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Abstract
In most cases, the normal or log-normal distributions are assumed for the recorded statistical data in the process of fragility 
curve construction. This study aims to evaluate the validity of these assumptions and their influence on the accuracy of the 
results. For this purpose, considering the intensity corresponding to different damage levels as the statistical data, the analyti-
cal method is used for the development of fragility curves, taking advantage of incremental dynamic analysis for six multi-
story moment-resisting steel frame structures with 3, 5, 7, 10, 12 and 15 stories. Comparison of the fragility curves attained 
by the assumptions of normal and log-normal distribution shows close agreement between the results, such that the maximum 
difference for different performance levels in the frame structures is determined to be about 13%. According to the outcomes 
of numerical tests such as Shapiro–Wilk and Kolmogorov–Smirnov and the graphical and descriptive tests performed on 
the attained statistical results, the assumption of the normal distribution is not incorrect for all of the performance levels. 
However, the assumption of the log-normal distribution is a more reliable hypothesis. Accordingly, it is proposed to utilize 
this assumption for the development of fragility curves in the reliability evaluation of structures subjected to seismic loading.

Keywords Seismic reliability · Fragility analysis · Statistical distribution · Shapiro–Wilk test · Kolmogorov–Smirnov test · 
Descriptive test

1 Introduction

Due to the wide range of uncertainties in the process of 
seismic analysis of structures, the best and most reasonable 
method seems to be the probabilistic approach (Ang & Tang, 
2007). In this regard, reliability and fragility analysis are 
the most effective approaches. The development of fragility 
curves requires a statistic and probabilistic analysis that can 
be performed by different methodologies (including analyti-
cal, experimental, and combined methods and even methods 
based on engineering judgment) depending on the desired 
accuracy (Baharvand & Ranjbaran, 2020; Zuo et al., 2019). 
However, the analytical techniques are frequently used in 
the case of accurate computer models due to acceptable 

accuracy and ease in controlling data and the attained sta-
tistical sets.

Considering the special features of Incremental Dynamic 
Analysis (IDA) in dealing with the inherent uncertainties 
of ground motions records and providing an appropriate 
statistical population, this approach is usually used in the 
development of fragility curves (Vamvatsikos & Cornell, 
2002, 2004).

Assuming that parameter  r  represents the structural 
response, R stands for the limit state corresponding to a pre-
defined damage level, IM designates the earthquake intensity 
measure, and im is a given excitation intensity, then a fragil-
ity curve in the form of Eq. 1 determines the probability that 
the response exceeds the limit states for the given intensity:

Fragility curves are the cumulative distribution function 
of damage (Hao, 2011). There are generally two approaches 
of constant damage level (IM-based; IM stands for Intensity 
Measure) and constant hazard level (EDP-based; EDP stands 
for Engineering Demand Parameter) methods for fragility 
analysis (Mohsenian et al., 2021c; Zareian et al., 2010). In 

(1)Fragility = P[r ≥ R|IM = im]
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the first approach (IM-based), the probability of exceeding 
from limit responses corresponding to a predefined perfor-
mance level is determined for various earthquake intensity 
levels. In this method, which is more common, the intensity 
measure corresponding to the considered performance level 
is used for establishing a statistical population. On the other 
hand, in the EDP-based method, which is deemed more 
appropriate for seismic retrofitting purposes, the probability 
of exceeding different performance levels for a given inten-
sity of the applied excitation is determined. In this approach, 
the structural response is considered as statistical data. In 
some cases, the fragility curves may be established using 
both methods. For this purpose, the exceedance probabili-
ties for different intensities are derived discretely using the 
EDP-based approach. Then, using the IM-based method, the 
fragility curve is described as the best curve fitted to the 
extracted points in the previous step.

The development of fragility curves provides a powerful 
means for evaluating the influence of different parameters 
on the seismic responses of structures. Accordingly, fragil-
ity analysis has been performed by various investigators for 
different purposes. For instance, some researchers utilized 
the fragility curves for seismic performance evaluation of 
different structural systems under different types of excita-
tions (Ghowsi & Sahoo, 2013; Kim & Leon, 2013; Lee et al., 
2018; Mohsenian, Filizadeh, et al., 2021). Fragility curves 
are also powerful tools for assessing the effectiveness of dif-
ferent retrofitting and strengthening methods on the seismic 
response of damaged or weak structures (Mohsenian et al., 
2020, 2021b). For instance, Ahmadi and Ebadi Jamkhaneh 
(2021) utilized fragility analysis to evaluate the effective-
ness of the energy dissipation devices on improving the 
seismic performance of structures with a soft story. Shafaei 
and Naderpour (2020) utilized fragility analysis to evaluate 
the seismic performance of reinforced concrete frame struc-
tures retrofitted by FRP and subjected to main shock-after 
shock sequence. Montazeri et al. (2021) performed fragility 
analysis to assess the seismic performance of retrofitted con-
ventional bridges. Kima and Shinozuka (2004) developed 
fragility curves for bridges retrofitted by steel jacketing.

A review of previous studies shows the extensive applica-
tions of fragility analysis. Evaluations showed that in most 
of the past investigations, the fragility curves were devel-
oped assuming a probabilistic distribution for the statistical 
data. However, the log-normal distribution is a more com-
mon assumption, but the normal distribution has also been 
used in previous studies for fragility curve development 
(Mohsenian et al., 2021c). Although the accuracy of the 
fragility analysis directly depends on such assumption, its 
validity is not verified and even in some cases, investigators 
attempted to propose alternative methods to prevent making 
such assumptions (Sudret et al., 2014). Needless to say, in a 
project depending on the size and importance, the accuracy 

of the results can considerably affect the safety and economi-
cal aspects. According to the authors’ best knowledge, the 
only available study that evaluates the validity of assump-
tions regarding the distribution of statistical data used in 
fragility curve development is the research performed by 
Shinozuka et al. (2000). In this study, the authors tested the 
goodness of fit of the fragility curves developed by assum-
ing two-parameter log-normal distribution and estimated the 
confidence intervals of the two parameters (median and log-
standard deviation) of the distribution. However, this study 
was performed on a bridge structure.

The present study tends to evaluate the accuracy of the 
assumptions of normal and log-normal distribution for the 
data used in fragility curve development in building struc-
tures, and also determine the sensitivity of the results of 
fragility analysis to these assumptions. What makes this 
study distinctive from the previous similar research works 
and the major novelties of the present paper are its focus 
on the building structures, the utilized performance-based 
viewpoint, and a clear and applicable methodology. More-
over, assessment of the sensitivity of fragility curves to 
different assumed distributions (normal or log-normal) is 
another novelty of the present study. For this purpose, six 
multi-story moment-resisting steel frames with 3, 5, 7, 10, 
12, and 15 stories are designed. Considering different per-
formance and hazard levels, fragility curves are developed 
assuming both normal and log-normal distributions for the 
data derived from Incremental Dynamic Analysis (IDA). 
Different numerical tests such as Shapiro–Wilk and Kol-
mogorov–Smirnov, as well as the graphical and descriptive 
tests, are performed on the utilized data sets for fragility 
curve development to assess the validity of the assumed dis-
tributions, and according to the outcomes of the performed 
statistical tests, the assumption of the log-normal distribu-
tion is more reliable, although the normal assumption is also 
not incorrect for all of the performance levels.

This study is organized into six sections. Sections 2 and 
3 present the details of the studied models and the adopted 
assumptions for nonlinear modeling of the structures. The 
hierarchy of incremental dynamic analysis and fragility 
analysis of the studied frame structures using both normal 
and log-normal assumptions are discussed in Sect. 4. The 
performed tests on the attained data for fragility curve devel-
opment to determine the appropriate statistical distribution 
and the attained results are presented in Sect. 5. Finally, 
Sect. 6 concludes this study.

2  Characteristics of the Studied Models

In this study, 2-dimensional intermediate moment-resisting 
steel frame structures, depicted in Fig. 1, are used. The grav-
itational dead (QD) and live (QL) loads in the stories are 31.5 
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Fig. 1  Geometrical properties and loading details of the studied structures
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and 10 kN/m2, respectively. The roof live load (QL) is 7.5 
kN/m2. The span length and story heights are identical for 
all the structures and equal to 5 and 3.2 m, respectively. To 
investigate the effect of structural height, 3, 5, 7, 10, 12, and 
15-story structures are designed. The selected heights for the 
modeled structures are in the range of allowable height range 
for the moment-resisting steel frame system (a maximum of 
50 m from the base level).

It is assumed in the design phase that the structures 
belong to the category of ordinary buildings and are located 
in a site with high seismicity (PGA = 0.35 g). The site soil 
is considered to be type C according to ASCE7 (ASCE, 
2010) categorization (stiff soil with the shear wave velocity 
between 375 to 750 m/s). The frame structures are designed 
according to AISC360 (AISC, 2010) using ETABS software 
(CSI, 2015).

For the beams and columns, I-shaped and box sections are 
used, respectively. The properties of the beam and columns 
sections, which are specified by  Bi and  Ci in Fig. 1, are pre-
sented in Table 1.

It is noteworthy that the geometry, member sections, and 
loading of the frame structures are symmetrical relative 
to the z-axis (see Fig. 1). Rigid diaphragms are also con-
sidered at each story level. A360 steel grade with the yield 

stress, Poisson’s ratio, and modulus of elasticity equal to 
250 MPa, 0.26, and 210 GPa is considered for the structural 
components of the designed buildings (ASTM, 2019).

3  Modeling Nonlinear Behavior 
of Structures

PERFORM-3D software (CSI, 2017) is used for 2-dimen-
sional nonlinear modeling and analysis of the structure. The 
gravitational loading assumptions for the nonlinear model 
are the same as the linear model. It should be noted that in 
the combination of gravitational and lateral loads, the effects 
of the gravitational loads (QG) is considered according to 
Eq. 2, in which QD and QL stand for the dead and live loads, 
respectively (ASCE, 2017):

The generalized load-deformation curve depicted in Fig. 2 
is used for nonlinear modeling of beams and columns of the 
frame structures. The parameters a, b, and c in this figure are 
extracted from the table of acceptance criteria of steel mem-
bers according to the yielding mode and compactness of the 

(2)QG = QD + 0.25QL

Table 1  Geometrical properties 
of the beam and column section 
of the designed structures 
(dimensions are in mm)

Columns Beams

ID Section (width × thikness) ID Section (width × thikness)
C0 Box(180 × 8) B0 Web(350 × 6)-Flanges(150 × 8)
C1 Box(240 × 8) B1 Web(270 × 6)-Flanges(120 × 8)
C2 Box(350 × 15) B2 Web(350 × 10)-Flanges(180 × 20)
C3 Box(300 × 15) B3 Web(350 × 10)-Flanges(200 × 20)
C4 Box(400 × 20) B4 Web(300 × 10)-Flanges(200 × 20)
C5 Box(240 × 10) B5 Web(270 × 10)-Flanges(150 × 20)
C6 Box(200 × 8) B6 Web(240 × 10)-Flanges(150 × 20)
C7 Box(180 × 8) B7 Web(400 × 6)-Flanges(150 × 10)
C8 Box(300 × 10) B8 Web(300 × 6)-Flanges(150 × 10)
C9 Box(270 × 10) B9 Web(270 × 6)-Flanges(120 × 10)
C10 Box(150 × 8) B10 Web(300 × 15)-Flanges(180 × 15)
C11 Box(500 × 20) B11 Web(350 × 10)-Flanges(250 × 25)
C12 Box(400 × 15) B12 Web(350 × 10)-Flanges(200 × 25)
C13 Box(300 × 20) B13 Web(270 × 10)-Flanges(180 × 20)
C14 Box(250 × 15) B14 Web(300 × 8)-Flanges(180 × 15)
C15 Box(200 × 20) B15 Web(270 × 8)-Flanges(180 × 15)
C16 Box(200 × 15) B16 Web(240 × 8)-Flanges(150 × 15)
C17 Box(240 × 15) B17 Web(200 × 8)-Flanges(150 × 15)
C18 Box(180 × 15) B18 Web(350 × 10)-Flanges(300 × 20)
C19 Box(600 × 25) B19 Web(200 × 10)-Flanges(150 × 20)
C20 Box(550 × 25) – –
C21 Box(450 × 20) – –
C22 Box(350 × 20) – –
C23 Box(270 × 15) – –
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structural elements (ASCE, 2017). According to Fig. 2, the 
slope of the initial hardening stage of steel, tg(α), is set to 
be the 3% of the slope of the elastic branch, tg(β). (ASCE, 
2017). In this figure, θ represents the plastic hinge rotation.

The maximum expected strength, QCE, of the beams is 
derived from Eq. 6, while for the columns Eqs. 4 and 5 are 
used:

In these equations, Z and Fye are the plastic section modu-
lus and the expected yield stress of materials, respectively. 
P stands for the axial force of the member at the beginning 
of the dynamic analysis, Pye is the axial load correspond-
ing to the axial yielding of the column, which is derived by 
multiplying the cross-section of the element by the expected 
yield stress of materials ( Pye = AFye).

It is also noteworthy that concentrated flexural-axial 
hinges are considered for the beam and column elements at 
the critical locations (both ends).

4  Developing Fragility Curves Using 
Incremental Dynamic Analysis

First, the selected ground motions are applied to the struc-
ture and the modeled structures are analyzed using the 
Incremental Dynamic Analysis (IDA). 30 pairs of ground 
motion records corresponding to the site condition (the shear 
wave velocity between 375 to 750 m/s) are extracted from 

(3)QCE = ZFye

(4)QCE = ZFye

(
1 −

|P|
2Pye

)
(for)

(
|P|
Pye

< 0.2

)

(5)QCE = ZFye

9

8

(
1 −

|P|
Pye

)
(for)

(
|P|
Pye

≥ 0.2

)

the PEER database (PEER, http:// peer. berke ley. edu/ peer- 
ground- motion- datab ase). It is obvious that the number of 
utilized records is much greater than the minimum required 
number of ground motion records for IDA analysis (Shome, 
1999). It should be noted that the minimum required num-
ber of records should also comply with the limitations of 
normality tests as well (Ghasemi & Zahediasl, 2012). This 
issue is completely discussed in Sect. 5. However, given the 
significant reduction in the inherent uncertainties due to the 
number of records used in this study, the results of IDA are 
expected to be sufficiently reliable.

The selected records and properties of their main compo-
nents are given in Table 2. The selected records are classified 
as far-fault ground motions. Between the horizontal com-
ponents of each ground motion, the one with the maximum 
highest spectral acceleration in the vibration frequency range 
of frame structures is selected as the main component and 
used in IDA. According to Fig. 3, these records are selected 
such that their average spectrums have a good agreement 
with the site design spectrum. As it is evident in this figure, 
the difference between the design spectrum and the average 
spectrum of the records in the governing mode of each frame 
is negligible.

For IDA, the Peak Ground Acceleration (PGA(g)) and 
the maximum inter-story drifts are opted as the Intensity 
(IM) and Demand Measures (DM), respectively. The IDA 
results in a graphical relationship between DM and IM, 
which is called the IDA curve. In order to improve accuracy 
of the analysis, the increment of IM measure in the analysis 
is selected equal to 0.05 g. Accordingly, the peak ground 
acceleration of the record in nth step  (PGAn) is derived from 
Eq. (6). Given  PGA0 as the initial peak ground accelera-
tion of ground motion records (see Table 2), the scale fac-
tor in nth step  (SFn) is derived from Eq. (7) (Mohsenian & 
Mortezaei, 2019)

The IDA curves for the studied structures are demon-
strated in Fig. 4. The limit states corresponding to different 
performance levels of the Immediate Occupancy (IO), Life 
Safety (LS), and Collapse Prevention (CP) are also depicted 
in this figure (ASCE, 2017). However, since this study aims 
to compare the results of two different assumptions for the 
statistical distribution of data used in fragility curve develop-
ment, other arbitrary limit states can also be used.

Having the results of IDA in hand, the subsequent steps 
are followed to develop the fragility curves:

 i. According to Fig. 5, the intensity measure correspond-
ing to a given performance level of the system (in 

(6)PGAn(g) = 0.05n

(7)SFn = PGAn∕PGA0

Fig. 2  The generalized force–deformation curve of steel structural 
elements (ASCE, 2017)

http://peer.berkeley.edu/peer-ground-motion-database
http://peer.berkeley.edu/peer-ground-motion-database
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this study the IO, LS, and CP performance levels) is 
extracted from the IDA curves. At this step, for each 
performance level, a statistical community containing 
30 members will be available. 

 ii. Assuming normal or log-normal distribution for the 
collected data sets in the previous step, after calculat-
ing the mean value ( � ) and standard deviation ( � ), 
the density probability functions are established using 
Eqs. 8 and 9 (Nowak & Collins, 2012):

(8)f (x) =
1

�

√
2�

EXP

�
(x − �)2

−2�2

�

(9)f (x) =
1

x�
√
2�

EXP

�
((ln(x) − �)2

−2�2

�

Table 2  Properties of the main 
component of the selected 
ground motion records for IDA

a Closest Distance to Fault Rupture

Records Earthquake and Year Ra(km) Component Mw PGA0(g)

R1 Cape Mendocino (USA), 1992 41.97 90 7.1 0.18
R2 Cape Mendocino (USA), 1992 19.95 0 7.1 0.12
R3 Cape Mendocino (USA), 1992 25.91 270 7.1 0.26
R4 Cape Mendocino (USA), 1992 26.51 0 7.1 0.23
R5 Chi-Chi (Taiwan), 1999 26.31 E 7.6 0.25
R6 Chi-Chi (Taiwan), 1999 19.0 E 7.6 0.25
R7 Chi-Chi (Taiwan), 1999 15.0 E 7.6 0.16
R8 Chi-Chi (Taiwan), 1999 24.1 W 7.6 0.19
R9 Chi-Chi (Taiwan), 1999 19.8 N 7.6 0.64
R10 Chi-Chi (Taiwan), 1999 20.0 W 7.6 0.23
R11 Chi-Chi (Taiwan), 1999 15.0 N 7.6 0.30
R12 Chi-Chi (Taiwan), 1999 28.79 N 7.6 0.12
R13 Chi-Chi (Taiwan), 1999 43.17 N 7.6 0.14
R14 Chi-Chi (Taiwan), 1999 42.87 E 7.6 0.11
R15 Chuetsu-oki (Japan), 2007 17.93 NS 6.8 0.32
R16 Darfield (New Zealand), 2010 24.5 E 7.0 0.63
R17 Hector Mine (USA), 1999 41.81 90 7.1 0.18
R18 Hector Mine (USA), 1999 31.06 360 7.1 0.19
R19 Iwate (Japan), 2008 28.9 NS 6.9 0.28
R20 Iwate (Japan), 2008 25.56 NS 6.9 0.24
R21 Kern County (USA), 1952 38.42 111 7.3 0.18
R22 Kocaeli (Turkey), 1999 30.73 90 7.5 0.12
R23 Landers (USA), 1992 34.86 90 7.4 0.13
R24 Landers (USA), 1992 45.34 210 7.4 0.11
R25 Landers (USA), 1992 25.02 45 7.4 0.21
R26 Loma Prieta (USA), 1989 20.34 285 6.9 0.48
R27 Northridge (USA), 1994 23.07 180 6.7 0.25
R28 Northridge (USA), 1994 31.69 90 6.7 0.10
R29 Northridge (USA), 1994 19.74 352 6.7 0.24
R30 San Fernando (USA), 1971 25.47 90 6.6 0.11

Fig. 3  Comparison of the average spectrum of the selected ground 
motion records with the site design spectrum
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 iii. According to Fig. 5, taking x0 as a specific intensity, 
the integral of the probability density function (the 
area under the curve) from −∞ to x0 determines the 
exceedance probability (P) for the considered damage 
level. This means that at this specific intensity, there is 
a probability of P that the structural response exceeds 
the response corresponding to the considered damage 
(performance) level.

 iv. Subtracting P from 1 gives the reliability  (P0) of the 
system for the considered damage (performance) 
level, and this means that at a certain intensity, there 
is a probability of  P0 that the structure does not expe-
rience the considered performance level (Mohsenian, 
Filizadeh et al., 2021).

Fig. 4  IDA curves and the limit 
states corresponding to different 
performance levels of a 3- b 5- 
c 7- d 10- e 12- and f 15-story 
frames

Fig. 5  Calculation of the exceedance probability for a certain perfor-
mance level under a given intensity  (x0) using IDA results
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The fragility curves are derived for different perfor-
mance levels of the studied structures according to the 
described methodology, assuming normal and log-normal 
distributions. The attained fragility curves are demon-
strated in Fig. 6.

As evident in Fig. 6, however, there are differences 
between the curves derived from different distribution 
assumptions, but there is no clear trend for these differ-
ences. In most cases, for higher seismic intensities, the 
normal distribution assumptions result in lower exceed-
ance probabilities. This is more evident for taller frame 
structures and higher performance levels. Vice versa, 
under lower seismic intensities, the log-normal assump-
tion gives lower exceedance probabilities.

In the following, the maximum differences 
between the fragility curves for each performance 
level  (DIO,  DLS, and  DCP) of the frame structures are 
extracted up to the peak ground acceleration of 1.0  g 
(PGA = 1.0 g). The attained results are presented in Fig. 7 
( Difference = (FragilityNormal − FragilityLog−Normal) × 100).

For the IO performance level, the maximum difference 
between the curves is about 10%. According to Fig. 7, most 
of the differences occur around the intensity of 0.35 g, 
which indicates the design basis earthquake according to 
many of the design codes. For the LS and CP performance 
levels, the maximum differences between the curves are 
10 and 13.5%, respectively. These maximums for the men-
tioned performance levels have occurred around the ground 
motion intensities of 0.95 and 0.8 g, which are higher than 

Fig. 6  The extracted fragility 
curves for different perfor-
mance levels using IDA results 
a 3- b 5- c 7- d 10- e 12- and f 
15-story frames
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the intensity corresponding to the maximum considered 
earthquake (0.55 g) (see Fig. 7).

5  Evaluation of the Assumed Statistical 
Distributions

Controlling the dispersion and central tendencies of parts 
of the data (sample variables) and consequently providing 
a suitable distribution function are among the valid statisti-
cal methods that are often used for the probabilistic evalu-
ation of larger communities. When a statistical population 
has a normal distribution, the normality of data is evaluated 
using different methods that fall into three broad catego-
ries: numerical (significance tests), descriptive, and graphi-
cal (Mishra et al., 2019). In this section, the mentioned 
methods are first briefly described and defined. Then, using 

these methods, the accuracy of the normal and log-normal 
assumptions of the data derived from IDA analysis will be 
evaluated. SPSS Statistics software (Statistics, 2013) is used 
for this purpose.

5.1  Numerical Normality Test Methods

The numerical normality test methods usually use well-
known statistics such as Kolmogorov–Smirnov (K-S), Lil-
liefors corrected (K-S), Shapiro–Wilk, and Anderson–Dar-
ling (Barton, 2005; Öztuna et al., 2006; Shapiro & Wilk, 
1965).

Although the estimation accuracy of all statistics 
depends on the sample size (small sample size leads to 
estimation error), studies have shown that for all possible 
distributions and sample sizes, the Shapiro–Wilk statistic 
has the highest accuracy in the estimation process, and 

Fig. 7  The curves of differ-
ence percentage between the 
developed fragility curves using 
normal and log-normal distribu-
tion assumptions a 3- b 5- c 
7- d 10- e 12- and f 15-story 
frames
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Kolmogorov–Smirnov statistics is in the second place 
(Razali & Wah, 2011). Thus, for the small sample size, 
the Shapiro–Wilk statistic is usually recommended. The 
high computational volume of IDA, which is a time-
consuming process, encourages the authors to utilize the 
minimum possible number of ground motion records (Han 
& Chopra, 2006; Vamvatsikos & Allin Cornell, 2006). 
Accordingly, the utilized sample size in this study is small 
(all samples consist of 30 data points which guarantee the 
minimum required number of data points for the utilized 
tests (Ghasemi & Zahediasl, 2012)). According to the pro-
vided explanations, in the present study, only the Shap-
iro–Wilk and Kolmogorov–Smirnov tests were used. For 
each frame, the results of the mentioned tests were for both 
normal and log-normal distribution assumptions are pre-
sented in Tables 3 and 4. In these tables, column df stands 
for the “degrees of freedom” which is equal to the sample 
size. The two other columns are used to check whether 
the normality (or log-normality) assumption is correct or 
not. Sig. represents the significance, and the significance 

values lower than 0.05 mean that the data set do not follow 
normal (or log-normal) distribution. However, for the tests 
with significance values higher than 0.05, there is a higher 
probability of normal (log-normal) distribution provided 
that the value of the statistics (first column) is closer to 1.

As mentioned, achieving the significance values (Sig.) 
Less than 0.05 in the statistics (which is the acceptable 
limit in statistical analysis) means rejecting the normality 
(log-normality) assumption of the distribution function 
governing the statistical population, and higher signifi-
cance values (closer to 1) means more reliable assump-
tions. As evident in Table 3, the assumption of a normal 
distribution is ruled out in many cases (see the yellow 
cells) and is also a weak assumption for other cases based 
on the statistics values. In comparison, the log-normal 
distribution assumption for the data is much stronger 
(see Table 4). As can be seen, both statistics agree on the 
accuracy of the log-normal distribution assumption for 
the data. Given the explanations provided, the log-normal 
distribution is preferable.

Table 3  The results of Shapiro–
Wilk and Kolmogorov–
Smirnov tests for controlling 
the assumption of the normal 
distribution of data used in 
fragility curve development

Bold values designate the cases that the significance values are below 0.05, which reject the normality 
assumption
*This is a lower bound of true significance
a Lilliefors Significance Correction

Kolmogorov-Smirnova Shapiro–Wilk

Statistic df Sig Statistic df Sig

3-Storey
IO 0.114 30 0.200* 0.960 30 0.235
LS 0.144 30 0.065 0.945 30 0.078
CP 0.105 30 0.200* 0.966 30 0.336
5-Storey
IO 0.124 30 0.189 0.951 30 0.121
LS 0.153 30 0.036 0.949 30 0.103
CP 0.143 30 0.069 0.933 30 0.035
7-Storey
IO 0.119 30 0.200* 0.937 30 0.047
LS 0.110 30 0.200* 0.963 30 0.273
CP 0.106 30 0.200* 0.965 30 0.312
10-Storey
IO 0.129 30 0.150 0.930 30 0.028
LS 0.157 30 0.029 0.930 30 0.029
CP 0.137 30 0.094 0.938 30 0.048
12-Storey
IO 0.148 30 0.051 0.949 30 0.105
LS 0.124 30 0.190 0.950 30 0.115
CP 0.124 30 0.196 0.954 30 0.154
15-Storey
IO 0.089 30 0.200* 0.962 30 0.257
LS 0.145 30 0.061 0.952 30 0.131
CP 0.135 30 0.107 0.937 30 0.045
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5.2  Descriptive Normality Test Method

The descriptive method is based on evaluating the frequency, 
mean (µ), and standard deviation (σ) of the data. The normal 
distribution has a symmetrical bell-shaped curve, and for the 
normal distribution in a statistical population, 68.2, 99.7 and 
95.4% of the observations would be between µ ± σ, µ ± 2σ, 
and µ ± 3σ, respectively (Altman & Bland, 1995). Skew-
ness and kurtosis are the important parameters that describe 
asymmetry. Since the values of these two parameters in a 
normal distribution are zero, a significant deviation of them 
from zero will undermine the normality assumption (Thode, 
2002). Converting these parameters to a Z score, and provid-
ing a tolerance interval would be a good measure of normal-
ity. In the latter case, the results obtained between + 1.96 
and  1.96 indicate the correctness of the normality assump-
tion for the statistical population (Ghasemi & Zahediasl, 
2012).

The results of the descriptive test for the studied frames at 
different performance levels for both normal and log-normal 
distributions are as presented in Table 5. It should be noted 
that in the case of log-normal assumption, the tests are per-
formed on the logarithm of the data derived from IDA analy-
sis. If the normal assumption is verified for those values, the 
main data has a log-normal distribution. According to the 
results, both assumptions for the distribution of data are in 
the significance intervals, but in comparison, the assumption 
of the log-normal distribution of data is certainly more reli-
able, given the lower values of the score statistic.

5.3  Graphical Normality Test Methods

The graphical methods are the approximate approaches for 
examining the hypothesis of normality distribution. Due to 
the low reliability of this method, it is used only as an aux-
iliary tool along with other methods (Öztuna et al., 2006) In 
these approaches, histograms, stem-and-leaf plots, boxplots, 
and quantile–quantile (Q-Q) plots are used to evaluate the 
hypothesis. As mentioned earlier, for a normal distribution, 
the histogram is bell-shaped and symmetrical related to the 
mean (Ghasemi & Zahediasl, 2012).

The stem and leaf diagrams are similar to the histograms 
and are used to illustrate the probability distribution shape of 
quantitative data (Das & Imon, 2016). Since the use of this 
diagram requires the availability of large-size samples, this 
method is not very common. Accordingly, it has not been 
used in the present study. For the studied frames, histogram 
diagrams are for both normal and log-normal (normality of 
the logarithms of the attained data from IDA) assumptions 
are shown in Figs. 8, 9, 10, 11, 12, 13.

As mentioned, histograms are a way to show the shape 
of the distribution of experimental data. The closer the his-
togram shape is to the Gaussian or bell-shaped distribution, 

the more the data fit the normal distribution. As evident from 
Figs. 8, 9, 10, 11, 12, 13, the histograms attained for the 
logarithms of the data sample are closer to the Gaussian 
distribution shape. Therefore, it is concluded that the log-
normal distribution is a stronger assumption for all the stud-
ied structures and different considered performance levels. 
This finding is in agreement with the results numerical and 
descriptive tests results.

The Q-Q plots show the observed and expected values. In 
a normal distribution, the observed values are almost equal 
to the expected values. Deviation from this correspondence 
will reduce the validity of the normal distribution. Fig-
ures 14, 15, 16, 17, 18, 19 depict the attained Q-Q plots for 
the normal and log-normal assumptions. If the data belongs 
to the normal distribution, the points should be around a 
straight line, otherwise, this shows a null hypothesis, which 
means the data will not follow the normal distribution. 
According to Figs. 14, 15, 16, 17, 18, 19, the log-normal 
assumption seems a more valid hypothesis.

In a box diagram, the mean of the statistical population 
is drawn as a line inside the box, and the range between the 
first and third quartiles of frequency is considered as the 
length of the box (Altman & Bland, 1995). If the box is sym-
metric relative to the mean line, the assumption of a normal 
distribution for the data is supported. For the studied frames, 
considering the different performance levels and different 
hypotheses for the normal and log-normal distribution of 
the data, the mentioned diagrams are extracted for the IDA 
results and their logarithm values. The attained results are 
depicted in Fig. 20. Considering the box plots of normal 
distribution assumptions, it seems there is a low probability 
that the statistical data has a normal distribution, but by for 
the log-normal assumption (box diagrams on the right) the 
logarithm of the IDA results follow a normal distribution 
with a high probability, i.e., it is assumed that the statistical 
data follow the log-normal distribution. This finding is in 
agreement with the results of the graphical tests, as well as 
numerical and descriptive methods.

6  Conclusion

In this study, the reliability of the normal and log-normal 
probability distribution assumptions for the fragility curve 
development has been investigated considering different per-
formance levels in the structural system. For this purpose, 
three numerical (significance), descriptive and graphical test 
methods have been utilized. To evaluate the effects of the 
statistical distribution on the accuracy of the analysis, the 
attained fragility curves using both assumptions have been 
compared. Based on the adopted assumptions, the following 
conclusions can be made:
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Table 5  The results of the 
descriptive tests for controlling 
the normal and log-normal 
distribution assumptions of data 
used in developing fragility 
curves of different performance 
levels

Normal Distribution Log-Normal Distribution

IO LS CP IO LS CP

3-Storey
Valid no 30 30 30 30 30 30
Missing 0.000 0.000 0.000 0.000 0.000 0.000
Skewness 0.772 0.612 0.179 − 0.048 0.007 − 0.343
Std. Error of Skewness 0.398 0.398 0.398 0.398 0.398 0.398
Kurtosis 1.363 − 0.291 − 0.695 0.267 − 0.423 − 0.698
Std. Error of Kurtosis 0.778 0.778 0.778 0.778 0.778 0.778
Z SKEWNESS 1.941 1.538 0.451 − 0.119 0.017 − 0.861
Z KURTOSIS 1.752 − 0.374 − 0.894 0.344 − 0.544 − 0.898
5-Storey
Valid no 30 30 30 30 30 30
Missing 0.000 0.000 0.000 0.000 0.000 0.000
Skewness 0.548 0.575 0.661 − 0.374 − 0.141 0.135
Std. Error of Skewness 0.398 0.398 0.398 0.398 0.398 0.398
Kurtosis − 0.442 − 0.448 − 0.550 − 0.387 − 0.569 − 0.897
Std. Error of Kurtosis 0.778 0.778 0.778 0.778 0.778 0.778
Z SKEWNESS 1.377 1.446 1.663 − 0.940 − 0.355 0.339
Z KURTOSIS − 0.568 − 0.575 − 0.707 − 0.497 − 0.731 − 1.153
7-Storey
Valid no 30 30 30 30 30 30
Missing 0.000 0.000 0.000 0.000 0.000 0.000
Skewness 0.912 0.412 0.388 − 0.170 − 0.227 − 0.136
Std. Error of Skewness 0.398 0.398 0.398 0.398 0.398 0.398
Kurtosis 0.603 − 0.632 − 0.680 − 0.277 − 0.763 − 0.743
Std. Error of Kurtosis 0.778 0.778 0.778 0.778 0.778 0.778
Z SKEWNESS 2.294 1.035 0.975 − 0.427 − 0.570 − 0.343
Z KURTOSIS 0.774 − 0.812 − 0.875 − 0.356 − 0.981 − 0.955
10-Storey
Valid no 30 30 30 30 30 30
Missing 0.000 0.000 0.000 0.000 0.000 0.000
Skewness 0.595 0.730 0.733 − 0.073 − 0.255 − 0.015
Std. Error of Skewness 0.398 0.398 0.398 0.398 0.398 0.398
Kurtosis − 0.704 − 0.359 − 0.047 − 1.138 − 0.564 − 0.427
Std. Error of Kurtosis 0.778 0.778 0.778 0.778 0.778 0.778
Z SKEWNESS 1.495 1.835 1.844 − 0.184 − 0.642 − 0.037
Z KURTOSIS − 0.905 − 0.462 − 0.060 − 1.464 − 0.725 − 0.549
12-Storey
Valid no 30 30 30 30 30 30
Missing 0.000 0.000 0.000 0.000 0.000 0.000
Skewness 0.613 0.356 0.156 − 0.252 − 0.292 − 0.484
Std. Error of Skewness 0.398 0.398 0.398 0.398 0.398 0.398
Kurtosis − 0.279 − 0.953 − 1.157 − 0.653 − 0.948 − 0.475
Std. Error of Kurtosis 0.778 0.778 0.778 0.778 0.778 0.778
Z SKEWNESS 1.541 0.895 0.392 − 0.633 − 0.735 − 1.216
Z KURTOSIS − 0.358 − 1.225 − 1.487 − 0.839 − 1.218 − 0.610
15-Storey
Valid no 30 30 30 30 30 30
Missing 0.000 0.000 0.000 0.000 0.000 0.000
Skewness 0.502 0.544 0.625 − 0.437 − 0.312 0.005
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1. Although the fragility curves derived from both normal 
and log-normal distribution assumptions are similar, for 
different earthquakes intensities, up to 13% difference 
is observed between them. Studies have shown that the 
differences in the distribution of probability values in 
both assumptions do not follow a specific trend.

2. Based on the results of numerical tests (significance 
tests) and descriptive methods, the assumption of nor-
mal distribution for the data is not false, but it is not a 
strong hypothesis. Because the results of the numerical 
test oppose this assumption in some cases. Moreover, in 
some other cases, the results of numerical and descrip-
tive methods for this assumption are not in agreement. 

Therefore, it is concluded that the findings do not sup-
port the assumption of normal distribution for the data 
used in fragility curve development.

3. The results of both numerical tests, i.e., Shapiro–Wilk 
and Kolmogorov–Smirnov confirm the accuracy of 
the log-normal distribution assumption for statistical 
data with a high probability. In this regard, the results 
of descriptive tests also confirm the accuracy of this 
assumption. In addition, there is consistency between the 
findings of both numerical and descriptive and graphical 
tests. Accordingly, the log-normal distribution assump-
tion for statistical data used in the process fragility curve 
development is verified.

Table 5  (continued) Normal Distribution Log-Normal Distribution

IO LS CP IO LS CP

Std. Error of Skewness 0.398 0.398 0.398 0.398 0.398 0.398
Kurtosis 0.125 − 0.314 − 0.496 − 0.560 − 0.192 − 1.003
Std. Error of Kurtosis 0.778 0.778 0.778 0.778 0.778 0.778
Z SKEWNESS 1.264 1.367 1.570 − 1.098 − 0.784 0.013
Z KURTOSIS 0.161 − 0.404 − 0.638 − 0.719 − 0.247 − 1.289

Fig. 8  The histogram diagrams at different performance levels for 3-story frame (a, b and c) log-normal distribution (d, e and f) normal distribu-
tion
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Fig. 9  The histogram diagrams at different performance levels for 5-story frame (a, b and c) log-normal distribution (d, e and f) normal distribu-
tion

Fig. 10  The histogram diagrams at different performance levels for 7-story frame (a, b and c) log-normal distribution (d, e and f) normal distri-
bution
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Fig. 11  The histogram diagrams at different performance levels for 10-story frame (a, b and c) log-normal distribution (d, e and f) normal distri-
bution

Fig. 12  The histogram diagrams at different performance levels for 12-story frame (a, b and c) log-normal distribution (d, e and f) normal distri-
bution
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Fig. 13  The histogram diagrams at different performance levels for 15-story frame (a, b and c) log-normal distribution (d, e and f) normal distri-
bution

Fig. 14  The Q-Q plots for 3-story frame (a, b and c) log-normal distribution (d, e and f) normal distribution
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Fig. 15  The Q-Q plots for 5-story frame (a, b and c) log-normal distribution (d, e and f) normal distribution

Fig. 16  The Q-Q plots for 7-story frame (a, b and c) log-normal distribution (d, e and f) normal distribution
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Fig. 17  The Q-Q plots for 10-story frame (a, b and c) log-normal distribution (d, e and f) normal distribution

Fig. 18  The Q-Q plots for 12-story frame (a, b and c) log-normal distribution (d, e and f) normal distribution
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Fig. 19  The Q-Q plots for 15-story frame (a, b and c) log-normal distribution (d, e and f) normal distribution
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Fig. 20  The box plots at dif-
ferent performance levels of 
the studied structures (a, c, e, 
g, i and k) normal distribution 
(b, d, f, h, j and l) log-normal 
distribution



1023International Journal of Steel Structures (2022) 22(4):1002–1024 

1 3

Authors Contribution Credit roles for the paper: “Evaluation of the 
Probabilistic Distribution of Statistical Data Used in the Process of 
Developing Fragility Curves”. Conceptualization: Vahid Mohsenian; 
Data Curation: Vahid Mohsenian; Formal Analysis: Vahid Mohse-
nian, Alireza Arabshahi; Funding Acquisition: -; Investigation: Vahid 
Mohsenian, Alireza Arabshahi, Nima Gharaei-Moghaddam; Method-
ology: Vahid Mohsenian; Project administration: Vahid Mohsenian, 
Nima Gharaei-Moghaddam; Resources: Vahid Mohsenian, Alireza 
Arabshahi, Nima Gharaei-Moghaddam; Software: Alireza Arabshahi, 
Vahid Mohsenian; Supervision: Nima Gharaei-Moghaddam; Vali-
dation: Vahid Mohsenian, Alireza Arabshahi; Visualization: Vahid 
Mohsenian, Alireza Arabshahi; Writing—original draft: Vahid Mohse-
nian, Nima Gharaei-Moghaddam; Writing – review & editing: Nima 
Gharaei-Moghaddam;

Funding This study was not funded by any company.

Declarations 

Conflict of interest The authors declare that they have no conflict of 
interest.

Data Availability The data that support the findings of this study are 
available from the corresponding author upon reasonable request.

References

Ahmadi, M., & Ebadi Jamkhaneh, M. (2021). Numerical investiga-
tion of energy dissipation device to improve seismic response 
of existing steel buildings with Soft-First-Story. International 
Journal of Steel Structures, 21, 691–702.

AISC (2010). Specification for Structural Steel Buildings, ANSI/
AISC 360-10. American Institute of Steel Construction.

Altman, D. G., & Bland, J. M. (1995). Statistics notes: The normal 
distribution. Bmj, 310, 298.

Ang, A. H., & Tang, W. H. (2007). Probability concepts in engineer-
ing planning: Emphasis on applications to civil and environ-
mental engineering. John Wiley and Sons.

ASCE. (2010). Minimum Design Loads and Associated Criteria for 
Buildings and Other Structures, ASCE/SEI 7–10. American 
Society of Civil Engineers.

ASCE. (2017). Seismic Evaluation and Retrofit of Existing Buildings 
ASCE/SEI 41–17. American Society of Civil Engineers.

ASTM (2019). Standard Specification for Carbon Structural Steel—
ASTM A36/A36M-19. ASTM International

Baharvand, A., & Ranjbaran, A. (2020). A new method for develop-
ing seismic collapse fragility curves grounded on state-based 
philosophy. International Journal of Steel Structures, 20, 
583–599.

Barton, P. (2005). A guide to data analysis and critical appraisal. 
Review International Journal of Endocrinology and Metabolism, 
486–489.

CSI (2015). Structural and Earthquake Engineering Software, ETABS, 
Extended three dimensional analysis of building systems nonlin-
ear. 15.2.2 ed., Computers and Structures Inc.

CSI (2017). Structural and earthquake engineering software, PER-
FORM-3D nonlinear analysis and performance assessment for 
3D structures. 7.0.0 ed., Computers and Structures Inc.

Das, K. R., & Imon, A. (2016). A brief review of tests for normality. 
American Journal of Theoretical and Applied Statistics, 5, 5–12.

Ghasemi, A., & Zahediasl, S. (2012). Normality tests for statistical 
analysis: A guide for non-statisticians. International Journal of 
Endocrinology and Metabolism, 10, 486.

Ghowsi, A. F., & Sahoo, D. R. (2013). Seismic performance of buck-
ling-restrained braced frames with varying beam-column con-
nections. International Journal of Steel Structures, 13, 607–621.

Han, S. W., & Chopra, A. K. (2006). Approximate incremental dynamic 
analysis using the modal pushover analysis procedure. Earthquake 
Engineering and Structural Dynamics, 35, 1853–1873.

Hao, R. N. (2011). Critical compassionate pedagogy and the teacher’s 
role in first-generation student success. New Directions for Teach-
ing and Learning, 2011, 91–98.

Statistics, I. (2013). IBM Corp. Released 2013. IBM SPSS Statistics 
for Windows, Version 22.0. IBM Corp. Google Search.

Kim, D.-H., & Leon, R. T. (2013). Fragility analyses of mid-rise 
T-stub PR frames in the Mid-America earthquake region. Inter-
national Journal of Steel Structures, 13, 81–91.

Kim, S.-H., & Shinozuka, M. (2004). Development of fragility 
curves of bridges retrofitted by column jacketing. Probabilistic 
Engineering Mechanics, 19, 105–112.

Lee, J., Kong, J., & Kim, J. (2018). Seismic performance evalua-
tion of steel diagrid buildings. International Journal of Steel 
Structures, 18, 1035–1047.

Mishra, P., Pandey, C. M., Singh, U., Gupta, A., Sahu, C., & Keshri, 
A. (2019). Descriptive statistics and normality tests for statistical 
data. Annals of Cardiac Anaesthesia, 22, 67.

Mohsenian, V., Filizadeh, R., Ozdemir, Z. & Hajirasouliha, I. (2020). 
Seismic performance evaluation of deficient steel moment-resist-
ing frames retrofitted by vertical link elements. Structures, Else-
vier, 724–736.

Mohsenian, V., Hajirasouliha, I. & Filizadeh, R. (2021c). Seismic reli-
ability assessment of steel moment-resisting frames using Bayes 
estimators. Proceedings of the Institution of Civil Engineers-
Structures and Buildings, 1–15.

Mohsenian, V., Filizadeh, R., Hajirasouliha, I., & Garcia, R. (2021). 
Seismic performance assessment of eccentrically braced steel 
frames with energy-absorbing links under sequential earthquakes. 
Journal of Building Engineering, 33, 101576.

Mohsenian, V., Hajirasouliha, I., & Filizadeh, R. (2021b). Seismic 
reliability analysis of steel moment-resisting frames retrofitted 
by vertical link elements using combined series–parallel system 
approach. Bulletin of Earthquake Engineering, 19, 831–862.

Mohsenian, V., & Mortezaei, A. (2019). New proposed drift limit states 
for box-type structural systems considering local and global dam-
age indices. Advances in Structural Engineering, 22, 3352–3366.

Montazeri, M., Ghodrati Amiri, G., & Namiranian, P. (2021). Seismic 
fragility and cost-benefit analysis of a conventional bridge with 
retrofit implements. Soil Dynamics and Earthquake Engineering, 
141, 106456.

Nowak, A. S., & Collins, K. R. (2012). Reliability of structures. CRC 
Press.

Öztuna, D., Elhan, A. H., & Tüccar, E. (2006). Investigation of four 
different normality tests in terms of type 1 error rate and power 
under different distributions. Turkish Journal of Medical Sciences, 
36, 171–176.

PEER. PEER ground motion database [Online]. Available: http:// peer. 
berke ley. edu/ peer- ground- motion- datab ase [Accessed].

Razali, N. M., & Wah, Y. B. (2011). Power comparisons of shapiro-
wilk, kolmogorov-smirnov, lilliefors and anderson-darling tests. 
Journal of Statistical Modeling and Analytics, 2, 21–33.

Shafaei, H., & Naderpour, H. (2020). Seismic fragility evaluation of 
FRP-retrofitted RC frames subjected to mainshock-aftershock 
records. Structures, 27, 950–961.

Shapiro, S. S., & Wilk, M. B. (1965). An analysis of variance test for 
normality (complete samples). Biometrika, 52, 591–611.

Shinozuka, M., Feng, M. Q., Lee, J., & Naganuma, T. (2000). Statisti-
cal analysis of fragility curves. Journal of Engineering Mechan-
ics, 126, 1224–1231.

http://peer.berkeley.edu/peer-ground-motion-database
http://peer.berkeley.edu/peer-ground-motion-database


1024 International Journal of Steel Structures (2022) 22(4):1002–1024

1 3

Shome, N. (1999). Probabilistic seismic demand analysis of nonlinear 
structures, Stanford University.

Sudret, B., Mai, C. & Konakli, K. (2014). Computing seismic fragil-
ity curves using non-parametric representations. arXiv preprint 
arXiv: 1403. 5481.

Thode, H. C. (2002). Testing for normality. CRC Press.
Vamvatsikos, D., & Allin Cornell, C. (2006). Direct estimation of the 

seismic demand and capacity of oscillators with multi-linear static 
pushovers through IDA. Earthquake Engineering and Structural 
Dynamics, 35, 1097–1117.

Vamvatsikos, D., & Cornell, C. A. (2002). Incremental dynamic 
analysis. Earthquake Engineering and Structural Dynamics, 31, 
491–514.

Vamvatsikos, D., & Cornell, C. A. (2004). Applied incremental 
dynamic analysis. Earthquake Spectra, 20, 523–553.

Zareian, F., Krawinkler, H., Ibarra, L., & Lignos, D. (2010). Basic 
concepts and performance measures in prediction of collapse 
of buildings under earthquake ground motions. The Structural 
Design of Tall and Special Buildings, 19, 167–181.

Zuo, Y., Li, W., & Li, M. (2019). Seismic fragility analysis of steel 
frame structures containing initial flaws in beam-column connec-
tions. International Journal of Steel Structures, 19, 504–516.

Publisher's Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

http://arxiv.org/abs/1403.5481

	Evaluation of the Probabilistic Distribution of Statistical Data Used in the Process of Developing Fragility Curves
	Abstract
	1 Introduction
	2 Characteristics of the Studied Models
	3 Modeling Nonlinear Behavior of Structures
	4 Developing Fragility Curves Using Incremental Dynamic Analysis
	5 Evaluation of the Assumed Statistical Distributions
	5.1 Numerical Normality Test Methods
	5.2 Descriptive Normality Test Method
	5.3 Graphical Normality Test Methods

	6 Conclusion
	References




