress is associated with 1,5-AG for
good glycemic control and GA for poor gly-
cemic control in patients with T2DM. Further-
more, this study shows that the use of
metformin results in a reduction of oxidative
stress. Our findings may help reduce oxidative
stress in the clinical management of T2DM in
the absence of CGM.

In this study, we evaluated the level of
d-ROMs as a surrogate marker of oxidative stress
for patients with T2DM. D-ROMs are more often
detected in female patients than in males [21].
The d-ROMs are mainly composed of organic
hydroperoxide; despite hydroperoxide’s mod-
erate oxidative power, its serum levels are
detectable because of its relative stability com-
pared with other free radicals. Not only is the
d-ROMs test quick and inexpensive to use in
clinical settings [18], but it is also predictive of
morbidity and mortality [22, 23]. Recently,
Yang et al. reported that d-ROMs predict future
cardiovascular events in both diabetic and non-
diabetic patients [24]. Therefore, d-ROMs are
considered to be reliable markers of oxidative
stress.

The present study demonstrates that not
only HbA1c but also 1,5-AG, GA and the GA/
HbA1c ratio are associated with oxidative stress
in patients with T2DM. While the relationship
between oxidative stress and HbA1c has been
reported previously [25], our results suggest that
1,5-AG, GA and the GA/HbA1c ratio reflect
glucose variability and are thereby associated

with oxidative stress. However, Monnier et al.
reported that the contribution of fasting plasma
glucose and postprandial plasma glucose dif-
fered depending on glycemic control [26]. In
addition, Monnier et al. reported the contribu-
tion of the postprandial glucose level to HbA1c
values at levels \ 7.5–8.0% [27]. Actually, 1,5-
AG has been reported to be related to glucose
variability in patients with well-controlled
T2DM [9], while GA has been reported to be
related to glucose variability in patients with
poorly controlled T2DM [28]. Therefore, we
divided the patients into two groups: those with
HbA1c\ 8% and those with HbA1c C 8%.

The present study demonstrated the rela-
tionship between oxidative stress and 1,5-AG in
patients with HbA1c\8.0% by multivariate
analysis. This result may depend on the char-
acteristics of 1,5-AG. As excretion of glucose
into the urine increases, reabsorption of 1,5-AG
is inhibited competitively, and the blood level
of 1,5-AG decreases. Therefore, low levels of 1,5-
AG in the blood are considered a clinical marker
of postprandial hyperglycemia [29]. We have
demonstrated that the 1,5-AG blood level cor-
relates with postprandial hyperglycemia in
patients with HbA1c\ 8.0% in T2DM [30]. The
use of CGM has demonstrated a significant
correlation with the mean amplitude of gly-
cemic excursions and indices of postprandial
hyperglycemia in patients with HbA1c\8.0%
[31]. In support of our findings, 1,5-AG is
reported to be a useful marker for vascular
endothelial dysfunction in patients with
HbA1c\ 8.0% [12]. It has also been reported
that low 1,5-AG levels were associated with the
severity of coronary artery calcification in
patients with HbA1c\7.0% [32]. On the other
hand, d-ROMs did not correlate with 1,5-AG in
patients with HbA1c[8%. This was due to the
contribution of basal hyperglycemia, which
becomes significant when HbA1c exceeds 8.4%
[26]. In addition, considering the effects of
hyperglycemia on the reabsorption of 1,5-AG in
the kidney, it is highly probable that a threshold
exists in the reabsorption process. Therefore,
1,5-AG in patients with HbA1c[8% may not
reflect postprandial plasma glucose or glucose
variability. From the above, oxidative stress,
evaluated by d-ROMs, correlated strongly with
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1,5-AG, suggesting the 1,5-AG level is a poten-
tially useful predictor of oxidative stress, as well
as a marker of glucose variability, in T2DM
patients with HbA1c\8%.

Unlike the association between 1,5-AG and
oxidative stress, GA and oxidative stress were
associated with HbA1c C 8% in the multivariate
analysis of this study. GA, an early Amadori-
type glycation protein of the nonenzymatic
glycation reaction between glucose and serum
albumin, is an index that reflects the average
glucose level over the previous 2–3 weeks. GA is
not only an indicator of intermediate glycemic
control but also reflects glucose variability as
well as the mean plasma glucose level [33]. In
addition, the GA/HbA1c ratio is reported to be
an indicator that reflects glucose variability [34].
Actually, it reported that GA correlates with
diabetic complications such as retinopathy
progression [35], neuropathy [36] and cardio-
vascular disease [37, 38], and the GA/HbA1c
ratio correlates with cognitive impairment [39].
In this study, GA was associated with oxidative
stress in patients with HbA1c C 8% by multi-
variate analysis. In support of our results, Suwa
et al. demonstrated that GA is an indicator that
has a closer relationship with glucose variability
compared with HbA1c and 1,5-AG in patients
with poorly controlled T2DM [28]. However,
the GA/HbA1c ratio was not associated with
oxidative stress in patients with HbA1c C 8%.
Glucose variability has been reported to
increase with a GA/HbA1c ratio [ 2.8 [34], but
the patients in our study had a mean GA/HbA1c
ratio of 2.6, which may have contributed to this
result. On the other hand, FPG was also associ-
ated with oxidative stress in patients with
HbA1c[ 8%. This result is considered to be due
to the fact that the contribution of FPG increa-
ses the HbA1c at levels [ 7.5–8%. It has been
reported that elevated FPG induces oxidative
stress and interferes with normal endothelial
function via ROS overproduction [40]. From the
above, it is suggested that GA is a good marker
for oxidative stress because FPG contributes to
oxidative stress as well as glucose variability
when glycemic control is poor.

Several studies have reported on the rela-
tionship between metformin and oxidative
stress [41, 42]. There are a variety of

mechanisms by which metformin reduces
oxidative stress. Metformin reduces ROS for-
mation, suggesting a diminishing effect of
oxidative stress [41, 43]. It has been reported
that, in aortic endothelial cells, the activation of
AMPK by metformin limits the endothelial cell
damage caused by oxidative stress under
hyperglycemic conditions through the inhibi-
tion of the protein kinase C-NAD(P)H oxidase
pathway [44]. Furthermore, metformin may
partially protect against oxidative stress
through regulation of serum insulin levels [45].
Metformin was shown to lower the risk of dia-
betes-related complications, cardiovascular dis-
ease, stroke, and all-cause mortality in the
UKPDS study [46].

Although the relationship between LDL-C
and oxidative stress has been reported previ-
ously [7, 47], there are no reports about the
relationship between TG and oxidative stress. In
this study, we have demonstrated that TG is
associated with oxidative stress by multivariate
analysis. Previous epidemiologic studies have
reported that hypertriglyceridemia is an inde-
pendent risk factor for cardiovascular disease
[48, 49]. In addition, it has been reported that
not only high LDL-C but also hypertriglyc-
eridemia is a risk factor for cardiovascular dis-
ease in Japanese patients with T2DM [50].
However, the mechanism by which hyper-
triglyceridemia induces oxidative stress remains
unclear. It may be related to insulin resistance,
but further research is needed to elucidate this
mechanism.

The present study had several limitations.
First, the determination coefficient of the
independent variable was low for the model
employed in this study, with the adjusted R2

value being approximately 0.3 in the multi-
variate analysis. The sample size was relatively
small; therefore, the obtained results require
further confirmation in a large number of
patients. Second, this study was cross-sectional,
precluding the evaluation of any cause-effect
relationship between glucose metabolism, 1,5-
AG, GA and oxidative stress. Whether inter-
vention aimed at reducing glucose metabolism
via 1,5-AG and GA should be administered
needs further examination.
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CONCLUSION

In conclusion, 1,5-AG and GA are useful mark-
ers for estimating oxidative stress in patients
with well and poorly controlled T2DM,
respectively.
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