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Abstract

The existing flexural analysis methods of corrugated steel web composite box girders are either inaccurate due to thought-

lessness of the influencing factors, or complicated due to excessive consideration of the influencing factors. In this study, a 

flexural displacement model of composite box girder considering both the accordion effect and shear deformation of web and 

the shear lag effect of flange is proposed. According to the internal force balance condition, the complex flexural models of 

a composite box girder are decoupled into three independent simple flexural states: Euler–Bernoulli beam flexure satisfying 

the quasi-plane assumption, flexure of equivalent web deformation, and flexure of shear lag of flange. Based on the flexural 

theory of the thin-walled beam, the generalized internal force system and beam-type finite element model was established 

corresponding to each flexural state. The results of numerical examples show that the proposed method has high solution 

accuracy and can directly obtain the displacement and internal force of each flexure deformation. The moment results show 

that the generalized moment has a peak value at the point of shear discontinuity, and increases or decays rapidly near it.

Keywords Composite box girder with corrugated steel webs · Accordion effect · Shear lag effect · Generalized moment · 

Beam-type finite element

1 Introduction

The concrete box girder with corrugated steel webs has rap-

idly developed in recent years because it is lightweight and 

has good mechanical and seismic performance. This type 

of composite beam can effectively improve the buckling 

resistance of the web through the bending form of the steel 

webs (Elgaaly, 1996; Luo & Edlund, 1996). The webs hardly 

bear any axial bending moment or axial force owing to the 

accordion effect (Elgaaly et al, 1997), thus the prestress-

ing efficiency is improved (Jiang et al, 2015). What’s more, 

the classical Euler–Bernoulli beam (EBB) and Timoshenko 

beam theory are no longer applicable to this type of struc-

ture (Machimdamrong et al, 2003). Therefore, it is of great 

practical significance to explore a flexural analysis theory 

suitable for this type of composite beam.

In the 1990s, Elgaaly (1996; 1998) argued that the influ-

ence of steel webs on the bending of composite beams was 

negligible, according to the bending test results of I-shaped 

corrugated steel webs. Subsequently, studies (Samanta & 

Mukhopadhyay, 1999; Sayed-Ahmed, 2001; Zhou, 2016) 

used the three-dimensional finite-element method (3D FEM) 

to analyze the flexural stress of the composite box girder 

and drew the similar conclusion. The 3D FEM has higher 

analysis accuracy while it needs to construct a complex solid 

model in addition constructing the numerical model for a 

complex composite box girder is time-consuming. There-

fore, many researchers have attempted to develop a beam-

type analysis method with higher accuracy and simple calcu-

lation. Kato et al., (2002; 2003) proposed a flexural analysis 

method similar to the sandwich beam (Khalili et al, 2010). 

On this basis, Chawalit et al. (2004) introduced the influence 

of the flange shear deformation to improve the accuracy of 

deflection solution. Chen et al., (2015, 2017) proposed a 

flexural analysis method that considers the influence of the 

composite box girder diaphragm. Nie et al. (2011; 2012) 

assumed that the deflection of the composite box girder was 
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the synthesis of the bending of the upper and lower con-

crete flanges and the truss effect of the steel web. Although 

these analysis methods can accurately indicate the vertical 

deflection deformation of this composite beam, the deflec-

tion calculation is complicated due to the complex form of 

the deflection displacement function. To simplify the calcu-

lation, Wu et al. (2005) and Matsui et al. (2006) proposed 

an analysis method based on the quasi-plane assumption 

without considering the influence of steel web deformation. 

This analysis method is similar to the classical EBB and has 

good engineering application value, but the deflection of a 

composite box girder obtained by this method is quite differ-

ent from the actual deflection. To solve this problem, many 

studies (He et al., 2009; Li et al., 2002; Liu et al., 2011) have 

considered the shear deformation of steel webs by intro-

ducing an another shear deflection angle. However, after 

testing the stress of the simply supported composite beam, 

Ikeda et al. (2002) found that the quasi-plane assumption 

is not applicable to the deformation of cross-sections near 

concentrated loads. Therefore, it is important to establish a 

simplified flexural analysis method for composite beams that 

can fully consider the influence of steel web deformation and 

can match to the classic EBB.

As a special thin-walled component, an obvious shear 

lag effect must exist in the flange of a composite box girder. 

Researchers have often used the 3D FEM (Xu et al, 2015) 

and energy variation method (EVM) (Cheng & Yao, 2016) 

to analyze the shear lag effect of composite box girders. 

The EVM has been widely used (Li et al, 2019) because it 

corresponds to the EBB meanwhile it has a clear mechani-

cal mechanism. Nowadays, scholars analyze the shear lag 

effect of the composite box girder based on the quasi-plane 

assumption. However, this assumption cannot consider 

the influence of steel web deformation, which may lead to 

inaccurate results of flexural stress analysis. Moreover, the 

overall bending deformation of the composite box girder is 

coupled with the shear lag effect of flange and the defor-

mation of web, which result in the flexural analysis of the 

composite box girder very complicated. As a steel–concrete 

composite structure, the fatigue degradation of materials 

has always been a focus of scholars' research. For example, 

Pipinato et al., (2009, 2010, 2021) have conducted extensive 

fatigue tests on steel structures and steel–concrete composite 

beams. Bruwhiler et al. (2010, 2013) conducted fatigue tests 

on composite beam shear connectors and strength tests on 

high-performance concrete beams. Obviously, it is of great 

significance to accurately obtain the flexural normal stress 

and shear stress, especially the detailed stress results, for the 

evaluation of fatigue life and bearing capacity of Bridges. 

To improve the analysis accuracy, a flexural displacement 

function of a composite box girder that both considered 

the deformation of web and the shear lag effect of flange 

is established. By introducing three generalized deflections 

corresponding to EBB, web deformation and shear lag 

effect of flange, the complex flexural state of a composite 

box girder is decoupled into a simple flexural state of three 

generalized displacements. Then, the governing differential 

equations of the generalized deflections are derived by using 

EVM and the initial parameter solutions of the flexural anal-

ysis of the composite box girder are obtained. In addition, a 

beam-type finite element model for the flexural analysis of 

a composite box girder is established. Eventually, numerical 

examples of composite box girders are used to verify the 

applicability of the proposed method.

2  Flexural Analysis of Composite Box Girder

The main purpose of this part is to obtain the vertical and 

horizontal distribution of flexural displacement of the com-

posite box girder. A simply supported composite box girder 

with trapezoidal cross-section under arbitrary load (Fig. 1) 

is selected as the analysis model. The variable parameters 

of cross-section size are shown in Fig. 1b. In Fig. 1b), b1, b2, 

and b3 represent the width of the top slab, bottom slab and 

extended cantilever slab, respectively. The ht and hb respec-

tively represent the vertical distance from the centroid of the 

cross-section to the centroids of the upper and lower flanges 

Fig. 1  Composite box girder with corrugated steel webs: a coordinate system; b cross-section
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and h is the sum of these two distances. The at represents the 

distance from the centroid of the cross-section to the bottom 

of the upper flange and ab represents the distance from the 

centroid of the cross-section to the top of the lower flange. 

The hw is the sum of these two distances, that is, the vertical 

height of the corrugated steel webs.

2.1  Coordinate System and Basic Assumptions

In this paper, the Cartesian coordinate system is adopted, 

and the origin O of the coordinate is located at the centroid 

of section. The x-axis and y-axis are the centroid axes of the 

section, and the z-axis is the longitudinal axis of the beam. In 

this study, the basic assumptions used in the flexural analysis 

of the composite box girder are the same as those in Cheng 

and Yao (2016).

2.2  Vertical Distribution of Flexural Displacement

If v(z) is used represents the vertical deflection of a compos-

ite box girder, the flexural angle of upper and lower flange 

can be expressed as v'(z). Therefore, the side elevation of 

deflection angle of any beam segment flexural deformation 

can be shown in Fig. 2. The θ(z) denotes the angle of the 

line connecting centroid of upper and lower flanges around 

the x-axis, and α(z) denotes the angle of the line connect-

ing the bottom of upper flange and the top of lower flange 

around the x-axis. Due to the combined influence of shear 

deformation of steel web and its accordion effect, the deflec-

tion angle v'(z) is different from θ(z). Therefore, the overall 

deformation of steel web can be equivalent to α(z).

According to Figs. 1b and 2, the flexural longitudinal dis-

placement ut(y,z) and ub(y,z) of the upper and lower flanges 

can be expressed as follows:

From Eqs. (1) and (2) and Fig. 2, the angle α(z) can be 

obtained as follows,

where χ = h/hw. Therefore, ignoring the bending stiffness of 

the corrugated steel web, the equivalent longitudinal dis-

placement uw(y,z) can be expressed as follows,

2.3  Transverse Distribution of Flexural 

Displacement

As a special thin-walled structure, there must be a shear lag 

effect in the concrete flanges of the composite box girder. 

According to the literature (Zhang et al., 2014), the additional 

longitudinal displacement ug(x,z) caused by the shear lag effect 

can be expressed as follows,

where φ(z) represents the additional deflection angle func-

tion caused by the shear lag effect, and ξ(x) represents the 

transverse distribution function of shear lag warping defor-

mation along the width of flange. In this study, the expres-

sion is adopted as follows (Zhou et al., 2015),

where d is the correction coefficient satisfying the self-bal-

ance of cross-section.

From Eqs. (1), (2) and (5), the flexural longitudinal dis-

placements ut(x,y,z) and ub(x,y,z) of the upper and lower flange 

can be derived as follows:

(1)ut(y, z) = ht𝜃(z) − (y + ht)v
′(z)

(2)ub(y, z) = −hb𝜃(z) − (y − hb)v
′(z)

(3)𝛼(z) =
ut(−at, z) − ub(ab, z)

at + ab

= 𝜒𝜃(z) + (1 − 𝜒)v′(z)

(4)uw(y, z) = −y𝛼(z)

(5)ug(x, z) = 𝜉(x)𝜑(z)

(6)

𝜉(x) =

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

−ht(1 −
x2

b2
1

) + d for top slab

−ht[1 −
(b3 + b1 − x)2

b2
3

](
b3

b1

)2 + d for cantilever slab

hb(1 −
x2

b2
2

)(
b2

b1

)2 + d for bottom slab

(7)ut(x, y, z) = ht𝜃(z) − (y + ht)v
′(z) + 𝜉(x)𝜑(z)

Fig. 2  Schematic diagram of deflection angle relation
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3  Deflection Analysis Based on Generalized 
Displacement

3.1  Define Generalized Displacements

To simplify the calculation, the deflection v(z) of the com-

posite box girder can be divided into three types of deflec-

tion: (1) The EBB deflection w(z) satisfying quasi-plane 

assumption; (2) the deflection f(z) caused by equivalent 

flexural deformation of steel web; (3) the deflection g(z) 
caused by shear lag effect of flanges. The three independent 

flexural deformation states defined in this study are shown 

in Fig. 3. By synthesizing Eqs. (7) and (8), the flexural lon-

gitudinal displacement u(x,y,z) of the flange can be obtained 

as follows,

where 𝜙(y) denotes the vertical distribution function of lon-

gitudinal displacement caused by the equivalent flexural 

deformation of steel web, which is –ht for the upper flange 

and hb for the lower flange; λ and η denote the self-balance 

correction factors of warping displacement caused by the 

equivalent flexural deformation of steel web and the shear 

lag effect of flange respectively, and their values are obtained 

by the internal force balance condition of section. Accord-

ing to Eqs. (7) to (9), the expressions of β(y) and ζ(x,y) are 

respectively shown in formula (10) and formula (11), and 

λf'(z) = v'(z)-θ(z), ηg'(z) = φ(z).

From Eq. (9), the flexural normal stress σ(x, y, z) of flange 

can be obtained as follows,

(8)ub(x, y, z) = −hb𝜃(z) − (y − hb)v
′(z) + 𝜉(x)𝜑(z)

(9)
u(x, y, z) = − y[w′(z) + f ′(z) + g′(z)] + 𝜆𝜙(y)f ′(z)

+ 𝜂𝜉(x)g′(z) = −yw′(z) − 𝛽(y)f ′(z) − 𝜁 (x, y)g′(z)

(10)𝛽(y) = y − 𝜆𝜙(y)

(11)𝜁(x, y) = y − 𝜂𝜉(x)

(12)

𝜎(x, y, z) = Ec

𝜕u

𝜕z
= −Ecyw′′(z) − Ec𝛽(y)f

′′(z) − Ec𝜁(x, y)g′′(z)

where Ec is the elastic modulus of concrete.

In Eq. (12), −Ecyw′′(z) , − Ec𝛽(y)f
′′(z) and −Ec𝜁(x, y)g′′(z) 

are the stresses caused by the flexural deformation of EBB 

satisfying quasi-plane assumption, the equivalent flexural 

deformation of web and the shear lag effect of flanges, 

respectively, which can be called EBB flexural stress σE, 

web warping stress σβ and flange warping stress σζ, thus,

For composite box girder subjected to bending load, 

σE synthesize bending moment M with y as the moment 

arm, thus σβ and σζ neither synthesize axial force on the 

whole section nor synthesize bending moment with y as the 

moment arm, i.e.

where A is the area of concrete flanges. Therefore, Eqs. 

(15)–(18) are the internal force balance conditions of the 

composite box girder section. By substituting Eqs. (13) and 

(14) into Eqs. (15)–(18), the following expressions can be 

obtained:

where Ix = ∫
A

y2dA ; Iy𝜙 = ∫
A

y𝜙(y)dA ; Iy𝜉 = ∫
A

y𝜉(x)dA . Ix 
and Iy𝜙 denote the moment of inertia and the area moment 

of the flanges about the centroid x-axis respectively, and Iyξ 

(13)𝜎𝛽 = − Ec𝛽(y)f
′′(z)

(14)𝜎𝜁 = −Ec𝜁(x, y)g′′(z)

(15)∫A

𝜎𝛽dA = 0

(16)∫A

𝜎𝜁dA = 0

(17)∫A

𝜎𝛽ydA = 0

(18)∫A

𝜎𝜁ydA = 0

(19)∫A

𝜉(x)dA = 0

(20)Ix = 𝜆Iy𝜙 = 𝜂Iy𝜉

Fig. 3  Decomposition of flex-

ural deformation
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denotes the area moment of the flange shear lag effect about 

the centroid x-axis. By substituting the functions 𝜙(y) and 

ξ(x) into the corresponding section parameter expression 

above, the following expressions are obtained:

where At, Ab and Ac are the areas of the top slab, bottom slab 

and cantilever slab of the composite box girder respectively. 

What’s more, the values of the internal force balance param-

eters λ and η can be obtained from Eqs. (20), (22) and (23).

3.2  Define Generalized Internal Forces

To correspond to the traditional flexural analysis of EBB, 

the generalized internal moments Mβ and Mζ correspond-

ing to the generalized displacements f and g are defined 

respectively:

By substituting Eqs. (13) and (14) into Eqs. (24) and 

(25), respectively, the following results is obtained after 

simplifying:

where I𝛽 = ∫
A
𝛽2dA and I𝜁 = ∫

A
𝜁2dA ; Iβ and Iζ can be 

called the inertial product of generalized displacements f 
and g respectively. According to Eqs. (10) and (20), Iβ is 

expressed as follows,

According to Eqs. (11) and (20), Iζ is expressed as follows,

where Iξ can expressed as follows,

(21)d =
2

3A
[htAt + htAc(

b3

b1

)2 − hbAb(
b2

b1

)2]

(22)Iy𝜙 = h2

t
(At + Ac) + h2

b
Ab

(23)Iy𝜉 =
2h2

t

3
[At + Ac(

b3

b1

)2 + Ab(
b2

b1

)2(
hb

ht

)2]

(24)M𝛽 = ∫A

𝛽(y)𝜎𝛽dA

(25)M𝜁 = ∫A

𝜁(x, y)𝜎𝜁dA

(26)M𝛽 = − EcI𝛽 f ′′(z)

(27)M𝜁 = −EcI𝜁g′′(z)

(28)I𝛽 = (𝜆 − 1)Ix

(29)I𝜁 = 𝜂2I𝜉 − Ix

Based on Eqs. (13)-(14) and Eqs. (26)–(27), the stress σβ 
and σζ are expressed as follows:

Therefore, the total flexural normal stress σ of the compos-

ite box girder is expressed as follows,

To show the flexural stress state of composite box girder 

intuitively, the longitudinal and transverse distribution of σE, 

σβ and σζ are given in Fig. 4.

To analyze the relative magnitude of the warping stress, the 

ratios of σβ and σζ to σE are defined as Cβ and Cζ, respectively, 

and both of them can be considered as the stress increase 

coefficient. The following expressions can be obtained from 

Eq. (33),

From Eqs. (34) and (35), it is known that, if the section 

size of the box girder is given, the stress increase coefficient is 

related to the ratio of the generalized moments Mβ and Mζ to 

the bending moment M. Hence, the increase coefficients are 

positive if the sign of Mβ and Mζ are the same as the sign of 

M, and vice versa.

4  Establishment of Governing Differential 
Equation

From Eq. (9), the normal strain ε of the composite box 

girder can be expressed as follows,

(30)

I𝜉 = Ad
2 + A

t
h

t
(

8

15

h
t
−

4

3

d)

+ A
c
h

t
[

8

15

(
b

3

b
1

)2h
t
−

4

3

d](
b

3

b
1

)2

+ A
b
h

b
[

8

15

h
b
(
b

2

b
1

)2 +
4

3

d](
b

2

b
1

)2

(31)𝜎𝛽 =
M𝛽

I𝛽
𝛽

(32)𝜎𝜁 =
M𝜁

I𝜁
𝜁

(33)𝜎 =
M

Ix

y +
M𝛽

I𝛽
𝛽 +

M𝜁

I𝜁
𝜁

(34)C𝛽 =
M𝛽

M
⋅

Ix

I𝛽
⋅
𝛽

y

(35)C𝜁 =
M𝜁

M
⋅

Ix

I𝜁
⋅
𝜁

y

(36)𝜀(x, y, z) = −yw′′(z) − 𝛽(y)f ′′(z) − 𝜁(x)g′′(z)
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According to Eqs. (9) and (11), the shear strain γxz of 

the flange can be obtained as follows,

According to Eqs. (3), (4), and (9), the equivalent shear 

strain γyz of the corrugated steel web can be obtained as 

follows,

Therefore, the total flexural potential energy of the com-

posite box girder can be obtained from Eqs. (36)-(38), as 

follows,

(37)𝛾xz = 𝜂
d𝜉

dx
g′(z)

(38)𝛾yz =
𝜕uw

𝜕y
+

𝜕v

𝜕z
= 𝜒[v′(z) − 𝜃(z)] = 𝜆𝜒 f ′(z)

(39)

Π =
1

2 ∫l ∫A

(
Ec𝜀

2 + Gc𝛾
2
xz
+ Gw𝛾

2
yz

)
dAdz − ∫l

q(w + f + g)dz

=
1

2 ∫
l

0

[Ec(Ixw′′2 + I𝛽 f ′′2 + I𝜁g′′2 + I𝛽 f ′′g′′)+𝜆2𝜒2GwAwf ′2 + 𝜂2GcAxg′2 ]dz − ∫
l

0

q(w + f + g)dz

where q is the uniformly distributed external load; Gc 

is the shear modulus of the concrete; Gw is the equiva-

lent shear modulus of the corrugated steel web (Cheng 

et al. 2016); Aw is the area of the steel web and Ax denotes 

the area of flange shear warping, which is expressed as 

follows,

In practical projects, the coupling strain energy of shear lag 

deformation and equivalent deformation of web is relatively 

low and can be ignored. To simplify the analysis, it is assumed 

that f''g'' = 0 in Eq. (39); then, the first-order variation can be 

obtained as follows,

(40)

Ax = ∫A

(d𝜉∕dx)2dA =
4

3
[At(

ht

b1

)2 + Ac(
b3

b1

)4(
ht

b3

)2 + Ab(
b2

b1

)4(
hb

b2

)2]

(41)

𝛿Π = ∫
l

0

(EcIxw′′′′ − q)𝛿wdz + ∫
l

0

[EcI𝛽 f ′′′′ − 𝜆2𝜒2GwAwf ′′ − q]𝛿fdz+∫
l

0

[EcI𝜁g′′′′ − 𝜂2GcAxg′′ − q]𝛿gdz+

EcIxw′′𝛿w′|||
l
0
− EcIxw′′′𝛿w

|||
l
0
+ EcI𝛽 f ′′𝛿f ′

|||
l
0
+ EcI𝜁g′′𝛿g′|||

l
0
+
(
𝜆2𝜒2GwAwf ′ − EcI𝛽 f ′′′

)
𝛿f
|||
l
0
+

(𝜂2GcAxg′ − EcI𝜁g′′′)𝛿g
|||
l
0

Fig. 4  The distribution diagram of σE, σβ and σζ in different planes: a the distribution of σE and σβ in the y–z plane; b the distribution of σζ in the 

x–y plane
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According to Eq. (41), the governing differential equations 

of the composite beam are as follows:

As can be seen, Eq. (42) is the governing differential 

equation for the EBB flexure. Equations (43) and (44) 

are the governing differential equations for deflection f 
and g, respectively. By comparing Eqs. (43) and (44), it 

can be seen that their form is exactly the same except for 

the constant coefficients; therefore, the solution of these 

two differential equations should also be the same. In this 

study, Eq. (43) was considered as the object of analysis, 

and can be simplified as follows,

where k is the equivalent deformation constant and is 

expressed as follows:

As can be seen from Eq.  (41), the moment corre-

sponding to the deflection angles f' and g' are -EcIβf'' and 

-EcIζ'g'', respectively, which are the same as the general-

ized internal moment Eqs. (26) and (27). The generalized 

shear forces corresponding to the displacement f and g 

are defined as Qβ and Qζ, respectively, and are expressed 

as follows:

5  Initial Parameter Solution and Beam-Type 
Finite Element Method

5.1  Initial Parameter Solution

The general solution of the homogeneous equation corre-

sponding to differential Eq. (45) is expressed as follows,

(42)EcIxw′′′′ − q = 0

(43)EcI𝛽 f ′′′′ − 𝜆2𝜒2GwAwf ′′ − q = 0

(44)EcI𝜁g′′′′ − 𝜂2GcAxg′′ − q = 0

(45)f ′′′′ − k2f ′′ =
q

EcI𝛽

k = 𝜆𝜒

√
GwAw

EcI𝛽

(46)Q𝛽 = 𝜆2𝜒2GwAwf ′ − EcI𝛽 f ′′′

(47)Q𝜁 = 𝜂2GcAxg′ − EcI𝜁g′′′

where C1-C4 are integral coefficients. From Eqs. (26) and 

(46)-(48), the expressions of the deflection angle f', gener-

alized moment Mβ, and shear force Qβ can be obtained as 

follows:

By substituting z = 0 into Eqs. (48)–(51), the expressions 

of the initial parameters about f0, f'0, Mβ0, and Qβ0 can be 

obtained. These equations form a set of equations for the 

integral coefficients C1-C4. After solving C1-C4 and substi-

tuting them into Eqs. (48)–(51), the expressions of the initial 

parameter solution can be obtained as follows:

5.2  Beam-Type Finite Element Method

For composite box girders with equal sections, the expres-

sions of the generalized displacement and internal force can 

be derived using the method of initial parameter solution 

and structural mechanics (Zhang et al., 2014). The beam-

type finite element method is an effective way to solve the 

continuous composite box girder with varying depth. In 

this study, the deflection v of the composite box girder is 

decoupled into three independent deflection w, f and g, so 

the beam element models corresponding to w, f and g can be 

established, respectively. A beam-type element model 3BE 

with two nodes and 12 degrees of freedom is established, as 

shown in Fig. 5.

(48)f = C1 + C2z + C3 sinh kz + C4 cosh kz

(49)f ′ = C2 + C3k cosh kz + C4k sinh kz

(50)M𝛽 = −EcI𝛽k2(C3 sinh kz + C4 cosh kz)

(51)Q𝛽 = EcI𝛽k2C2

(52)

f = f0 + f ′
0

sinh kz

k
+

M𝛽0

k2EcI𝛽
(1 − cosh kz) +

Q𝛽0

k3EcI𝛽
(kz − sinh kz)

(53)f ′ = f ′
0

cosh kz −
M𝛽0

kEcI𝛽
sinh kz +

Q𝛽0

k3EcI𝛽
(1 − cosh kz)

(54)M𝛽 = −f ′
0
kEcI𝛽 sinh kz + M𝛽0 cosh kz + Q𝛽0

sinh kz

k

(55)Q𝛽 = Q𝛽0
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Therefore, the node displacement of the element shown in 

Fig. 5 can be decomposed into the following vector forms,

where 
{
𝛿w

}
 , 
{
𝛿f

}
 , and 

{
𝛿g

}
 are the nodal displacement vec-

tors corresponding to w, f and g, respectively. Superscripts 

i and j in the vector element denote the nodes at both ends 

of the element; T denotes the transpose of the matrix. The 

node force vector corresponding to each node displacement 

vector can be expressed as follows,

where {𝐅w} , 
{
𝐅f

}
 , and {𝐅g} are the node force vectors corre-

sponding to the 
{
𝛿W

}
 , 
{
𝛿f

}
 , and 

{
𝛿g

}
 , respectively. Accord-

ing to the theory of finite element, it is necessary to use the 

element stiffness matrix to establish the relationship between 

the nodal force vector and the nodal displacement vector. 

Therefore, the element stiffness matrix corresponding to the 

three deformation states w, f and g can be set as [𝐊w] , [𝐊f ] , 

and [𝐊g] , respectively.

Many studies have reported the analysis of the element stiff-

ness matrix of the EBB, therefore, the solution to the matrix 

[𝐊w] is no longer repeated here and its expression shown in 

Eq. (62). The elements of the stiffness matrix [𝐊f ] and [𝐊g] can 

be obtained according to the initial parameter method described 

in this study. According to the mechanical meaning of the 

(56)
{
𝛿w

}
=
[

wi w′
i

wj w′
j

]T

(57)
{
𝛿f

}
=
[

fi f ′
i

fj f ′
j

]T

(58)
{
𝛿g

}
=
[

gi g′
i

gj g′
j

]T

(59)
{
𝐅w

}
=
[

Qi Mi Qj Mj

]T

(60)
{
𝐅f

}
=
[

Q𝛽i M𝛽i Q𝛽j M𝛽j

]T

(61){𝐅g} =
[

Q𝜁 i M𝜁 i Q𝜁 j M𝜁 j

]T

element stiffness matrix, when the deflection fi = 1 at the i end 

of the element and the other nodal displacement components 

are zero (f i = f j = fj = 0), the corresponding node force at both 

ends of the element is the first column elements of the [𝐊f ] . 

Therefore, let f0 = 1 , f ′
0
= 0 in Eqs. (52) and (53), using of the 

condition that the displacement of j end of element fj = f ′
j
= 0 , 

the initial parameters Qβ0 and Mβ0 can be solved, thus the ele-

ments k
f

1,1
 and k

f

2,1
 in the first column of the [𝐊f ] can be 

obtained. Then, by substituting Qβ0 and Mβ0 into Eqs. (54) and 

(55) and making z = l, the elements k
f

4,1
 and k

f

3,1
 are obtained. 

Similarly, the other column elements of the element stiffness 

matrix corresponding to the generalized displacement in 

Eq. (53) can be obtained. The lower triangular elements of the 

[𝐊f ] are listed as follows:

in which D = klsinhkl + 2-2coshkl.

The generalized displacement expressions (52) and (53) of 

the element are used to represent the generalized displace-

ments of the nodes at both ends of the element. The matrix 

expression of the shape function of the generalized displace-

ment can be obtained by solving the initial parameters simul-

taneously and substituting them into the displacement function 

formula (52). On this basis, the equivalent nodal force vector 

k
f

1,1
= k

f

3,3
= −k

f

3,1
=

k3EcI𝛽

D
sinh kl

k
f

2,1
= k

f

4,1
= −k

f

3,2
= −k

f

4,3
= −

k2EcI𝛽

D
(cosh kl − 1)

k
2,2

= k
4,4

=
kEcI𝛽

D
(kl cosh kl − sinh kl)

k
f

4,2
=

kEcI𝛽

D
(sinh kl − kl)

(62)[Kw] =
EcIx

l3

⎡
⎢
⎢
⎢
⎣

12 6l −12 6l

4l2 −6l 2l2

⋮ 12 −6l

Symm … 4l2

⎤
⎥
⎥
⎥
⎦

Fig. 5  Node displacements of 

beam segment model
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of the element can be obtained by using the principle of virtual 

work. Under uniform load q, the equivalent nodal force vector 

{Pq} of the element can be expressed as follows:

where 𝜛 = [(kl)2(1 + cosh kl) + 4(cosh kl − kl sinh kl − 1)]∕(k2D).

According to relevant literature (Zhou et al, 2022), the 

equivalent node load column vector corresponding to EBB is 

shown in Eq. (64).

6  Numerical Example

In this part, a simply supported composite box girder is 

selected as the analysis object, and the accuracy of the flex-

ural displacement function proposed in this paper is verified 

by comparing the stress results. Then, a cantilever composite 

box girder is used to analyze the distribution characteristics 

of the generalized internal moment and bending moment. 

Finally, the effectiveness of beam-type element finite model 

is verified by an example of a continuous composite box 

girder with varying depth cross-section. Additionally, the 

3D FEM of the presented numerical examples is established 

(63){Pf} = (q∕2)
[

l −𝜛 l 𝜛
]T

(64){Pw} = −(q∕2)
[

l l2∕6 l −l2∕6
]T

by using software ANSYS, and the analysis results are 

compared.

6.1  Example 1: Simply Supported Composite Box 

Girder

A simply supported corrugated steel web composite box 

girder model with a calculated span of 18 m is shown in 

Fig. 6. This case has also been analyzed in the study (Cha-

walit et al, 2004). The loading conditions are as follows: (1) 

concentrated load on the top of the web P = 3.40 MN; (2) 

uniformly distributed load q = 0.54 MN/m. Figure 6b and c 

shows the cross-section and the details of the steel web of 

the beam, respectively. The upper flange and lower flange of 

composite box girder bear 1.80 MN and 15.30 MN prestress-

ing force, respectively. The elastic modulus and shear modu-

lus of concrete and steel are Ec = 31GPa, Gc = 12.92GPa, 

Es = 200GPa, Gs = 76.92GPa. The equivalent shear modulus 

of corrugated steel webs is Gw = 69.23GPa.

In this example, the flexure of the composite box girder is 

decomposed into three flexure states: EBB satisfying quasi-

plane assumption, equivalent flexural deformation of web 

(EFW) and shear lag deformation of flanges (SLF). The 3D 

FEM used to verify the flexural analysis theory is shown in 

Fig. 7. The upper and lower flanges of the composite box 

girder were simulated using the solid element solid45, and 

the corrugated steel webs were simulated using the shell63 

Fig. 6  Simply supported composite box girder with corrugated steel webs (m): a load cases; b cross-section; c detailed drawing of steel web
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element. The shell and solid elements were coupled using 

the MPC method in ANSYS.

Under load cases 1 and 2, the normal stresses of sections 

I and II are vertically distributed as shown in Figs. 8 and  9 

respectively. From the figures, the analysis results consider-

ing the web equivalent flexural deformation are satisfactory 

agreement with the 3D FEM analysis results. Under load 

cases 1 and 2, the entire beam section is in compression (the 

stress value is negative). However, when considering the 

equivalent flexural deformation of web, the lower flanges of 

some control sections (Figs. 8a and 9b) will be in tension. 

Therefore, the EBB analysis method based on the quasi-

plane assumption may lead to the unsafe design of structure.

To quantitatively analyze the influence of the EFW and 

SLF on the flexural stress of the composite box girder, it is 

necessary to analyze the stress increase coefficients defined 

by Eqs. (34) and (35). Figure 10 shows the distribution of 

the stress increase coefficients at the top of sections I of the 

composite box girder under load cases 1 and 2 without the 

prestressing force, respectively. As shown in Fig. 10, when 

considering the EFW and SLF, the stress increase coeffi-

cients along the transverse distribution are in good agree-

ment with the 3D FEM analysis results. As can be seen in 

Fig. 10a, the maximum stress at the top of section I increased 

by about 40% under the concentrated loading. The increase 

caused by the EFW is approximately 30% and the increase 

caused by the SLF is approximately 10%. As can be seen 

from Fig. 10b, the maximum stress at the top of section I 

increased by about 14% under uniform loading. The increase 

caused by the EFW is 10%, while the increase caused by the 

SLF is 4%. Therefore, the EFW has an important influence 

on the flexural stress of the composite box girder, especially 

near the concentrated load.

Figure 11 shows the deflection curves of the composite 

box girder under load cases 1 and 2 calculated by the method 

in this paper, finite segment method (FSM) (Chawalit et al, 

2004) and 3D FEM. As shown in Fig. 11, when consider-

ing the EFW and SLF, the deflection curve results are in 

good agreement with 3D FEM results. When the influence of 

EFW is considered, the calculated deflection adequately cor-

responds to the result of FSM, but is smaller than the result 

obtained by the 3D FEM. The deflection f caused by the 

EFW is large, and resulted in a large increase in the deflec-

tion of the composite box girder. The deflection g caused 

by the SLF is relatively small. To quantitatively analyze the 

Fig. 7  Three-dimensional finite element model of composite box 

girder

Fig. 8  Vertical distribution of section normal stress under concentrated loading: a section I; b section II
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influence of EFW and SLF on the deflection of composite 

box girder, Table 1 lists the deflection displacement val-

ues of the mid-span cross-section under load cases 1 and 2 

without the prestressing force. As presented in Table 1, the 

deflection caused by the EFW increased by approximately 

53%, while that caused by the SLF increased by approxi-

mately 6%.

6.2  Example 2: Cantilever Composite Box Girder

The cross-section dimension and material parameters of 

the cantilever composite box girder are the same as those 

in the first example. The calculated span of the compos-

ite box girder is 7.2 m, the uniformly distributed load q is 

10kN/m. According to the proposed analysis theory, the 

bending moment M and generalized moment Mβ and Mζ 

Fig. 9  Vertical distribution of section normal stress under uniform loading: a section I; b section II

Fig. 10  Distribution of stress increase coefficient at top of section I: a under load case 1; b under load case 2
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corresponding to the three flexural deformation states were 

calculated. The distribution form of each moment along the 

beam axis is shown in Fig. 12.

As can be easily seen in Fig. 12, the bending moment M 

of the cantilever composite box girder is always negative 

along the beam axis, while the generalized moment Mβ 

and Mζ are either positive or negative along the beam axis. 

According to Eqs. (34) and (35), when the sign of moment 

M is the same as that of the generalized moment Mβ and 
Mζ, the stress increase coefficients Cβ and Cζ are positive, 

otherwise Cβ and Cζ are negative. Therefore, when the 

stress increase coefficients Cβ and Cζ are negative, the phe-

nomenon of the negative EFW and negative SLF occurs, 

as shown in Fig. 12.

6.3  Example 3: Continuous Composite Box Girder 

With Varying Depth

To verify the effectiveness of the proposed beam-type 

finite element method, a two-span continuous composite 

box girder with varying depth is considered as a numerical 

example (Ji et al, 2016). The model span combination is 

(3000 + 3000) mm, the beam depth of the middle support 

is 350 mm, and the side support is 200 mm. The elastic 

modulus of concrete is 3.45GPa, Poisson’s ratio is 0.2, and 

the shear modulus of steel is 7.92GPa. The loading condi-

tions are as follows: (1) vertical uniform loading q = 6N/

mm; (2) concentrated loading P = 15kN symmetrically 

applied to the mid-span section. The load distribution and 

section form of the composite box girder are shown in 

Fig. 13.

Fig. 11  Deflection curves of example: a under load case 1; b under load case 2

Table 1  Deflection of mid-span 

section of simply supported 

composite box girder

Load condition w (mm) f (mm) g (mm) 3D FEM (mm) f/w (%) g/w (%)

Concentrated load 16.9 8.9 1.0 27.2 52.7 5.9

Uniform load 17.2 9.1 1.0 27.6 52.9 5.8

Fig. 12  Internal force distribution of cantilever composite box girder
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Fig. 13  Continuous composite box girder with varying depth (mm): a composite box girder; b cross-section; c corrugated web

Fig. 14  Deflection curve of continuous composite box girder: a uniform loading; b concentrated loading

Table 2  Deflection of mid-span 

section of continuous composite 

box girder

Load condition w (mm) f (mm) g (mm) Total (mm) 3D FEM (mm) f/w (%) g/w (%)

Uniform load 0.093 0.093 0.019 0.205 0.206 100 20

Concentrated load 0.134 0.151 0.031 0.316 0.325 113 23
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Based on the beam-type finite element model established 

in this paper, a beam-type finite element calculation program 

3BE is developed. The continuous beam was divided into 

120 beam elements along the beam axis, and the length of 

each beam segment was 5 cm. The deflection curves of the 

continuous composite box girder under uniform and con-

centrated loading are shown in Fig. 14. As can be seen, The 

deflection curve of the sum of the three deflections is very 

close to that obtained by 3D FEM. To quantitatively analyze 

the influence of the EFW and SLF on deflection of the com-

posite box girder, the displacement values of the mid-span 

section under each flexural deformation state are listed in 

Table 2. Under uniform load, the deflection of the composite 

box girder caused by the EFW and SLF increased by 100% 

and 20%, respectively. When the mid-span was subjected 

to concentrated load, the deflection increased by 113% and 

23%, owing to the EFW and SLF, respectively.

The distribution curve of the bending moment M and gen-

eralized moment Mβ and Mζ calculated by the 3BE program 

is shown in Fig. 15. Under uniform loading, the general-

ized moment curve has a peak value at the middle support, 

while the curve in other parts is smooth and even. Under 

the action of concentrated load, the generalized moment 

Fig. 15  Curves of internal force distribution of continuous composite box girder with varying depth: a uniform loading; b concentrated loading

Fig. 16  Distribution of stress increase coefficients along beam axis of continuous composite box girder with varying depth: a uniform loading; b 

concentrated loading
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curve has peak value at the points of the middle support and 

concentrated load. Therefore, the generalized moment curve 

has a peak at the point of shear discontinuity. Unlike the 

variation of bending moment distribution, the generalized 

moment rapidly increased or decreased near the peak point. 

For this continuous beam, areas I and II in Fig. 15a are the 

range of the negative SLF and negative EFW.

Owing to the SLF and EFW, the distribution of addi-

tional stress along the cross-section is not uniform, which 

inevitably leads to the uneven distribution of the stress 

increase coefficients Cβ and Cζ along the cross-section of 

the beam. The maximum stress increase coefficients Cmax,β 

and Cmax,ζ at the top of the section were selected, and 

their distribution along the beam axis is shown in Fig. 16. 

According to the expression of the stress increase coef-

ficient and Fig. 16, there is an asymptote at the beam axis 

reverse bending point (M = 0), and the absolute value of 

the stress increase coefficient near the asymptote is large. 

The stress increase coefficients Cmax,β and Cmax,ζ also have 

large values at the position of the peak point in the curve 

of the generalized moment. In this example, the influence 

of the EFW and SLF on the stress of the composite box 

girder is more than 1.5, and this should be carefully con-

sidered in practical projects.

7  Conclusion

In this study, a new flexural displacement model of com-

posite box girder considering the accordion effect and 

shear deformation of steel web and the shear lag effect of 

flange is established. By introducing generalized deflec-

tion w, f and g, the complex flexural deformation of a 

composite box girder is decoupled into the superposition 

of three independent and simple flexural deformations. 

Based on the simplified deflection state, a new beam-type 

finite element method is developed. Through the analysis 

of numerical examples, the following main conclusions 

can be drawn:

(1) Compared with existing methods, the method proposed 

in this study not only has a simple analysis process, 

but also can obtain higher-precision flexural stress and 

deformation results. What’s more, this method can 

directly obtain the generalized moment and deforma-

tion caused by equivalent steel web deformation and 

flange shear lag effect.

(2) The generalized moment curve has a peak at the point 

of shear discontinuity, and the generalized moment 

increases or decreases more rapidly near the peak 

point. When the generalized moment of the section is 

opposite to the sign of the bending moment, a negative 

equivalent steel web deformation and negative shear 

lag effect occur at the corresponding cross-section.

(3) The numerical results show that the equivalent defor-

mation of steel webs and the shear lag effect of flanges 

have great influence on the normal stress of a com-

posite box girder near the shear discontinuity point. 

Moreover, the influence of equivalent deformation of 

steel webs on the deflection is greater than that of shear 

lag effect of flange.

(4) The numerical example results show that the stress 

increase coefficient Cβ caused by generalized shear 

deformation even exceeds 1.2 in the cross-sections 

near the concentrated loads or the middle supports. 

The deflection caused by generalized shear deforma-

tion reaches or even exceeds the deflection caused by 

the EBB, while the deflection caused by shear lag effect 

is about 20–30% of the deflection of the EBB.

Acknowledgements The authors would like to gratefully acknowledge 

the financial support from Gansu Youth Science and Technology Fund 

Project (Grant Nos. 20JR10RA556). The study is also sponsored by 

the Gansu Province Higher Education Innovation Fund Project (Grant 

No. 2020B-119), the Scientific research start-up funds for openly-

recuited doctors of Gansu Agricutural University (Grant Nos. GAU-

KYQD-2018-30, GAU-KYQD-2019-08) and Discipline Team Project 

of Gansu Agricultural University (Grant No. GAU-XKTD-2022-13).

Funding Gansu Youth Science and Technology Fund Project (Grant 

Nos. 20JR10RA556); 2) Gansu Province Higher Education Innovation 

Fund Project (Grant No. 2020B-119);

Declarations 

Conflict of interest No conflict of interest exits in the submission of 

this manuscript.

Ethical Approval We warrant that the article is the authors’ original 

work, hasn't received prior publication and is not under consideration 

for publication elsewhere.

Informed Consent I certify that all authors have seen and approved the 

final version of the manuscript being submitted.

References

Bruhwiler, E., & Emmanuel, D. (2013). Rehabilitation and strength-

ening of concrete structures using ultra-high performance fibre 

reinforced concrete. Structural Engineering International, 4, 

450–457.

Bruhwiler, E., Hirt, M., & Fontanari, V. (2010). Umgangmit geni-

eteten bahnbrucken von hohem kulturellem Wert. Stahlbau, 
79(3), 209–219.

Chawalit, M., Eiichi, W., & Tomoaki, U. (2004). Analysis of cor-

rugated steel web girders by an efficient beam bending theory. 

Journal of Structural Engineering Earthquake Engineering 
JSCE, 733, 131–142. (in Japanese).

International Journal of Steel Structures (2024) 24(1):144–159158



 

Chen, X. C., Au, F. T. K., Bai, Z. Z., Li, Z. H., & Jiang, R. J. (2015). 

Flexural ductility of reinforced and prestressed concrete sec-

tions with corrugated steel webs. Computers and Concrete, 
16(4), 625–642.

Chen, X. C., Li, Z. H., Francis, T. K. A., & Jian, R. J. (2017). Flex-

ural vibration of prestressed concrete bridges with corrugated 

steel webs. International Journal of Structural Stability and 
Dynamics., 17(2), 1750023.

Cheng, J., & Yao, H. (2016). Simplified method for predicting the 

deflections of composite box girders. Engineering Structure, 
128, 256–264.

Elgaaly, M. (1996). Shear strength of beams with corrugated webs. 

Journal of Structure Engineering, 122, 390–398.

Elgaaly, M., & Seshadri, A. (1998). Depicting the behavior of girders 

with corrugated webs up to failure using non-linear finite ele-

ment analysis. Advances in Engineering Software., 29, 195–208.

Elgaaly, M., Seshadri, A., & Hamilton,. (1997). Bending strength of 

steel beams with corrugated webs. Journal of Structure Engi-
neering, 123, 772–782.

He, J., Liu, Y. Q., & Chen, A. R. (2009). Elastic bending theory of 

composite bridge with corrugated steel web considering shear 

deformation. Key Engineering Materials, 400, 575–580.

Ikeda, H., Ashiduka, K., Ichinomiya, T., Okimi, Y., Yamamoto, T., & 

Kano, M. (2002a). A study on design method of shear buckling 

and bending moment for prestressed concrete bridges with cor-

rugated steel webs. In: Proceedings 1st fib Congress, Session 
5: Composite Structures, Japan Concrete Institute (JCI). (pp. 

285–294).

Ji, W., Deng, L., Liu, S. Z., & Lin, P. Z. (2016). Dynamic charac-

teristics analysis of the variable cross-section continuous box 

girder bridge with corrugated steel webs. Journal of Railway 
Engineering Society, 210(3), 60–64.

Jiang, R. J., Au, F. T. T., & Xiao, Y. F. (2015). Prestressed concrete 

girder bridges with corrugated steel webs: Review. Journal of 
Structure Engineering, 141, 081–089.

Kato, H., Kawabata, A., & Nishimura, N. (2002). Practical calculation 

formula on displacements and stress resultants of steel-concrete 

mixed girders with corrugated steel web. Journal of Structural 
Engineering Earthquake Engineering JSCE, 703, 293–300. (in 

Japanese).

Kato, H., & Nishimura, N. (2003). Practical analysis of continuous 

girders and cable stayed bridges with corrugated steel web. Jour-
nal of Structural Engineering Earthquake Engineering JSCE, 731, 

231–245. (in Japanese).

Khalili, S. M. R., Nemati, N., Malekzadeh, K., & Damanpack, A. R. 

(2010). Free vibration analysis of sandwich beams using improved 

dynamic stiffness method. Composite Structures, 92, 387–394.

Li, H. J., Ye, J. S., Wan, S., & Wu, W. Q. (2002). Influence of shear 

deformation on def lection of box girder with corrugated steel 

webs. Journal of Traffic and Transportation Engineering, 2(4), 

17–20. (in Chinese).

Li, Y. S., Chen, L. J., Liu, B., Yang, B., Chen, T., & Zhang, Y. L. 

(2019). Analytical solution derivation and parametrical analy-

sis of bending-torsional effects of curved composite beam with 

corrugated steel webs. Journal of China Railway Society, 41(1), 

101–108. (in Chinese).

Liu, B. D., Ren, H. W., & Li, P. F. (2011). Deflection analysis consider-

ing the characteristics of box girder with corrugated steel webs. 

China Railway Science, 32(3), 21–26. (in Chinese).

Luo, R., & Edlund, B. (1996). Shear capacity of plate girders with trap-

ezoidally corrugated webs. Thin-Walled Structure, 26(1), 19–44.

Machimdamrong, C., Watanabe, E., & Utsunomiya, T. (2003). An 

extended elastic shear deformable beam theory and its applica-

tion to corrugated steel web girder. Structure Engineering, 49(A), 

29–38.

Matsui, T., Tategami, H., Ebina, T., Tamura, S., & Ogawa, M. (2006). 

A vibration characteristic and a main girder rigidity evaluation 

method of PC box girder with a corrugated steel plate web. In: 

Proceedings, 2nd fib Congress, Naples, Italy. (pp. 1–11)

Nei, J. G., & Li, F. X. (2011). Theory model of corrugated steel web 

girder considering web shear behavior. China Journal of Highway 
and Transport, 24(6), 40–48. (in Chinese).

Nei, J. G., Li, F. X., & Fan, J. S. (2012). Effective stiffness method 

for calculating deflection of corrugated web girder. Engineering 
Mechanics, 29(8), 71–79. (in Chinese).

Pipinato, A., & Miranda, M. D. (2021). Steel and composite bridges. 

In A. Pipinato (Ed.), Innovative bridge design handbook (2nd ed., 
pp. 327–352).

Pipinato, A., & Modena, C. (2010). Structural analysis and fatigue reli-

ability assessment of the paderno bridge. Practice Periodical on 
Structural Design and Construction, 15(2), 109–124.

Pipinato, A., Pellegrino, C., Bursi, O. S., & Modena, C. (2009). 

Highcycle fatigue behavior of riveted connections for railway 

metal bridges. Journal of Constructional Steel Research, 65(12), 

2167–2175.

Samanta, A., & Mukhopadhyay, M. (1999). Finite element static and 

dynamic analyses of folded plates. Engineering Structures, 21, 

277–287.

Sayed-Ahmed, E. Y. (2001). Behaviour of steel and (or) composite 

girders with corrugated steel webs. Canada Journal Civil Engi-
neering, 28, 656–672.

Wu, W. Q., Ye, J. S., Wan, S., & Hu, C. (2005). Quasi plane assumption 

and its application in steel-concrete composite box girders with 

corrugated steel webs. Engineering Mechanics, 22(5), 177–180. 

(in Chinese).

Xu, D., Ni, Y. S., & Zhao, Y. (2015). Analysis method for corrugated 

steel web beam bridges using spatial grid modeling. China Civil 
Engineering Journal, 48(3), 61–70. (in Chinese).

Zhang, Y. H., & Lin, L. X. (2014). Shear lag analysis of thin-walled 

box girders based on a new generalized displacement. Engineer-
ing Structure., 61, 73–83.

Zhou, M. D., Li, L. Y., & Zhang, Y. H. (2015). Research on shear-lag 

displacement function of thin-walled box girders. China Journal 
Highway and Transport, 28(6), 67–73. (in Chinese).

Zhou, M., Liu, Z., Zhang, J. D., An, L., & He, Z. Q. (2016). Equivalent 

computational models and deflection calculation methods of box 

girders with corrugated steel webs. Engineering Structures, 127, 

615–634.

Zhou, M. D., Zhang, Y. H., Lin, P. Z., & Zhang, Z. B. (2022). A new 

practical method for the flexural analysis of thin-walled symmetric 

cross-section box girders considering shear effect. Thin-Walled 
Structures, 171, 108710.

Publisher's Note Springer Nature remains neutral with regard to 

jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds 

exclusive rights to this article under a publishing agreement with the 

author(s) or other rightsholder(s); author self-archiving of the accepted 

manuscript version of this article is solely governed by the terms of 

such publishing agreement and applicable law.

International Journal of Steel Structures (2024) 24(1):144–159 159


	Flexural Decoupling Analysis Method of Composite Box Girder with Corrugated Steel Webs
	Abstract
	1 Introduction
	2 Flexural Analysis of Composite Box Girder
	2.1 Coordinate System and Basic Assumptions
	2.2 Vertical Distribution of Flexural Displacement
	2.3 Transverse Distribution of Flexural Displacement

	3 Deflection Analysis Based on Generalized Displacement
	3.1 Define Generalized Displacements
	3.2 Define Generalized Internal Forces

	4 Establishment of Governing Differential Equation
	5 Initial Parameter Solution and Beam-Type Finite Element Method
	5.1 Initial Parameter Solution
	5.2 Beam-Type Finite Element Method

	6 Numerical Example
	6.1 Example 1: Simply Supported Composite Box Girder
	6.2 Example 2: Cantilever Composite Box Girder
	6.3 Example 3: Continuous Composite Box Girder With Varying Depth

	7 Conclusion
	Acknowledgements 
	References




