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Abstract
In this paper, the nonlinear buckling analysis of rectangular hollow sections (RHS) beams considering distortional and the 
shear flexibility deformation effects is investigated. The kinematic model is based on the incorporation of non-classical 
terms, related to shear flexibility, according to Timoshenko model and distortion and warping. This analysis is carried out 
by proposing a new 3D finite element, formulated in the context of large torsion, incorporating flexural torsion, and dis-
tortion coupling effects. A 3D RHS beam element with two nodes and eleven degrees of freedom per node is proposed to 
perform the nonlinear buckling analysis. For this aim, the arc-length method is employed as a solution strategy to solve the 
nonlinear equilibrium equations, established as a function of the trigonometric functions of the twist angle. Many examples 
are proposed to check the validity of the proposed 3D finite element and the numerical procedure, either in pre-and post-
buckling states. The present numerical results are compared to those of the commercial software ABAQUS using the brick 
finite elements. The incidences of the compressive load and the incorporated lateral stiffeners in the RHS beams in pre- and 
post-buckling behaviour are studied.

Keywords  Finite element · Nonlinear · RHS steel beams · Distortion · Pre- and Post-buckling behaviour

1  Introduction

Thin-walled steel members are being the most structural ele-
ment employed in modern high-rise buildings. In which, the 
thin-walled steel members are able to receive both vertical 

and horizontal loads. Among others, the rectangular hollow 
section (RHS) beams are attracting the interest of the engi-
neer, due to their structural efficiency in terms of minimum 
weight to a given strength. Despite this advantage, thin-
walled members are vulnerable against the lateral-torsional 
buckling phenomenon. Therefore, it is important to provide 
an efficient and practical method for reasonable prediction 
of the lateral-torsional buckling resistance without resorting 
to substantial computational efforts.

Numerous research works have focused on the analysis 
of thin-walled beams. Indeed, the pioneer contribution is of 
Vlasov (1962), for static analysis of thin-walled beams with 
open section, which was extended by Dabrowski (1968) for 
the curved girders. Vlasov’s theory was adapted by Fu and 
Hsu (1990) and Chandra et al. (1990) for the anti-symmetric 
box beam under a combination of lateral forces and torques.

When the thin-walled beam bent initially in its plan, 
about its strong axis, suddenly at a certain level of the 
applied force, the thin-walled member undergoes an insta-
bility induced by the changing in the equilibrium path let-
ting appear flexural–torsional behaviour. This instability is 
known as lateral torsional buckling (LTB). An amount of 

Online ISSN 2093-6311
Print ISSN 1598-2351

 *	 Abdelouahed Tounsi 
	 abdelouahed.tounsi@yonsei.ac.kr

1	 Laboratoire de Modélisation et Simulation Multi‑échelle, 
Université de Sidi Bel Abbés, Sidi Bel Abbès, Algerie

2	 YFL (Yonsei Frontier Lab), Yonsei University, Seoul, Korea
3	 Department of Civil and Environmental Engineering, King 

Fahd University of Petroleum and Minerals, Dhahran 31261, 
Eastern, Saudi Arabia

4	 Interdisciplinary Research Center for Construction 
and Building Materials, KFUPM, Dhahran, Saudi Arabia

5	 Material and Hydrology Laboratory, Faculty of Technology, 
Civil Engineering Department, University of Sidi Bel Abbes, 
Sidi Bel Abbes, Algeria

6	 Department of Solid Mechanics, Le Quy Don Technical 
University, 236 Hoang Quoc Viet Street, Hanoi, Vietnam

http://crossmark.crossref.org/dialog/?doi=10.1007/s13296-022-00617-y&domain=pdf


941International Journal of Steel Structures (2022) 22(4):940–957	

1 3

research works attempted to understand the LTB behaviour 
of thin-walled structures. The early works on this subject 
(Timoshinko, 1961; Vlasov, 1962; Wang et al., 2004) pro-
posed comprehensive models formulated by using a line-
arized approach based on Vlasov’s theory (1962). However, 
these linear models can lead to unrealistic LTB results, as 
reported in Eurocode 3 (1992). Therefore, it is unable to 
be used in buckling resistance verification. Alternatively, 
geometric non-linearity was introduced in the context of 
moderate torsion rotation (Hamaidia et al., 2019; Mohri 
et al., 2002, 2003; Osmani & Meftah, 2018; Rezaiee-Pajand 
et al., 2018, 2021; Saoula & Meftah, 2019; Saoula et al., 
2016; Ziane et al., 2021), to assess the LTB resistance. It 
was recognised that these first-order nonlinear models lead 
to reasonable predictions of the critical buckling loads espe-
cially for thin-walled members with less geometrical ratio of 
inertia (Iz/Iy), such as those with "I" shape section. Unfortu-
nately, these models drop severely, when opting for beams 
shape section in "H" and "RHS, having large ratio (Iz/Iy). In 
order to overcome the limitations induced by the first-order 
nonlinear approach, a substantial reformulation of kinematic 
models that consider large torsion was proposed (Benyamina 
et al., 2013; Lin & Hsiao, 2001; Mohri et al., 2008).

More illustrated approaches aimed to describe the pre- 
and post-buckling behaviour of thin-walled beams, based on 
the finite element modelling, were successively proposed in 
the context of large torsion deformation, without restrictions 
on twist angle amplitude (Mohri et al., 2015; Mohri et al., 
2008; Soomin & KimYY, 2021). Unlike the linear and first-
order nonlinear approaches, the current buckling solution is 
not evident, due to the high order nonlinear terms, appearing 
in the equilibrium equations and tangent stiffness matrix.

Furthermore, it should be emphasized that, in the Euroc-
ode 3 standard, the LTB verification rules are adapted for 
beams with open shape sections. However, the RHS beams 
are not concerned with LTB resistance verification. This 
is due to the great torsional rigidity, characterizing RHS 
beams. In addition, this restriction suggested by the Euroc-
ode 3 can be explained also by the fact that the code rules 
are limited to thin-walled members made with standard steel 
grades possessing yield strength fy ≤ 700 MPa.

Thereby, in accordance with recent developments related 
to the use of the manufactured high-strength steel materi-
als with fy > 1000 MPa , in civil infrastructures, it becomes 
evident that the Eurocode 3 rules will be inappropriate for 
RHS beam verification. The accuracy loss of the linearized 
and first order nonlinear theories in LTB prediction is mainly 
attributed to the omission of geometric non-linearity effects, 
in addition to the contribution of shear and distortion defor-
mations in the formulation of the LTB solution. To over-
come the aforementioned limitation of the earliest models, 
it became important to develop efficient alternative solu-
tions for a correct assessment of the LTB resistance of RHS 

beams. For this aim, the shell finite element modelling of 
the box beams appears to be the more reliable procedure 
to do LTB verification. This procedure is viable, but it is 
impracticable in the typical design environments.

Within this context related to the section distortion and 
shear deformation exhibited by RHS beams, many papers 
are focused on the study of this effect with the high-order 
Vlasov torsion theory (Choi & Kim 2020; Shen et  al., 
2017), which includes hierarchical sets of bending-related 
sectional deformation modes. In the same way, the Global 
beam theory (GBT) was proposed for accurate prediction of 
LTB resistance that covers local and distortional buckling 
modes (Bebiano et al., 2015; Bebianoa et al., 2018; Gon-
calves & Camotim 2016). Although this method is looked 
to be viable, but it become difficult to extend it in buckling 
analysis in the presence of large torsion.

Nevertheless, the GBT leads to accurate buckling results 
when the local buckling modes are predominant.

Alternatively, Shen et al. (2018a, 2018b, 2019) proposed 
an analytical solution for mixed buckling of RHS beams 
and Yang et al. (2019; 2017) experimentally investigated 
the LTB of the box section beams. However, it is well rec-
ognized that section distortion, when coupled with torsion, 
tends to reduce LTB resistance (Saoula & Meftah, 2019; 
Saoula et al., 2016; Ziane et al., 2021). In the field of the 
static and modal analysis of the box members, Kim and Kim 
(1999, 2000) pointed the importance of the section distor-
tion, widely neglected in the classical box beam theories. 
Their investigations have shown that the cross-sectional 
distortion significantly influences the natural frequencies.

2 � Main Considerations of the Present Work

The main objectives of the present paper is to overcome the 
mentioned difficulties in the precedent section, addressed by 
the linearized and first order LTB theories and also by the 
omission of the distortion and shear flexibility effects. The 
expected benefits of the present work can be summarized as:

	 I.	 To perform pre-and post buckling analysis of the 
RHS members by employing a simple FEM proce-
dure with low computational cost compared to shell 
and brick finite element modelling. Evidently,The 
proposed finite element can be used for LTB model-
ling of RHS beams having arbitrary boundary condi-
tions.

	 II.	 To purpose a reliable finite element solution able to 
provide accurate prediction of the LTB in pre and 
post-buckling ranges, applicable for various kinds of 
RHS beams, especially those having large geometri-
cal ratio Iz/Iy, when the other theories, based on the 
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eigenvalue solutions fails to furnish reasonable LTB 
estimation.

	 III.	 To discuss the limitations of the available classical 
solutions in LTB estimation, that ignore the effect 
of the shear and distortion deformations, through 
illustrative comparative studies of RHS beams under 
combined lateral and compressive loads.

	 IV.	 To effectively control the impact of the distortion 
deformations in the LTB resistance, by adding lat-
eral stiffeners as a bracing system around the beam 
sectional contour.

For these aims, in the present investigation, an original 
3D thin-walled finite element beam is formulated for elas-
tic pre- and post-buckling analysis of RHS beams, without 
any restriction on the twist angle magnitude. The present 
model is based on the theory proposed by Benscoter (1954) 
in conjunction with the original kinematic models inves-
tigated in Saoula et al. (2016); Saoula & Meftah, 2019; 
Rezaiee-Pajand et al., 2021; Kim & Kim, 1999; Machado 
& Cortinez, 2005).

Under this condition, involving geometrical non-linear-
ity effects, the displacement variables adopted within the 
thin-walled member are in a trigonometric form of the twist 
angle. Consequently, the derived equilibrium equations and 
tangent stiffness matrix are in turn established according to 
the incorporated trigonometric variables in the displacement 
field. The proposed finite element intrinsically includes, in 
addition to the ordinary classical terms, other new terms 
associated with distortion deformation. In the framework of 
the finite element analysis of RHS beams in lateral-torsional 
buckling, one proposes a 3D beam element with two nodes 
and eleven degrees of freedom per node, incorporating 
warping and distortion.The nonlinear problem involved was 
resolved by adopting the Newton–Raphson iterative method.

The proposed element is introduced in a finite element 
code. Many numerical examples are carried out to demon-
strate the performances of the proposed finite element. The 
accuracy LTB prediction of the proposed model is outlined 
and compared with the existing analytical solutions. The 
effect of axial compressive load on the LTB resistance is 
investigated. Finally, for upgrading the LTB performances of 
the RHS beam, a conceptual study based on the introduction 
of the lateral stiffeners, attached to the contour of the beam 
section, is conducted.

3 � Formulation of the Post Buckling 
Equations Problem

3.1 � Kinematics

Figure 1 shows a straight thin-walled box beam with slender-
ness L . The width and height of the rectangular cross-section 
with respect to the middle line are denoted by b and h , respec-
tively, and the thickness of the walls is t.

The displacements of the edges(or walls) of the RHS beam 
are derived from those of the shear centre, according to the 
local rectangular coordinate system (xi, si, ni) attached to each 
wall and the global Cartesian coordinate system (x, y, z) , as 
shown in Fig. 2.

Since we will be mainly concerned with the RHS beams 
under bending and torsion effects, the primary displacement 
field at the shear centre are the displacements u0,w0 and v0 
that represent the axial, vertical deflection, and lateral dis-
placements, respectively; and � denotes the rotation about the 
x-axis. The resulting shear stress is described by the additional 
degrees of freedom according to Timoshenko kinematical 
model (Timoshenko, 1922), represented by the rotations �y 
and �z around the y- and z-axes, respectively. Additionally, the 
warping effect is given by Ω(Fig. 3a–d).

Unlike thin-walled beams with an open section, the RHS 
members are shown to exhibit significant distortional or loz-
enging deformation (Saoula et al., 2016, Saoula and Meftah, 
2019, Ziane et al., 2021, Kim and Kim, 1999; 2000). This one 
is addressed by � as shown in Fig. 3e.

It is worth noting that the shear centreCcoincides with the 
centroid G in the case of bi-symmetric shape sections such 
as RHS. The axial ui(s, x, n) , tangential v i(s, x, n) and normal 
wi(s, x, n)(i = 1.0.4) displacements of the generic points of a 
box beamare expressed in the following form:

(1)
ui(s, x, n) = u0 − Zi (�ycos(�) − �z sin(�))

− Yi (�zcos(�) + �y sin(�) ) + �iΩ

(2)
v i(s, x, n) = −�i1v0 − �i2w0 + hi sin(�)

− s (1 − cos(�)) + � i
v(s) �

(3)
wi(s, x, n) = �i1w0 − �i2v0 − s sin(�)

− hi(1 − cos(�)) + � i
w �
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The functions Zi(s), Yi(s), �i(s),hi(s),� i
v (s) and � i

w
(s) 

describe the contour coordinates of the beam cross section. 
They are straightforward to write using box beam theory as 
follows:

(4a)�1 =

[
1 + (−1)i+1

]
2

(2 − i),

(4b)�2 =

[
1 + (−1)i

]
2

(3 − i),

(4c)Zi(s) =
(
�i
1

h

2
− �i

2

s
)

(4d)Yi(s) = −
(
�i
2

b

2
+ � i

1

s
)

(4e)�i(s) =
(
−
(
�i
1

)2 h
2
+
(
�i
2

)2 b
2

)
s

(4f)hi(s) =
(
�i
1

)2 h
2
+
(
�i
2

)2 b
2

In the above formulation, the functions �H(s)  and �V (s) 
are selected to satisfy the in-plane moment equilibrium 
condition as suggested by Kim and Kim (1999, 2000).

In the case of thin-walled box section beam, the 
Green–Lagrange strains tensor that includes the large dis-
placements is considered:

(4g)� i
v
(s) =

((
�i
2

)2
−

(
�i
1

)2) b h

b + h

(4h)� i
w
(s) = (�i

1
)2�H(s) + (�i

2
)2�V (s)

(4i)�V =
−2h

b + h

(
2s3

h2
−

3s

2

)

(4j)�H =
2b

b + h

(
2s3

b2
−

3s

2

)

(5a)� i
xx =

�u i(s, x, n)
�x

+ 1
2

(

(

�v i(s, x, n)
�x

)2
+
(

�wi(s, x, n)
�x

)2)

(5b)� i
ss

= − ni
�2 w i(s, x, n)

� s2

Fig. 1   The local coordinate system, the origin is located at the centre of each wall segment segment
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Fig. 2   Deformation shapes of 
a cross section box beam, a: 
bending about y axis, b: bend-
ing about z axis, c: twisting, d: 
warping, e: distortion
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Substituting Eqs. (1–3) into the above axial strains 
given in Eq. (5a), yields to the actual axial strain relations 
of the walls, described as function of the shear centre dis-
placement. The resulting axial strains are decomposed into 
linear and nonlinear parts.

Thus, the axial linear strain is defined as:

(') denotes the derivative with respect to the x variables.
The Eq. (6) can be rewritten in compact vector form 

as follows:

where

with

(5c)
� ixs =

�ui(s, x, n)
�s

+
�vi(s, x, n)

�x
+

�vi(s, x, n)
�x

�vi(s, x, n)
�s

+
�wi(s, x, n)

�x
�wi(s, x, n)

�s

(6)

�il =
�u i(s, x, n)

�x

= u′0 − Zi
[

�′y cos(�) − �′z sin(�) − �′ (�′z cos(�) + �′y sin(�))
]

− Yi
[

�′z cos(�) + �′y sin(�) − �′ (�′y cos(�) − �′z sin(�))
]

+ �i Ω′

(7)�i
l
=
{
�i

l

}T{
q1
}

(8)
{
�i
l

}T
=
{
1 −(Yics2 − Zics1) −(Z

ics3 + Yics4) �
i
}

(9a)cs1 = sin(�) + �� cos(�)

(9b)cs2 = cos(�) + �� sin(�)

and

The nonlinear axial strain part is given by:

The above relation is rewritten in vector form as

(9c)cs3 = cos(�) − �� sin(�)

(9d)cs4 = sin(�) − �� cos(�)

(10)
�
q1
�

=

⎧
⎪⎪⎨⎪⎪⎩

u
�

0

�
�

z

�
�

y

Ω
�

⎫⎪⎪⎬⎪⎪⎭

(11)

�inl =
1
2

(

(

�v i(s, x, n)
�x

)2

+
(

�wi(s, x, n)
�x

)2
)

=
�i21 + �i22

2
(v′2

0 + w′2
0 )

+
[

hi2 + s2(cos2(�) − sin2(�)
] �′2

2
+
[

� i2
v + � i2

w

]� ′2

2
+
[

hi
(

�i2 sin(�) − �i1 cos(�)
)

+ s
(

�i1 sin(�) + �i2 cos(�)
)]

v′0�
′

+
[

s
(

�i2 sin(�) − �i1 cos(�)
)

− hi
(

�i2 cos(�) + �i1 sin(�)
)]

w′
0�

′

− (�i1�
i
v + �i2�

i
w)v

′
0�

′ + (�i1�
i
w − �i2�

i
v)w

′
0�

′

+
[

h
(

� i
v cos(�) − � i

w sin(�)
)

− s
(

� i
v sin(�)�

i
w cos(�)

)]

�′� ′

(12)�i
nl
=
{
�i
nl

}T{
q2
}

Fig. 3   Box beam element under 
axial and lateral loads
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where

and

with

(13a)
�
q2
�

=

⎧⎪⎨⎪⎩

v
�

0

w
�

0

�
�

�
�

⎫⎪⎬⎪⎭

(13b)
{

�i
nl
}T =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(

�i21 +�i22
2

v′

0 + shi1�
′ + � i

1�
)′

(

�i21 +�i22
2

w′

0 + shi2
�′

2
+ � i

2�
′
)

(

shi3�
′ + shi4�

′)� i
3
� ′

2

⎫

⎪

⎪

⎬

⎪

⎪

⎭

(14a)
shi

1
= hi

(
�i
2
sin(�) − �i

1
cos(�)

)
+ s

(
�i
1
sin(�) + �i

2
cos(�)

)

(14b)
shi

2
= s

(
�i
2
sin(�) − �i

1
cos(�)

)
− hi

(
�i
2
cos(�) + �i

1
sin(�)

)

(14c)shi
3
= hi

2

+ s2(cos2(�) − sin
2(�)

(14d)
shi

4
= h

(
� i
v
cos(�) − � i

w
sin(�)

)
− s

(
� i
v
sin(�)� i

w
cos(�)

)

(14e)� i
1
= −(�i

1
� i
v
+ �i

2
� i
w
)

(14f)� i
2
= �i

1
� i
w
− �i

2
� i
v

Similar to the axial strain, by substituting the displace-
ment given by Eqs. (1–3) into Eq. (5c), the derivation of the 
tangential strain expression is achieved, and it is decom-
posed into linear and nonlinear parts.

The linear part of the shear strain is given by:

This relation can be rewritten in vector form as follows

where

and

The nonlinear part of the tangential strain is given by

(14g)� i
3
= � i2

v
+ � i2

w

(15)
� ixsl =

�ui(s, x, n)
�s

+
�vi(s, x, n)

�x
= −Z̃i(�y cos(�) − �z sin(�)

)

− Ỹ i(�z cos(�) + �y sin(�)
)

− �i1v
′

0 − �i2w
′
0 +

(

hi cos(�) − s sin(�)
)

�′ + �̃iΩ + � i
v�

′

(16)� i
xsl

=
{
�l
}T{

q3
}

(17a)
�
q3
�

=

⎧
⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

�z
�y
v
�

0

w
�

0

�
�

Ω

�
�

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

(17b)

�
𝜂l
�T

=

⎧⎪⎨⎪⎩

∗ 20c
�
Z̃
i sin(𝜃) − Ỹ

i cos(𝜃)
�
−
�
Z̃
i cos(𝜃) + Ỹ

i sin(𝜃)
�

−𝜉i
1
−𝜉i

2

�
h
i cos(𝜃) − s sin(𝜃)

�
𝜔̃i𝜓 i

v

⎫
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=
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𝜕s
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𝜕x
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=
(
(1 − cos(𝜃))𝜉i
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2
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by adopting the vector form expression, it results

in which

Concerning the axial strain generated by the distortional 
deformation, only the linear part is considered in this study, 
one writes:

with

The geometric parameters defined above are expressed by 
the following derivatives:

(19)� i
nl
=
{
�nl

}T{
q2
}

(20)

{
𝜂nl

}T
=

{
ssi

1
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4
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5
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6
𝜒

� }
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1
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1
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2
sin(�)

)

(21b)ssi
2
=
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(1 − cos(�))�i

2
− �i

1
sin(�)

)

(21c)shi
5
= hi(1 − cos(�)) + s sin(�)

(21d)� i
4
= � i

w

(
s cos(�) + hi sin(�)

)

(21e)� i
5
=
(
� i
v
(cos(�) − 1) − � i

w
sin(�)

)

(21f)𝜓 i
6
= 𝜓 i

w
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Once the strain components are defined, for the box 
beams made with elastic material, the Piola-Kirchoff stress 
tensor is considered as:

where

3.2 � Finite Element Discretization

For numerical investigation of the post-buckling behaviour 
of the RHS beams, by considering the geometric nonline-
arity effects, resulting from the trigonometric relationships 
between the membrane components and the twist angle � , 
a 3D finite element with two nodes having eleven degrees 
of freedom per node is proposed. For the axial displace-
ment u0;the bending rotations �y and �z,and the distortion 
�,the linear shape functions are used, while other displace-
ments are approximated by the cubic shape functions. The 
global displacement vectorat the shear centre {q} is linked 
to the nodal variables {r} by:

The expressions of the membrane components are 
obtained as follows:

(24d)⌢
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where the shape function matrices [N],
[
Bl

]
,
[
Bnl

]
,
[
Sl
]
,
[
Snl

]
 

and 
[
Dl

]
 are given in the appendix.

3.3 � Variational Formulation

The total potential energy stored in the box beam is defined 
as the sum of the of the strain energy and the work done 
by the external forces denoted by U and W  respectively, 
expressed as:

The strain energy U for rectangular box beam element 
with the length l takes the following form

Inserting the membrane components expressed in 
Eq. (27a, 27b, 27c) into Eq. (29), and taking into account 
the constitutive law in Eq. (25a, 25b), the strain energy is 
written in the matrix form as:

in which

and the matrix 
[
Pi(r)

]
(dimension 3 × 22) is ranged as:

In this study, the axially loaded box beams are consid-
ered. The axial force is applied at the centre of geometry and 
combined to the lateral one acting in the z direction, through 
the line tt′ with the eccentricity ez as shown in Fig. 3.

Foremother, in this study we are mainly concerned with 
the beams under lateral forces, proportional to the load mul-
tiplier factor � , combined to a constant compressive force. 
Therefore, the work done by lateral and compressive load,W , 
are calculated as follows:

In this equation, wt is the vertical displacement along the line 
tt′.This displacement is derived directly from Eq. (3). The 
resulting expression of the external work is the following
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(32a)W = −∫
l

(
fxu0(x) + �fzwt

)
dx

or in the vector form:

where

the vector 
{
Fe

}
 denotes the nodal force vector. In this inves-

tigation, only RHS beams under concentrated mid-span lat-
eral load are considered.

Based on Eqs. (28), (30), (33b), the formulation of the 
total potential energy is given in the matrix form as follows:

4 � Solution Strategy in the Framework 
of Nonlinear Problem

In order to perform the finite element method, it is necessary 
to adopt a matrix formulation to express the equilibrium con-
dition. The above mathematical development is carried out 
using Maple software (Abell & Braselton, 1994) designed 
for symbolic formulation.

The required finite element equilibrium equations and 
the stiffness matrix of the finite element are calculated by 
employing algebraic operators. Thus, the equilibrium equa-
tions {g(r, �)} are obtained by applying directly the gradient 
operator to the potential energy Π , with respect to the nodal 
displacement vector {r} as:

It is obvious that the classical procedure is often 
employed to provide a tangent stiffness matrix 

[
Kt

]
 , defined 

as the sum of the geometric and initial stress matrices, thus 
needing more complex matrix development. In the present 
work, the currently tangent stiffness matrix 

[
Kt

]
 was directly 

calculated by employing a simple procedure, involving the 
use of the Jacobian operator, applied to the resulting equi-
librium {g} as:

The evaluation of the finite element parameters 
[
Kt(r)

]
 and 

{g(r, �)} defined above is based on the numerical integration 
procedure. This numerical procedure is achieved with the 

(33a)W = −∫
l

(
fxu0 + �fz�w0 − �fzez (1 − cos(�))

)
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{
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)
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(36){g(r, �)} = gradient(Π, {r})

(37)
[
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]
= Jacobian({g(r, �)}, {r})
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well-known Gaussian integration method. This step is sup-
ported by Matlab software (Matlab71, 2006).

In the context of the nonlinear finite element method, 
the pre- and post-buckling responses of the RHS beams are 
obtained from the following

(38)
∑
el

[
Kt(r0)

]
{Δr} =

∑
el

{
g(r0, �)

}

∑
el

 denotes the assembly process of the tangent stiffness 

matrix 
[
Kt(r)

]
 and equilibrium residue {g(r)} over the basic 

finite elements.
The solution of Eq. (38) is achieved by resorting to the 

incremental iterative Newton–Raphson numerical method, 
implemented in the conjunction with the arc-length proce-
dure. For this aim, an in-house finite element program was 
prepared in Matlab (Matlab71, 2006) incorporating an arc-
length solver with the parabolic interpolation method and 

Fig. 4   Deformation aspects of 
the RHS100 × 50x3 under dif-
ferent loading states

Pre-buckling state 
End of Post-buckling state 

Near the lateral buckling state
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adopted to provide the global equilibrium path. This numeri-
cal solver is able to accurately capture the bifurcation of the 
equilibrium state at singular points.

In the iterative Newton–Raphson method, the unknowns 
of the Eq. (34) are {r} and � . The load parameter � is sought 
in the form:

For the sake of brevity, more details of the numerical 
procedure can be found in (Crisfield, (1981); Bathe, 1996; 
Ritto-Correa, 2008; Zhou & Murray, 1994).

5 � Numerical Investigation

Firstly, the robustness and accuracy of the proposed finite 
element model in buckling and post-buckling analysis under 
large torsion of the RHS beams is carried out. For this goal, 
the equilibrium paths provided by the present finite element 
are compared with those of the finite element modelling 
evaluated by Abaqus software (Hibbit & Sorensen, 2003). 
In this comparison study, the C3D20R quadratic brick ele-
ment with 20 nodes, available in the Abaqus library, was 
chosen to model the box beam structures as shown in Fig. 4.

Secondly, the sensitivity of the LTB resistance of the 
box beams on the applied compressive load and lateral 
stiffeners attached on the box beam section contour is done 
by considering various boundary conditions. In this sub-
section, a particular attention is addressed on the control 
of distortional deformation to improve as far as possible 
the bow beam LTB resistance.

The present study involves the critical loads obtained 
by the present method including shear and distortional 
deformations; theory that ignore sthe shear and distor-
tional deformations and quadratic brick finite element 
analysis, denoted by FS

cr
,Fcr , and FFEM

cr
 respectively.

The critical load factor is evaluated by using the cor-
responding expression, proposed in the assessment of the 
critical buckling moment as follows:

(a)	 For Cantilever Beam Under Tip Concentrated Load:

	 

with k = 1 −
Iz

Iy
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(b)	 For Pined-Simply Supported Beam Under Combined 
Compressive and Mid-Span Lateral Concentrated 
Loads:

	 

in which

These critical forces are founded according to the non-
linear stability analysis and established as a function of 
the ratio (Iz∕Iy), (Lin & Hsiao, 2001; Rezaiee-Pajand et al., 
2018):

I� and J  are respectively the warping and St-Venant 
torsion constants.

c1 and c2 are the coefficients defined as:

where

Pz and Py are, respectively, the well-known Euler's 
buckling loads, while P� is the torsional buckling load, 
given by:

I0 is the polar moment of inertia defined as:
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5.1 � Validation of the Proposed Finite Element 
in Buckling and Post Buckling Analysis

5.1.1 � Example1: Cantilever Beam Under Tip Load

In order to validate both the proposed finite element and 
the numerical procedure, in this example, a steel RHS 
cantilever beam with geometric and material properties of 
E = 210 GPa , G = 80.077 GPa , h = 100 mm,b = 50 mm , 
t = 3 mm and L = 2.5 m is analyzed. The tip load acts on 
the upper flange of the beams.

The pre- and post-buckling curves of the RHS beam are 
reported in Figs. 5a–c for different elements size mesh. The 
evolution of the tip end displacements ( w0, v0 and � ) is a 
function of the applied load Fz . Thus, Fig. 5a depicts the 
variation of the deflection w0 with the applied load. One 
remarks from this figure is that the deflexion variation is 
linear in the pre-buckling state. By increasing the load, the 
evolution is nonlinearly in the post-buckling range. It was 
important to state that in the pre-buckling stage, both the 
Abaqus finite element and the new proposed element led to 
similar results. Table 1 provides the variation of the buckling 
loads with the element number, compared to the Abaqus 
finite element solution. Taken the finite element results as 
reference, it is observed from this convergence study that by 
the proposed method employing forty (40) finite elements, 
one obtains a good agreement with Abaqus solution. The 
relative error is of 2%. Findings lead to important overesti-
mation of the buckling load when only twenty (20) elements 
is used with a relative error of 36%. Whereas, when using 
only teen 10 finite elements the buckling load cannot be 
determined as reported in Figs. 5a and b. For this case one 
obtains only the pre-buckling evolution without reaching the 
bifurcation point.

It is interesting to show that the analytical formula of 
Eq. 37a leads to an unrealistic higher value of the critical 
load with Fcr = 63.37 kN.

(a)

(b)

(c)

Fig. 5   Load displacements graph of cantilever beam of the example 1

Table 1   LTB loads comparison for the beam of example 1

Mesh size Proposed 
model Fcr

SD 
(KN)

Abaqus results Fcr
FEM 

(KN)
Relative error %

10 elements Undefined 45.28 Undefined
20 elements 61.75 36
40 elements 44.31 2
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Moreover, one reports that the bending stiffness in pre-
buckling (FFEM

cr
∕w0) is of 50.89 kN/m , which is close to that 

given by the proposed finite element (FSD
cr
∕w0=50.48 kN/m) , 

when forty (40) finite element are considered. Figure 5b pre-
sents the variation of the angle � with respect to the applied 
load. This figure shows that the twist angle is depicted only 
in the post-buckling state. For the angle 𝜃 > 0.01 ,a small 
load increase is observed. Inspecting Fig. 5c, one observes a 
little lateral displacement v0 in the pre-buckling range. When 
the critical load is reached, the equilibrium curve given by 
the present finite elements is near to that provided by Abaqus 
simulation.

5.1.2 � Example2: clamped–clamped beam

For verification purposes, in the present example, a 
clamped–clamped RHS steel beam with b = 200 mm

,h = 600 mm,t = 20 mm and slenderness L = 12 m is ana-
lysed. The beam is divided into 10; 20; 40 and 50 proposed 
elements. The beam is subjected to a concentrated mid-span 
load, located on the shear centre. The pre-and post-buckling 
behaviour of this beam is plotted in Fig. 6a–c. These dem-
onstrate the ability of the present finite element for accurate 
prediction of the equilibrium path, either in the pre- and 
post-buckling domains, when more than forty (40) proposed 
finite elements are employed. Figure 6a reports the evolu-
tion of the lateral displacement w0 versus the applied load. 
Inspection of this figure suggests the effectiveness of the 
proposed finite element in reproducing the correct equi-
librium curves, The performance of the element to capture 
accurate bifurcation state is checked from the Fig. 6b and 
c. One notices from these figures that the bifurcation load 
given by the proposed finite element modelling with fifty 
(50) elements is FSD

cr
= 25318.83 kN , which is in good 

agreement with that obtained by Abaqus prediction leading 
to FFEM

cr
= 26434 kN. One observes also that when less than 

twenty (20) elements are employed the proposed model fail 
to reproduce correctly the post-buckling path.

Table 2 reports the buckling loads evaluated by the pro-
posed model and Abaqus prediction. The relevant outcomes 
prove that a correct critical load evaluation is reached, just 
by using twenty (20) finite elements, with a relative error 
of 6%.The important error of 35% is given by teen 10 finite 
elements modelling.

5.2 � Parametric Pre‑ and Post‑Buckling Investigation

5.2.1 � Example 3

This example is proposed in order to illustrate the effect of 
the critical load FSD

cr
 upon the applied compressive force Fx 

of the RHS steel beam (Fig. 7) under simply-pined edges, 

(a)

(b)

(c)

Fig. 6   Load displacements graph of clamped–clamped beam of the 
example 2

Table 2   LTB loads comparison for the beam of example 2

Mesh size Proposed 
model Fcr

SD 
(KN)

Abaqus results Fcr
FEM 

(KN)
Relative error %

10 elements 35,809.89 26,434 35.5
20 elements 27,901.69 5.6
40 elements 25,578.77 3
50 elements 25,318.83 4
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commenting also the effects of shear and distortion deforma-
tions on the nonlinear behaviour.

It should be noted that, for this beam, the critical com-
pressive load is defined as being the Euler's buckling 
load Pz expressed by Eq. (40a). For the considered beam 
Pz = 48.3 kN.

Figures 8a–d depict the displacement ( w0, v0, �0 and �0 ) 
variations versus the concentrated mid-span load. The curves 
are drawn in both the pre-buckling and post-buckling states. 
Figure 8a inspects the variation of the deflection 

(
w0, Fz

)
 , this 

one is perfectly linear in the pre-buckling state. This figure 
reveals also that the stiffness of the beam without axial load is 
significantly more important compared to those under com-
pression. Thus, the stiffness deterioration is on order of13% 
for the beam under Fx = 0.5Pz and approaching 20% for 
Fx = 0.75Pz.In the post-buckling state, the displacement w0 
increases slightly in the same manner, for the beam without 
compressive load as well as for those under compression.

For beams under various magnitudes of compressive 
load, the resulting lateral buckling loads are listed in Table 3. 
These outcomes manifestly demonstrate the vulnerability of 
the beams in compression to lateral instability. For instance, 
one records a relative diminution of 37% for the beam under 
Fx = 0.5Pz , followed by that under Fx = 0.75Pz , leading to a 
critical load decreasing of 50%.

The variation of the twist angle � versus the load Fz is 
depicted in Fig. 8b. This twist angle is founded only in the 
post-buckling stage. The nonlinear branch begins to develop 
neighbour the critical load and increases continuously. Simi-
larly to this typical buckling behaviour, Fig. 8c demonstrates 
the variation of the lateral displacement 

(
v0,Fz

)
 . The equi-

librium curves show a little initial displacement which was 
introduced as initial imperfection to capture the nonlinear 
evolution. This displacement remains unchanged with Fz ris-
ing pressure until the critical load is reached. Beyond this 
value, the behaviour is perfectly nonlinear, associated with 
larger lateral displacement v0 . With the same tendency, the 
distortional deformation � is reported in Fig. 8d. This figure 
let appear in the onset a slight evolution, much before the 
critical load is reached. The slope of this evolution is more 
significant for the beams in compression. This figure reveals 

that the box beam under combined compression and bending 
loads is very sensitive to section distortion.

The critical loads mentioned above are compared in 
Table 3 to those coming by the formula of Eq. (40b), in 
which the shear and distortion deformation effects are 
neglected. This comparison clearly demonstrates that the 
analytical formulation Eq. (40b) is inappropriate for predic-
tion of the LTB resistance. The average error provided by 
the analytical formula is in order of 20%.

5.2.2 � Example 4

This example is proposed to illustrate the efficiency of the lateral 
stiffeners to prevent the buckling modes associated with the dis-
tortional deformation. These intermediate lateral stiffeners are 
attached on the beam sectional contour and positioned along the 
beam, respecting a regular separating distance, defined by the 
spacing a as pictured in Fig. 9. given by:

where n is the number of the proposed lateral stiffeners.
The effectiveness of lateral stiffeners is reflected by their abil-

ity to upgrade the box beam LTB resistance. Indeed, this effec-
tiveness is evaluated by the appropriated chosen the number n of 
the lateral stiffeners which should enhance the critical load FSD

cr
 

of the beam, in such a way to approaching the value of Fcr cor-
responding to LTB without distortional deformation.

The proposed example considers a cantilever RHS steel 
beam with a concentrated load applied at free edges and 
positioned at the shear centre 

(
ez = 0

)
 . The geometrical 

characteristics are:b = 100 mm,h = 300 mm,t = 6 mm and 
L = 4.8 m . The critical LTB load that neglects the distor-
tional deformation Fcr is derived from Eq. (40a). This criti-
cal load is equal to Fcr = 394.11 kN.

Figures 10(a–c) represent the curve responses by vary-
ing the number n of lateral stiffeners. The tip-displacement 
w0 curves are drawn in Fig. 10a. This figure shows that the 
lateral stiffeners do not affect the pre-buckling deflection 
state, but influence significantly the post-buckling equilib-
rium, mainly the bifurcation point magnitude. Therefore, 

(44)a =
L

n

Fig. 7   Pined-simply sup-
ported beam with considered in 
example 3

Fx

Fz

5 5

h=180

b=80m

t=4mm

Fz
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Figs. 10b,c suggest that when only two (02) lateral stiffen-
ers are added to the cantilever beam, no significant critical 
load enhancement is recorded. In this case, the critical load 
obtained for n = 2 is of FSD

cr
= 196.75 kN , which approxi-

mates to the critical load corresponding to the RHS cantile-
ver beam without lateral stiffeners with FSD

cr
= 195.43 kN . 

However, a more pronounced LTB amelioration is obtained 
when four (04) stiffeners are incorporated into the box beam 
with FSD

cr
= 287.29 kN . The important LTB improvement 

is achieved by adding eight (08) stiffeners. In this case, the 
resulting critical load FSD

cr
= 376.57 kN , approaching the 

value of Fcr = 394.11kN , provided by the classical theory 
that ignores the distortion deformation.

6 � Conclusion

In this investigation, a geometrically nonlinear theory of RHS 
beam structures is proposed. The variational problem is formu-
lated according to an innovative kinematic model, including 
large torsion, shear flexibility and distortional deformations. 
A 3D beam finite element with two nodes and eleven degrees 
of freedom per node including warping, shear, and distortional 
deformations is formulated. The nonlinear problem was solved 
by employing the Newton–Raphson method in conjunction with 
the arc-length procedure. A good agreement is obtained either 
in pre-and post-buckling behaviours by the proposed finite ele-
ment model when comparing with Abaqus solutions performed 
by using quadratic brick C3D20R elements with 20 nodes. By 
considering a variety of boundary conditions and RHS beam 
dimensions, the present finite element model leads to accept-
able buckling curve solutions by using more forty (40) elements. 
Through, the validation process, the capability of this discretiza-
tion to minimise as far as possible the buckling load error under 
the threshold of 4% was fully checked.

It is also proved in the numerical studies that the classical 
solutions which disregard distortional and shear deforma-
tions lead inevitably to an important overestimation of the 
critical buckling loads with a relative error reaching 40%.

The LTB behaviour of the RHS beams under combined 
bending and compressive loads is considered in the numeri-
cal investigation. It worth noting that the additional com-
pressive load may affects only the post-buckling equilibrium. 
The obtained results suggest that the LTB resistance of the 
RHS beams decreases with increasing compressive load.

In the end of the numerical study a conceptual study is con-
ducted, that focused on the improvement of the LTB resistance 

(a)

(b)

(c)

(d)

Fig. 8   Effect of the compressive load on the load–displacement 
curves for pined-simply supported beam of example 3

▸
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of the RHS beams by adding lateral stiffeners, attached to the 
sectional beam contour. This may contribute efficiently to 
enhance the buckling load results, to reaching that provided by 
the classical theory. In this way, the present study reveals that a 
more effective LTB amelioration is obtained by adding four (04) 

lateral stiffeners, and the distortional effect completely vanish 
with the incorporation of eight (08) stiffeners.

Appendix

Shape functions for the 3D finite element box beam
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Table 3   LTB loads comparison for the beam of example 3

Axial com-
pressive load 
(kN)

Present numerical 
FE Method Fcr

SD 
(kN)

Formula 
(36b) Fcr 
(kN)

Relative error 
of Eq. (36b) 
(%)

Fx = 0 74.33 92.11 24
Fx = 0.5Pz 46.79 60.81 30
Fx = 0.75Pz 37.14 41.37 10

Fig. 9   Cantilever RHS beam 
with lateral stiffeners attached 
on the sectional contour Fz

a

L

Lateral stiffener 
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