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Abstract
A new micromechanical criterion was proposed for ductile fracture caused by shear in low stress triaxiality regions. The 
influences of both the stress triaxiality and the Lode parameter were reasonably considered. The formula of the critical plastic 
strain for ductile fracture by shear was deduced based on the idea that the evolution of microvoids in materials under shear 
stresses is a successive procedure of nucleation, growth, elongation and collapse. Six shear specimens of G20Mn5QT cast 
steels were tested under monotonic tension. Three configurations of these specimens provided different combinations of the 
stress triaxiality and the Lode parameter. The critical void compression ratio for the void collapse was determined based 
on unit cell analysis and the shape of the dimples on the fracture surfaces of the test specimens. Parameters in the proposed 
criterion were then calibrated for G20Mn5QT cast steels based on tests and complementary finite element analysis of the 
shear specimens. Finally, different fracture mechanisms of G20Mn5QT cast steels were discussed.
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1 Introduction

With superior mechanical properties and the advantage of 
adapting to complex configurations, cast steels have become 
a promising solution for joints and connectors in steel con-
structions. In reticulated spatial structures, cast steel joints 
were often adopted to connect steel members from multiple 
spatial directions (Chen et al., 2016; Haldimann-Sturm & 
Nussbaumer, 2008). In different structure systems for high 
rise buildings, cast steel connectors were adopted as yield-
ing braces (Gray et al., 2014), steel beam-to-column con-
nections (Han et al., 2015; Sumer et al., 2007; Tong et al., 
2016), and shear link beams (Tong et al., 2018). With cast 
steels, smooth transitions can be easily fabricated to reduce 
the stress concentration and achieve a better structural per-
formance of the joints. However, the resistance of cast steels 
to the ductile fracture may be weakened considerably by 
cast defects. The ductile fracture is then a possible failure 

mode of cast steel joints and connectors under complex 
stress states.

Various micromechanical models are vital tools to 
address the ductile fracture of structural steels. In microme-
chanics of fracture, the ductile fracture of porous materials is 
related to the evolution of microvoids in the materials during 
load actions. In the late 1960s, Rice and Tracey (1969) found 
that the growth of microvoids is dependent on the stress 
triaxiality (T), which is the ratio of the hydrostatic pressure 
to von Mises stress. They deduced the relationship between 
the void growth rate and the plastic strain for the situation 
of high stress triaxiality (T ≥ 0.7). Hancock and Mackenzie 
(1976) simplified this relationship by ignoring the variation 
of the stress triaxiality during the loading process. Based 
on these researches, Kanvinde (2004) established the void 
growth model (VGM) and the stress modified critical strain 
(SMCS) model, in which the ductile fracture of the material 
was explained by the nucleation, growth and coalescence of 
the microvoids. In 1977, Gurson (1977) coupled the material 
degradation caused by the void development to the consti-
tutive equation and proposed the Gurson model. In 1984, 
Needleman and Tvergaard (1984) modified Gurson’s crite-
rion by taking into account the interaction between adjacent 
voids, and formed the GTN model. With these models, the 
ductile fracture can be predicted successfully for materials 
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at high stress triaxiality regions. Chi et al. (2006), Wang 
et al. (2011) and Liao et al. (2015) adopted the VGM and the 
SMCS model to simulate the ductile fracture of welded steel 
connections of different steels. Qian et al. (2005) and Huang 
et al. (2013) used the GTN model to predict ductile frac-
ture of circular hollow section joints and beam-to-column 
welded joints. Recently, micromechanical fracture models 
were extended to ductile fracture analysis of high strength 
steels. Yang et al. (2020) predicted the ductile fracture of 
S690Q, S700MC and S960Q steels based on the void growth 
equation proposed by Rice and Tracey (1969). Yan et al. 
(2021) calibrated parameters in the GTN model for cold-
formed S700 steels.

In 2004, Bao and Wierzbicki (2004) found that the stress 
triaxiality is not the only parameter controlling the ductile 
fracture of materials under pure shear states. For such low 
stress triaxiality situations, deviatoric stresses, which can 
be measured by the Lode angle or the Lode parameter, also 
have considerable effects on the ductile fracture of materials. 
Many researchers have proposed different micromechanical 
models considering the effect of the Lode angle or the Lode 
parameter for the prediction of ductile fracture of materials 
under shear stresses. Xue (2007) combined deviatoric state 
parameters to fracture envelope. Bai and Wierzbicki (2008) 
defined fracture locus by considering three kinds of stress 
states: compression, tension and shear, then Liu et al. (2019) 
replaced Lode angle in the Bai-Wierzbicki model with Lode 
parameter. Lou et al. (2012) showed that shear fracture of 
material was controlled by the normalized maximal stress. 
Wen and Mahmoud (2016), and Zhu and Engelhardt (2018) 
extended the void growth equation proposed by Rice and 
Tracey (1969) to low triaxiality situations by adding a Lode 
angle multiplier. Wang et al. (2020) proved the necessity of 
considering the Lode parameter in ductile fracture analysis 
of high strength steel under multi-axial loadings. Li et al. 
(2021) modified the GTN model to consider shear factor 
and size effect, while Jiao et al. (2021) proposed a dimen-
sionless quantity to evaluate shear-dominated fracture initia-
tion and propagation. With all these models, the accuracy of 
ductile fracture prediction for materials under shear stresses 
was significantly improved. Danas and Ponte Castañeda 
(2012), and Kiran and Khandelwal (2014) described the 
evolution of microvoids in materials under shear stresses as 
a successive procedure of nucleation, growth, elongation and 
collapse, which would result in the localized shear bands. 
Based on the behavior of microvoids under shear stresses, 
Yan and Zhao (2018) proposed an equation for the calcula-
tion of critical plastic strain for ductile fracture of materi-
als under shear stresses which is quite attractive due to its 
simple formulation.

Material parameters in the VGM and SMCS model have 
been calibrated for G20Mn5QT cast steels under ambient 
and low temperatures by Yin et al., 2020a and Yin et al., 

2020b. These calibrated models are applicable to ductile 
fracture analysis of the cast steels in high stress triaxial-
ity regions. This paper aims to establish a micromechanical 
model to address the ductile fracture caused by shear for 
G20Mn5QT cast steels in low stress triaxiality regions. For 
this purpose, a new formula was deduced for the critical 
plastic strain of ductile fracture by shear under the frame-
work of Yan and Zhao (2018) and calibrated for G20Mn5QT 
cast steels by tests on six shear specimens. A new criterion 
was stipulated for the onset of the void collapse according 
to scanning electron microscopes of the fracture surfaces 
of the test specimens. With this criterion and the reformu-
lated equations, the influences of the stress triaxiality and the 
Lode parameter on the void collapse and the ductile fracture 
by shear were reasonably evaluated.

2  Parameters for Stress State Definition

2.1  Stress Triaxiality

The stress triaxiality, T, plays an important role in ductile 
fracture of materials. As a measurement of the stress con-
centration, it is defined as the ratio of the hydrostatic stress, 
σm, to the von-Mises stress, σeq, as shown in Eq. 1.

The hydrostatic stress and the von-Mises stress can be cal-
culated by Eqs. 2 and 3.

where σ1, σ2 and σ3 are three principal stresses. The sign of 
the stress triaxiality is determined by the hydrostatic stress, 
which is positive for tension and negative for compression. 
The high stress triaxiality (T ≥ 0.7) usually represents the 
stress state of restricted tension, such as that at the crack tip, 
while the low stress triaxiality (T < 0.4) generally represents 
the specific stress states dominated by shear. When the stress 
triaxiality equals zero, the material is under the action of 
pure shear.

2.2  Equivalent Plastic Strain

Equivalent plastic strain describes the extent of plastic defor-
mation. It is an invariant of plastic strain tensor, represent-
ing its total cumulant, the increment form of which can be 
expressed by Eq. 4.
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The equivalent plastic strain is an important index for the 
ductile fracture of materials, based on which many criteria 
have been established.

2.3  Lode Angle

The Lode angle describes the deviatoric stress state, which 
may affect the ductile fracture of materials in low stress tri-
axiality regions. In the principal stress space, the plane per-
pendicular to the hydrostatic pressure denotes the deviatoric 
plane, and the Lode angle θ is defined as the angle between 
the principal deviatoric stress axis and the projection of the 
stress on the deviatoric plane, as shown in Fig. 1. The Lode 
angle ranges from −�∕3 to �∕3 , and θ = 0 represents the 
pure shear state.

2.4  Lode Parameter

The Lode parameter, L, is an alternative variable to describe 
the state of deviatoric stresses. A stress circle is shown in 
Fig. 2, where OP1 = σ1, OP2 = σ2 and OP3 = σ3. The circles 
with diameters of P1P3 are termed as Circle A. Then, taking 
the distance of OM as σm, and τ’ axis is made through point 
M. Therefore,

The center of the Circle A is taken as O1, the diameter as 
P1P3, then
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The Lode parameter, L, is defined as the ratio of O1P2 
to O1P1, representing the relative position of P1, P2 and 
P3, which is the characteristic of the stress state. The Lode 
parameter can be calculated by Eq. 10 and ranges from 
-1 to 1. For the monotonic tension stress state, σ1 > 0, 
σ2 = σ3 = 0 and L = -1; for the pure shear stress state, σ2 = 0, 
σ1 = -σ3 and L = 0; for the plane stress state, 2σ2 = σ1 + σ3 
and L = 0.

3  A New Micromechanical Criterion 
for Ductile Fracture Under Shear

3.1  Evolution of Microvoids Under Shear

In the ductile fracture dominated by shear, the bonding 
interface between particles is mainly subject to shear 
stresses, which makes it harder for voids to nucleate. 
Therefore, the process of void nucleation plays a more 
critical role in the ductile fracture. After nucleation, voids 
will be elongated along the direction of maximum shear 
stress. Then, the elongated voids may collapse under the 
shear action and form the localized shear bands.
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Fig. 1  Definition of the Lode angle

Fig. 2  Definition of Lode parameter
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3.2  Void nucleation Strain

It is assumed that the nucleation of microvoids occurs under 
the critical local stress that is the internal stress caused by 
the discordant deformation between the inclusions and the 
matrix (Goods & Brown, 1979). The process of the void 
nucleation can be described by continuum medium model 
proposed by Argon et al. (Argon et al., 1975), in which 
the critical local stress, σc, at the nucleation of the voids is 
expressed as the summation of the hydrostatic pressure, σm, 
and the von-Mises stress, σeq, as shown in Eq. 11.

By introducing the stress triaxiality, T, Eq. 11 can be writ-
ten as:

According to the plastic constitutive relation of the mate-
rial: σ = Kεp

n (K is the strength parameter; n is the hardening 
exponent), void nucleation strain, εnc, the equivalent plastic 
strain for the nucleation of the voids, can be obtained, as 
shown in Eq. 13 (Yan & Zhao, 2018).

3.3  Void Collapse Strain

The initial void volume fraction of ductile metals is usually 
tiny. Therefore, each void evolved almost independently after 
its nucleation (Bonora et al., 2005). The shear stress may 
cause the collapse of the ellipsoidal voids before the void 
coalescence, and result in oval-shaped dimples on the frac-
ture surface of the material. Therefore, the void compression 
ratio, λc, is introduced to quantify the ellipsoidal configura-
tion of the voids. The void compression ratio is defined as 
the ratio between lengths of the axis perpendicular to the 
fracture surface and the longest axis of the void. When λc 
reaches its critical value, the void is considered to collapse. 
Kiran and Khandelwal (2014) proposed that the expansion 
of the voids was mainly caused by the stress triaxiality, while 
the deformation of the voids was controlled by the Lode 
parameter. Thus, the critical void compression ratio, �critical

c
 , 

can be regarded as a function of the Lode parameter, as 
shown in Eq. 14, and the function can be determined based 
on the scanning electron microscope of fracture surfaces of 
test specimens.
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The equivalent plastic strain corresponding to the critical 
compression ratio is the void collapse strain, εcl, which is 
affected significantly by both the stress triaxiality and the 
Lode parameter. The relationship between εcl and these two 
parameters adopted in this paper is as shown in Eq. 15. This 
equation was obtained by removing the constant term of the 
equation proposed by Yan and Zhao (2018).

where p
1
 , p

2
 and p

3
 are material parameters. It would be 

illustrated in Sec. 4.4 that the removal of the constant term 
has little effect on the agreement of the equation with the 
results of the unit cell analysis since a new criterion was 
adopted for the onset of the void collapse in this paper. In 
addition, the removal of the constant term will add conveni-
ence for the following deductions.

3.4  The Micromechanical Criterion for Ductile 
Fracture Under Shear

Based on the study of the evolution of microvoids, a new 
micromechanical criterion was proposed for ductile frac-
ture under shear, in which the fracture criterion was 
expressed by the critical equivalent plastic strain, �s

f
 , as 

shown in Eq. 16.

where εnc, and εcl are void nucleation strain and void col-
lapse strain respectively; c1 and c2 are both material param-
eters. It should be noted that the new formula for the critical 
equivalent plastic strain, as shown in Eq. 16, was proposed 
by reformulating the counterpart equation in Yan and Zhao 
(2018), in which the critical equivalent plastic strain was 
calculated as the product of the void nucleation strain and 
the void collapse strain, as shown in Eq. 17.
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can be expressed as the function of the stress triaxiality and 
the Lode parameter, as shown in Eq. 18.
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shear specimens; c, c1 and c2 can be calibrated by tests and 
complementary finite element analysis on shear specimens.

It should be noted that several similar formats have been 
tried for the critical equivalent plastic strain, including 
Eq. 16 and Eq. 17. It was found that the reformulated equa-
tion, Eq. 16, led to a more concise expression of the critical 
equivalent plastic strain (Eq. 18) and will add convenience 
in the calibration of material parameters in Sec. 4.5.

4  Calibration of the Proposed 
Micromechanical Criterion for G20Mn5QT 
Cast Steels

4.1  Experimental Study on Shear Specimens

Six shear specimens were tested to calibrate the proposed 
micromechanical criterion for G20Mn5QT cast steels. A 
“butterfly” gauge section was used in the design of the speci-
mens, which was originally proposed by Bao and Wierzbicki 
(2004). Various shear specimens containing similar configu-
rations have been widely adopted by many researchers (Jia 
et al., 2016; Kong et al., 2020; Liu et al., 2019; Yan & Zhao, 
2018). Three different configurations (S0, S30 and S60, each 
with two repetitions), as shown in Fig. 3, were designed in 
this paper for different combinations of the stress triaxiality 
and the Lode parameter. These specimens were all machined 
from a 30 mm thick plate of G20Mn5QT cast steels and 
numbered after the angle θ between the central line of the 
thinned part of the specimen and the loading direction.

The tests were carried out on the universal testing 
machine in the Structure Laboratory of Tianjin Univer-
sity, and the typical test setup is as shown in Fig. 4. All 
the specimens were tested under uniaxial tension, and the 

loading procedure was controlled by the extensometer shown 
in Fig. 4. In order to obtain the ideal shear stress state, all 
the specimens were loaded through pin connections at both 
ends. The gauge length of the extensometer was 50 mm and 
the measuring range was ± 10%. All test specimens were 
loaded monotonically until the ductile fracture occurred at 
the thinned part of the specimens.

Load-deformation curves obtained by tests for these spec-
imens are as shown in Fig. 5. The initiation of the ductile 
fracture was identified by the sudden change in the slope of 
these curves, which is also consistent with the observation 
during the tests. It was observed that ductile fracture initi-
ated on the surfaces of the thinned part for all test specimens 
and the fractured specimens were shown in Fig. 6. For all 
three groups of specimens, the load-deformation curves 
exhibited considerable differences, especially for specimen 
S30. Possible reasons for these differences were attributed 
to the variability of the cast steel materials and the manu-
facturing error. 

4.2  Scanning Electron Microscopes

Dimples on scanning electron microscopes (SEM) of the 
fracture surfaces are illustrated for the shear specimens in 
Fig. 7. Since the ductile fracture occurred due to shear or 
combined action of shear and tension, the shape of most 
dimples on the fracture surfaces of the specimens was ellipti-
cal, as shown in Fig. 7. Obvious elongation along the direc-
tion of the maximum shear stress was observed.

The shapes of dimples on the fracture surfaces of the 
shear specimens were compared. With the measured long 
axis (D1) and short axis (D2) of the elongated dimples, Fig. 3  Configuration of shear specimens

Fig. 4  Test setup



1311International Journal of Steel Structures (2022) 22(5):1306–1321 

1 3

Fig. 5  Load-deformation curves for all shear specimens

Fig. 6  Fractured shear specimens
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as shown in Fig. 7 (a), the elongation ratios (λe = D1/ D2) 
of these dimples were calculated. Twenty dimples were 
selected randomly at the center of the scanning electron 
microscopes shown in Fig. 7 for the determination of the 
elongation ratios. The maximum, minimum and average 
elongation ratios were listed in Table 1 for all shear speci-
mens. The average values were adopted to determine the 
critical void compression ratio, λc, for triggering the void 
collapse in Sect. 4.4.

Stepped cleavage planes formed by shear action were also 
noticed on the fracture surfaces of the specimens. Two types 
of cleavage plane distributions can be distinguished by the 
observation of SEM, as shown in Fig. 8 (a) for specimen S0. 
Large and concentrated cleavage planes (Types A), as shown 
in Fig. 8 (b), were found in limited areas along the top and 
bottom edges of the fracture surface. Small and dispersed 
cleavage planes (Type B), as shown in Fig. 8 (c), interlaces 
with dimples areas in the center area of the fracture surface.

4.3  Determination of the Hardening Exponent n

Tension coupon tests had been conducted for this batch 
of G20Mn5QT cast steels by Yin et al., 2020b. The true 
stress–strain curve obtained based on the test results was 
shown in Fig. 9.

This true stress–strain relationship can be expressed by 
the Holloman formula, as shown in Eq. 19.

where K is the strength parameter and n is the hardening 
exponent. Obviously, the true stress has linear relationship 
with the true strain in the double logarithmic coordinate 
according to the Holloman formula. By linear regression 
analysis, it was obtained that K = 879.1 and n = 0.16.

4.4  Determination of Parameters p1, p2 and p3 
by the Simulation of Void Elongation

Assuming that the nucleate voids are initially spheri-
cal and are scattered randomly in the material, a mac-
roscopic material point can be simulated by a unit cell 
with a spherical cavity at the center. This unit cell has 
often been employed in the analysis of the evolution of the 
microvoid (Bonora et al., 2005; Kuna & Sun, 1996; Yan & 

(19)� = K�n
p

Fig. 7  Dimples in SEM of 
the fracture surfaces of shear 
specimens

Table 1  Elongation ratios for shear specimens

Specimen# Elongation ratio

Maximum Minimum Average

S0 2.6 1.7 2.1
S30 2.9 1.7 2.6
S60 4.0 1.9 3.3
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Zhao, 2018). By the unit cell analysis, the elongation of 
the microvoid can be simulated to determine the critical 
collapse strain for the void under low positive or slightly 
negative stress triaxiality. The unit cell analyzed in this 
section was shown in Fig. 10 (a). The length of all the 
edges of the unit cell is 2L0 and the radius of the spheri-
cal cavity was set to be r0 = L0/3.74 so that the initial void 
volume fraction (f0) was 0.01 (Kiran & Khandelwal, 2013).

The finite element model was established for the unit cell 
with general finite element software ABAQUS, as shown in 
Fig. 10 (b). In consideration of the symmetricity, only 1/8 of 
the unit cell was modeled. 8-node linear brick element with 
reduced integration, C3D8R, implemented in ABAQUS, was 
adopted for model discretization. All the outer surfaces of the 
unit cell were kinematically constrained, and only the uniform 
deformation along their normal direction was allowed. Mate-
rial properties were set according to test data on G20Mn5QT 
cast steels in Yin et al. (2020b).

A total number of 48 groups of principal stresses (σ1, σ2 and 
σ3) were adopted in the unit cell analysis to produce different 
combinations of the stress triaxiality and the Lode parameter. 
The influences of these two parameters on the void evolution 
were investigated based on the results of the unit cell analy-
sis. Three principal stresses were calculated from the speci-
fied values of the stress triaxiality and the Lode parameter by 
Eqs. 20 and 21, which were deduced from Eqs. 1 and 10. The 
variation range of the stress triaxiality was [-0.3, 0.4] with the 
interval of 0.1 and that of the Lode parameter was [-1, 0] with 
the interval of 0.2.
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Fig. 8  Cleavage planes in SEM 
of the fracture surfaces of speci-
men S0-1

Fig. 9  True stress–strain relationship of G20Mn5QT cast steels
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Typical shapes of the deformed void obtained by the unit 
cell analysis for different combinations of the stress triaxi-
ality and the Lode parameter were illustrated in Table 2. 
The stress triaxiality almost has no influence on the shape-
changing of the void, and the shape of the deformed void 
depends only on the Lode parameter. With the increase of 
the Lode parameter from -1 to 0, the shape of the deformed 
void changed gradually from prolate ellipsoids (D1 > D2≈D3) 
to oblate ones (D1≈D2 > D3) (Zhu & Engelhardt, 2018), 
where D1 and D2 are as shown in Fig. 7 (a) and D3 is the 
length of the axis perpendicular to the fracture surface. For 

the loading conditions with zero Lode parameter, the shear 
stress would squeeze the void to a very flat configuration, 
which facilitated the deformed void to collapse. For the load-
ing conditions with the Lode parameter being -1, the length 
of the two short axes of the deformed void remained equal, 
which made the void rather difficult to collapse.

As shown in Fig. 11, a void deformed and was about 
to collapse under the stress state of T = 0.4 and L = − 0.2. 
Though D1 and D2 can be measured on the fracture sur-
face for the calculation of the elongation ratio (λe = D1/ D2), 
the stability of the void is more related to D3, the length 

Fig. 10  Finite element model setup for unit cell analysis

Table 2  Evolution of the void in different stress states

L = 0 L = − 0.2 L = − 0.6 L = − 1

T = − 0.3

    

T = 0

    

T = 0.4
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of the shortest axis perpendicular to the fracture surface. 
Therefore, the compression ratio, defined as λc = D3/D1 in 
Sect. 3.3, was adopted to trigger the collapse of the void for 
the determination of the void collapse strain.

Two criteria were investigated for the onset of the void 
collapse based on the unit cell analysis of the three shear 
specimens tested in Sec. 4.1. One is the complete vanish-
ment of the void (Yan & Zhao, 2018), i.e., �critical

c
=0 . Unit 

cell analysis showed that, based on this criterion, the elonga-
tion ratios of the collapsed void were λe = 2.3, 3.0 and 12.5 
for specimens S0, S30 and S60, respectively. These elonga-
tion ratios were inconsistent with those obtained by meas-
urements on the scanning electron microscopes in Sect. 4.2, 
especially for specimen S60. Therefore, a new criterion was 
proposed that void collapse occurs when the compression 
ratio, λc = D3/D1, was squeezed to specific values. The elon-
gation ratios measured on the scanning electron microscopes 
were λe = 2.1, 2.6 and 3.3 for specimens S0, S30 and S60, 
respectively. The corresponding compression ratios obtained 
by unit cell analysis were λc = 0.13, 0.15 and 0.20, which 
were the critical compression ratios for the void collapse 
of these specimens. The critical compression ratio, �critical

c
 , 

varied with the Lode parameter almost linearly, as shown in 
Fig. 12 and the linear relationship, defined by Eq. 22, was 
adopted for the calculation of the critical compression ratios 
for all the 48 loading conditions in unit cell analysis.

 
In unit cell analysis, when the compression ratio reached 

its critical value, the void collapse strain εcl can be calculated 
by Eqs. 23 and 24.

(22)�
critical
c

= −0.12L + 0.12

(23)�
i
= ln

(

L
0
+ U

i

L
0

)

where Ui (i = 1, 2, 3) is the normal displacement for the 
surface at xi = Li; εi is the strain in xi direction.

The void collapse strains obtained by unit cell analysis for 
all the 48 loading conditions were illustrated in the stress tri-
axiality and the Lode parameter space, as shown in Fig. 13. 
According to the regression analysis, the parameters in 
Eq. 15 were determined as p1 = 0.47, p2 = 1.1 and p3 = -0.1. 
The determination coefficient, R2, was calculated by Eq. 25 
to evaluate the precision of the regression analysis.

where SSE is the residual sum of squares; SST is the total 
sum of squares. It was obtained that the determination coef-
ficient was 0.982, which indicated that the surface defined 
by Eq. 15 was in good agreement with the results of the unit 
cell analysis, as also observed from Fig. 13.

(24)�cl =
1

3
[(�

1
− �

2
)2 + (�

2
− �

3
)2 + (�

3
− �

1
)2]

(25)R2 = 1 −
SSE

SST

Fig. 11  Typical deformation of a void (T = 0.4 and L = − 0.2)

Fig. 12  Variation of the critical compression ratio with the Lode 
parameter
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It should be noted that parameters p2 and p3 reflect how 
the void collapse depends on the stress triaxiality and the 
Lode parameter. The two parameters were determined rea-
sonably with the reformulated equation for the void collapse 
strain and the critical compression ratio for the onset of the 
void collapse. These parameters can be substituted into 
Eq. 18 directly for the calculation of the critical plastic strain 
of the ductile fracture by shear for G20Mn5QT cast steels.

4.5  Calibration of Parameters c, c1 and c2

Parameters c, c1 and c2 were calibrated by complemen-
tary finite element simulations of the tests on the shear 
specimens. Finite element models were set up with gen-
eral finite element software ABAQUS, as shown in Fig. 14 
for specimen S0. Though the dimensions of all specimens 
were measured before tests, it was found very difficult to 
measure the thickness of the specimens at the fracture 
location with high precision. Therefore, all FE models 

were established based on the nominal dimensions of the 
specimens. Eight-node linear brick element with reduced 
integration, C3D8R, was adopted for model discretization 
except for the 4-node linear tetrahedron element, C3D10, 
for the transition zone. Extremely fine meshes with ele-
ment sizes of 0.2 mm, which is approximately the char-
acteristic length of G20Mn5QT cast steels, were gener-
ated around the potential fracture locations and transited 
gradually to relatively coarse meshes in other regions of 
the specimens. The characteristic length is a length scale 
introduced in VGM and SMCS model (Kanvinde & Deier-
lein, 2006) for ductile fracture of materials. Micromechan-
ical fracture criteria should be met over the characteristic 
length to initiate the ductile fracture. Therefore, in ductile 
fracture analysis, the mesh size of the finite element model 
at the potential fracture location should be approximately 
the characteristic length of the material. The characteristic 
length depends on the microstructure of the material and 
can be determined for particular material through scanning 
electron microscopy of its fracture surfaces. In Yin et al., 
2020b, the characteristic length of G20Mn5QT cast steel 
was determined as 0.214 mm by SEM analysis. To ensure 
the accuracy of the calculation, there were at least four 
elements along the thickness direction. The boundary and 
loading conditions of all the finite element models were 
set in consistency with the corresponding tests. The elastic 
and plastic material properties obtained by tension coupon 
tests on the same batch of G20Mn5QT cast steels (Yin 
et al., 2020b) were adopted in all finite element analysis.

Load–displacement curves obtained by finite element 
simulations agreed with the corresponding test results, as 
shown in Fig. 5Fig., which verified the rationality of the 
finite element analysis. The reasons for the differences 
between finite element simulations and the test results 
were also the variability of the cast steel materials and 
the test errors. Calibration of the parameters based on 

Fig. 13  The void collapse strain in the stress triaxiality and the Lode 
parameter space

Fig. 14  Typical finite element 
model of the shear specimens
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test results of all the six specimens would make for the 
decrease of the influence of errors.

According to finite element simulations, the maximum 
equivalent plastic strain occurred on the surface of the thinned 
region for all shear specimens, as shown in Fig. 15, which was 
consistent with the observations during the tests. The deforma-
tions obtained by FEA for the shear specimens under differ-
ent loadings were also consistent with the test observation, as 
shown in Fig. 16 for specimen S0.

The stress state at the fracture location of the specimens 
varied with the loading process. Accordingly, the average 
stress triaxiality Tav and average Lode parameter Lav were cal-
culated by Eqs. 26 and 27 respectively to represent the ‘aver-
age’ stress state during the loading process.

(26)Tav =
1

�f ∫
�f

0

Td�

Fracture displacements, Δf, were determined from the sud-
den change in the slope of the load–displacement curves 
obtained by tests, as shown in Fig. 5. The maximum equiva-
lent plastic strain corresponding to the fracture displacement 
was the critical plastic strain, �test

f
 , which can be determined 

based on the results of finite element simulations. The frac-
ture displacement (Δf), the critical plastic strain ( �test

f
 ), the 

average stress triaxiality (Tav) and the average Lode param-
eter (Lav) were summarized in Table 3 for all the six shear 
specimens. Based on these data, the last three parameters in 
Eq.  18 were then obtained as c = 0.97, c1 = 1.65 and 
c2 = 18.75 by regression analysis.

All the determined parameters were then substituted 
into Eq. 18 and the critical equivalent plastic strain for 
ductile fracture under shear can be expressed by the stress 

(27)Lav =
1

�f ∫
�f

0

Ld�

Fig. 15  Equivalent plastic strain 
contours at the crack initiation 
of the shear specimens

Fig. 16  Comparison of deformations by FEA with test observations for specimen S0-1
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triaxiality and the Lode parameter for G20Mn5QT cast 
steels, as shown in Eq. 28.

The critical equivalent plastic strains calculated by Eq. 28 
were compared with the test results for all shear specimens, 
as shown in Table 3. The differences between the results of 
Eq. 28 and the tests were all less than 9%, which verified 
the applicability of the proposed micromechanical criterion 
and the accuracy of the material parameters calibrated for 
G20Mn5QT cast steels in the section.

The surface defined by Eq. 28 illustrated the variation 
of the critical plastic strain with the stress triaxiality and 
the Lode parameter, as shown in Fig. 17. The data points 
for the six shear specimens in Table 3 scattered on the 
surface, as shown in the figure, which indicated again that 
the critical equivalent strains calculated by Eq. 28 were in 
good agreement with the test results. It should be noted 
that this equation is only applicable to situations with 
-1 ≤ L ≤ 0 because only specimens with the Lode param-
eter in this range were tested.

(28)�
s
f
=

0.97 ⋅ e1.8T−0.17L

(T + 1)3

5  Discussion on Different Fracture 
Mechanisms of G20Mn5QT Cast Steels

In the previous two sections of this paper, a new micro-
mechanical criterion was proposed and calibrated for 
G20Mn5QT cast steels to predict the ductile fracture under 
shear. A formula (as shown in Eq. 28) has been set up for the 
calculation of the critical plastic strain that is corresponding 
to the ductile fracture occurred in the region of low stress 
triaxiality. For the material in the region of high stress tri-
axiality, ductile fracture tends to occur under tension. For 
such situation, the stress modified critical strain (SMCS) 
model has been calibrated for G20Mn5QT cast steels (Yin 
et al., 2020b). Based on the SMCS model, the critical plastic 
strain for the ductile fracture under tension can be calculated 
by Eq. 29, where α represents the material’s resistance to 
ductile fracture and α = 1.4 for G20Mn5QT cast steels as 
calibrated by Yin et al. (2020b).

The surface defined by Eq. 29 intersected with that by Eq. 28 
in the stress triaxiality and the Lode parameter space, as 
shown in Fig. 17. Only the lower parts of the two surfaces 
were plotted, which formed a failure surface for ductile frac-
ture of G20Mn5QT cast steels. Data points representing tests 
on smooth notched tensile (SNT) specimens of G20Mn5QT 
cast steels (Yin et al., 2020b) were also summarized and 
labeled in Table 4 and Fig. 17, respectively.

Ductile fracture under tension and under shear are 
two competing failure mechanisms for different combi-
nations of the stress triaxiality and the Lode parameter 

(29)�
t
f
= �e−1.5T

Table 3  Critical equivalent 
plastic strains for shear 
specimens

Specimen # Δf (mm) Tav Lav �
test

f
�
s

f
 by Eq. 28 (�s

f
−�test

f
)/�test

f

S0-1 2.80 0.012 − 0.037 0.927 0.962 3.82%
S0-2 3.20 0.013 − 0.040 1.021 0.962 − 5.80%
S30-1 1.90 0.114 − 0.284 0.835 0.904 8.27%
S30-2 2.10 0.120 − 0.300 0.957 0.901 − 5.78%
S60-1 1.20 0.254 − 0.646 0.823 0.867 5.37%
S60-2 1.30 0.264 − 0.673 0.922 0.866 − 6.06%

Fig. 17  Variation of critical plastic strain with stress triaxiality and 
Lode parameter

Table 4  Stress states for SNT specimens (Yin et al., 2020b)

Specimen # Δf (mm) Tav Lav �
test

f

SNT1-1 0.77 1.350 − 1 0.927
SNT1-2 0.80 1.345 − 1 1.021
SNT2-1 0.96 1.001 − 1 0.835
SNT2-2 1.00 0.995 − 1 0.957
SNT3-1 1.32 0.784 − 1 0.823
SNT3-2 1.35 0.783 − 1 0.922
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(Barsoum & Faleskog, 2007; Li et al., 2011; Pardoen & 
Brechet, 2004). The smaller value of the critical plastic 
strains calculated by Eqs. 28 and 29 determines whether 
the final ductile fracture is caused by tension or shear. The 
intersecting curve between the two surfaces was projected 
onto the T - L coordinate system, as shown in Fig. 18. 
For combinations of the stress triaxiality and the Lode 
parameter on the left side of this curve, the ductile fracture 
will be caused by tension; for those on the right side, the 
ductile fracture will be caused by shear. It can be seen 
that the fracture mechanism depends mainly on the stress 
triaxiality, and the Lode parameter has limited influence 
on it. Ignoring this minor influence of the Lode parameter, 
fracture mechanism can be determined for G20Mn5QT 
cast steels approximately based on the stress triaxiality: 
tension fracture occurs when T > 0.371 and shear fracture 
occurs when T ≤ 0.371, as shown in Fig. 18. The critical 
plastic strain can then be calculated by Eq. 28 or Eq. 29 
accordingly.

Critical plastic strains for both fracture mechanisms 
were calculated for the shear specimens and the STN 
specimens in (Yin et al., 2020b) by Eq. 28 and Eq. 29, 
respectively. Then the fracture displacements were pre-
dicted based on complementary finite element simulations 
of tests on these specimens. The predicted fracture dis-
placements were compared with the test results for the 
two fracture mechanisms in Fig. 19. For the shear spec-
imens with stress triaxiality lower than 0.371, the pro-
posed micromechanical fracture criterion (Eq. 28) gave 
more accurate predictions; for SNT specimens with stress 
triaxiality higher than 0.371, the SMCS model (Eq. 29) 
was more applicable. It should be noted that, for specimen 
S60 with relatively large stress triaxiality, the accuracy of 
the SMCS model is also acceptable. However, for speci-
men S0 with very small stress triaxiality, the SMCS model 

predicted the fracture displacement about 30% larger than 
the test result, and for negative stress triaxiality, the accu-
racy of the SMCS model will be even poorer.

6  Conclusions

A new micromechanical criterion was proposed for ductile 
fracture caused by shear in low stress triaxiality regions, in 
which the influences of both the stress triaxiality and the 
Lode parameter were reasonably considered. Six shear spec-
imens of G20Mn5QT cast steels were tested under mono-
tonic tension. Scanning electron microscopes of the fracture 
surfaces of the test specimens were studied. It was illustrated 
that shear action played a more dominating role with the 
decrease of the stress triaxiality and the Lode parameter. 
The critical void compression ratio for the void collapse 
was determined in accordance with the shape of the dim-
ples observed on the fracture surfaces of the test specimens. 
Parameters in the proposed criterion were then calibrated for 
G20Mn5QT cast steels based on unit cell analysis, scanning 
electron microscopes, and results of the tests and comple-
mentary finite element analysis on the shear specimens. The 
critical equivalent plastic strains predicted by the proposed 
micromechanical criterion agreed very well with the test 
results for all shear specimens, which verified the appli-
cability of the proposed criterion and the accuracy of the 
material parameters calibrated for G20Mn5QT cast steels. 
Different fracture mechanisms of G20Mn5QT cast steels 
were discussed. Fracture mechanism can be determined for 
G20Mn5QT cast steels approximately based on the stress 
triaxiality: fracture by tension when T > 0.371 and fracture 
by shear when T ≤ 0.371.

Fig. 18  Determination of fracture mechanism for G20Mn5QT cast 
steels

Fig. 19  Comparison of predictions by the proposed criterion and the 
SMCS model
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