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Abstract
Suspension bridges due to their long span are susceptible against dynamic events, like air flow which can cause consider-
able problems for them. Flutter, as an aerodynamic phenomenon, makes bridges vibrate, whereas their amplitude gradually 
diverges, needed the vibration control strategies. Tuned mass damper or in brief TMD, as the simplest passive device, can 
be used for this purpose. The performance of it can be enhanced when it’s parameters are adjusted to their optimum values. 
In this paper, the TMD was optimized by meta-heuristic optimization algorithms to control the flutter of long span suspen-
sion bridges. In this regard, the Golden Gate suspension bridge and Car tracking algorithm were selected for case study and 
optimization process, respectively. Firstly, the flutter analysis of bridge was done by multi-mode method in the time domain, 
and at second part, the TMD’s parameters were simultaneously optimized for maximum increase of flutter velocity of all the 
vulnerable modes. The results indicated that TMD was perfectly suitable device to control the flutter of long span bridges.

Keywords Suspension bridge · Flutter phenomenon · Time domain · Multi-mode method · Tuned mass damper · Meta-
heuristic optimization algorithm

1 Introduction

Suspension bridges are usually the first candidate to connect 
two far points, creating long spans in their structure. This 
issue causes that these bridges suffer from the large deforma-
tion due to dynamic loads, like wind. They can separately 
vibrate in four main modes named vertical, longitudinal, lat-
eral, and torsional; also, their vibration can be a combination 
of mentioned modes (Huang et al. 2005). The prediction of 
dominant modes of ultimate responses under some events, 
like ground motions having fortuitous inherent is very dif-
ficult. But, this issue about wind is a little different. The 
deck which air flows around it, can encounter aerodynamic 
phenomena, like vortex-shedding, galloping, buffeting, static 
divergence, and flutter (Strommen 2016). Each of the men-
tioned instances makes bridges vibrate in specific modes, 
which can be determined in account to occurred phenom-
enon. For example, flutter makes bridge experience torsional 
vibration, such that one special mode has the integral role. 

Hence, the aerodynamic behavior of suspension bridges 
should be improved, possible by three main strategies as 
follows (Li et al. 2015):

(1) Changing the shape of bridge, like using the separate 
streamlined box girders.

(2) Converting the kinetic abilities by altering the structural 
configuration of bridge.

(3) Attachment of additional instruments to improve the 
stability.

Tuned mass damper, as a passive mechanical control 
strategy, belongs to the third item. In the simplest form, it 
includes three main parameters called mass ratio, tuning 
frequency, and damping ratio (Elias and Matsagar 2017). 
Kwon et al. (2000) utilized a TMD mechanism to activate 
a plate, changing the air flow around the deck. Their crea-
tive passive system was experimentally tested in the wind 
tunnel test, which was successfully verified. Pourzeynali 
and Datta (2002) investigated the effects of TMD’s param-
eters on increasing of flutter velocity. The results indi-
cated that TMD did not cause any instability. Finally, the 
appropriate values of its parameters were informed. Chen 
and Kareem (2003) investigated the efficiency of TMD for 
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bridge’s flutter control. They tried to introduce a procedure 
to design optimum TMDs according to the negative damp-
ing of structures. Chen and Cai (2004) Suggested a novel 
control strategy, attenuating the modal coupling effects 
and mitigating the resonant vibration by TMDs. Abdel-
Rohman and John (2006) investigated the performance 
of TMD in increasing of galloping velocity of flexible 
suspension bridges without any changes in their shapes. 
Domaneschi et al. (2015) studied the control of buffeting 
of suspension bridges using TMD. The results of analysis 
showed that placing a single TMD at the middle point 
of the main girder, could reduce the response of bridge. 
Alizadeh et al. (2018) addressed the sensitivity of flut-
ter velocity into gyration radius and placement of TMDs 
for the Vincent Thomas suspension bridge. Furthermore, 
performance of TMD in response reduction of suspension 
bridges was studied by many researches. (Lavasani et al. 
2020a and 2020b; Alizadeh and Lavasani 2020).

Setting of TMD’s parameters is the most important 
factor in designing and controlling process. Efficiency of 
mass ratio can be improved by increasing the value of it; 
But, using too heavy TMDs will change the modal proper-
ties of structure, while it is not recommended. Damping 
ratio has less influence compared to mass ratio, however, 
increasing the value of damping ratio helps to dissipate 
the more energy of bridge. It is worth noting, that higher 
values of damping ratio disturb the movement of mass 
block. Also, mistuning of TMD can considerably decrease 
its performance (Tao et al. 2017). Hence, the parameters of 
TMD should be adjusted to their optimum values, needing 
an optimization process.

Finding the most optimum solution for a certain prob-
lem under determined constraints is named optimization 
process (Chen et al. 2018). Optimization can be done by 
gradient search methods or meta-heuristic algorithms 
(Pourzeynali et al. 2007). In the second item, one initial 
population is created to provide better solution compared 
to previous one. In other words, it should provide the bet-
ter generations step by step. Many population-based meta-
heuristic optimization algorithms have been introduced 
and improved by researchers (Rao et al. 2011; Shahruzi 
et al. 2017). Also, parameters of TMD were optimized 
in many researches by using these algorithms (Pisal and 
Jangid 2016; Miguel et al. 2016).

In this paper, flutter analysis of long span suspension 
bridges is done by the multi-mode method in time domain. 
TMD, as a passive system, will be optimized in a manner 
controlling all the existing vulnerable torsional modes. 
Optimization process will be done according to the highest 
increase of flutter velocity of related modes. The Golden 
Gate suspension bridge, as one of the longest ones, located 
in San Francisco is selected for case study. Also, Car track-
ing optimization algorithm, as a metaheuristic one, is used as 

the optimization tool. Finally, the important results obtained 
by the flutter analysis of bridge, are provided.

2  Flutter Condition

Flutter, as an aerodynamic phenomenon, is divided to two 
main kinds called two degrees of freedom or classical, and 
one degree of freedom or torsional, and or A∗

2
 instability. 

The first case, common in the airfoil or modern streamlined 
decks, contains coupling between the vertical and torsional 
modes. According to the second item’s name, A∗

2
 derivative, 

related to the torsional degree of freedom, is responsible 
for flutter. Perhaps, collapse of the first Tacoma Narrows 
suspension bridge containing wide plate, as the stiffening 
girder, can be mentioned as the well-known example for this 
phenomenon (Larsen and Larose 2015). A∗

2
 can be somehow 

considered as the sign of stability in the suspension bridges, 
especially, in truss type ones. When the values of A∗

2
 are 

negative, zero or small compared to the structural damp-
ing and mass moment of inertia, the occurrence of torsional 
flutter is impossible. In fact, this type of flutter occurs when 
the values of A∗

2
 are positive and have ascendant curvature 

(Andersen et al. 2016).
During flutter condition in suspension bridges, all modes 

expose a sinusoidal form of motion. It is worth noting, the 
number of modes are finite, and generally, one specific mode 
plays the dominant role. The velocity making zero damp-
ing of specific mode, usually the lowest torsional mode, is 
known as the flutter velocity. At the mentioned velocity, the 
bridge vibrates due to the self-excited forces, while in lower 
velocities of flutter, the vibration of bridge will be damped. 
In higher velocities, one mode will be negatively damped, 
causing the divergence of vibration’s amplitude, which can 
make the total collapse. The aeroelastic forces, imposed 
on the deck, are evaluated in account to flutter derivatives 
named H∗

i
 and A∗

i
,i = 1… 4 . They were firstly introduced by 

Scanlan and Tomko (1971) demonstrated in Fig. 1 (Chob-
silprakob et al. 2014).

In which, ρ, U , and B are the air density, wind velocity, 
and width of deck, respectively. Also, L , M , h , and θ sig-
nify lift, torque, vertical, and torsional degrees of freedom, 
respectively. By the way, sub-index se denotes self-excitation 
concept.
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Each flutter derivative affects the certain property of 
bridge. classical design of suspension bridge includes truss 
as the stiffening girder. This matter signalizes the role of 
flutter derivatives related to torsional motion. In this regard, 
the A∗

2
 and A∗

3
 correspond to velocity and rotation of torsion 

motion, respectively, are the most important ones. As men-
tioned, A∗

2
 dissipates mechanical damping, and A∗

3
 represents 

the difference between frequencies of flutter and dominant 
torsional mode.

3  Equation of Motion

Some fundamental assumptions, considered during analysis, 
are as follows:

(1) Linear behavior is considered during computation.
(2) All the dead load is carried out by the main cables, and 

the deck does not experience any stress.
(3) The hangers are vertical and inextensible cable, and 

their loads are uniformly distributed along the deck.

Finite element method is used to evaluate the structural 
properties matrices. In this regard, the suspended structure is 
divided to limited certain elements. As regards, inextensible 
vertical hangers result in same vertical displacement of main 
cables and girder, considering two nodes at the end parts of 
center line of girder is enough. Figure 2 demonstrates the 
arrangement of degrees of freedom. By the way, the effects 
of shear deformation are neglected.

As seen in Fig. 2, each node of the girder has four degrees 
of freedom namely vertical displacement, bending rotation, 
warping, and torsional rotation, shown by h , b , w , and θ, 
respectively. Hence, the order of structural properties matri-
ces of each element is eight. The lift and torque are imposed 

at the node i and i + 1 in the lumped form. Also, there is not 
any corresponding force with bending rotation and warping 
degrees of freedom, meaning zero value. More details about 
evaluating the structural matrices have been expressed by 
Rubin et al. (1983) and Lavasani et al. (2020b).

The aerodynamic damping and stiffness can be written 
according to Eqs. (1) and (2) as follows:

where:

Now, the motion equation can be written by using poten-
tial and kinetic energies, and applying Hamilton’s principal 
(Rubin et al. 1983):
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Fig. 1  a Localized aerodynamic 
lift force; b localized aerody-
namic torque

Fig. 2  Finite Element model of suspended structure
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In which, M , C , and K are the mass, damping and stiff-
ness matrices. Also, x represents the response of degrees of 
freedom. Equation (6) can be solved by utilizing multimode 
method in the time domain. Hence, the Cartesian coordinate 
should be transferred to the modal one:

where, Φ and y are the mode shape matric and modal ampli-
tude vector, respectively. By replacing the Eq. (7) in Eq. (6), 
and pre-multiplying in transposed of modal shape matrix:

In which: 

In the flutter condition, all the participant modes are con-
verted to a sinusoidal response with a unique flutter fre-
quency. So, the following relation is utilized:

where, � is the modal participation factor. Now, the follow-
ing relation can provide the flutter condition:

Equation  (12) represents the well-known eigenvalue 
problem of a complex matrix. The determinant of it is zero, 
while the determinant of both real and imaginary parts be 
simultaneously zero. This condition needs a trial and error 
process such that by changing the reduced velocity, a unique 
� should be appear making zero determinant. Finally, the 
flutter velocity can be found as follows:

In which, sub-index f  denotes the flutter condition.
After computing the flutter velocity, the response of 

bridge can be evaluated in the state space:

I signify unity matrix. Eventually, the ultimate response 
can be evaluated:
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4  TMD Device

Tuned mass dampers were utilized in many studies in order to 
control the vibrations (Amini and Doroudi 2010; Bortoluzzi 
et al. 2015; Lievens et al. 2016). Perhaps, the straightforward 
procedure of designing and low cost of maintaining are the 
eminent features of it. Vis-a-vis, high sensitivity to mistuning, 
too much space to place, and immutability of parameters of it 
versus to dynamic events are the disadvantages of it. However, 
it is one of the eternal candidate device to control of structures, 
whether in researches or in practical projects. TMD can be 
tuned to a specific mode of structure in order to occurrence of 
resonance to dissipate dynamic energy by its dampers (Deb-
barma and Das 2016). The most important issue about TMD 
devices is the setting of its parameters, i.e. mass ratio, damp-
ing ratio, and tuning frequency. So, it should be adjusted to 
its desirable values, which can be achieved by the optimiza-
tion process. Table 1 and Fig. 3 represent the specifications of 
TMD utilized in this study.

mr , ms , mh , I� denote mass ratio, mass of structure, mass of 
TMD, and mass polar moment of inertia of TMD, respectively. 
c , k , and � sare the damping coefficient of TMD, stiffness of 
springs, and the frequency of determined mode, respectively, 
that the sub-indexes specify relevant degree of freedom. The 
structural properties matrices experience a little change with 
presence of TMD shown for adding one TMD:

(16)

�
Kco

�
=

⎡
⎢⎢⎢⎣

AC

AC

AC

{0}

AC�
KAC + k

�
m×m

AB

(−k)(n+1)×m

AC

AC

AC

{0}

{0}

(−k)m×(n+1)
{0}

k(n+1)×(n+1)

⎤
⎥⎥⎥⎦
(n+1)×(n+1)
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Parameter Degree of freedom

Vertical Torsion

Mass m
h
= m

r
m

s I� = m
h
r
2

Damping c
h
= 2m

h
�
h
�
h

c� = 2I�����

Stiffness k
h
= m

h
�2

h
k� = I��

2

�

Fig. 3  Bridge-TMD system
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AC signifies absolute coefficient of bridge’s matrices 
without attaching TMD. Sub-index co denotes combined 
system of bridge and TMD. Also, n represents the number 
of degrees of freedom.

5  Car Tracking Algorithm

Finding the values of set of parameters to satisfy the needed 
performance metric under specified constraints is named 
optimization process. Optimization may be done by the gra-
dient search method, sometimes time consuming; Specially, 
when the problems are extricated. The other type of meth-
ods, inspired from the nature of some physical, biological, 
and social phenomena are called metaheuristic optimization 
algorithms which can remarkably decline the time of com-
putation by their random inherent. The last item is renowned 
to be population-based such that a population of random 
possible values of parameters, as initial responses, will be 
improved after determined Repetitions (Mortazavi et al. 
2018; Vallada and Ruiz 2011; Chen et al. 2018). Metaheuris-
tic algorithms are widely used to optimize the different range 
of problems, however, falling in the local extremums is the 
foible of them. So, designing of these algorithms have been 
widely developed to overcome the mentioned weakness, 
which is the important factor in emersion of many new 
metaheuristic algorithms. In this study, according to the 
mentioned content, the car tracking algorithm, as a Meta-
heuristic optimization algorithm, is selected to optimize the 
parameters of TMD. According to this algorithm, there are 
N cars in the road on both sides of the origin point looking 
for the object p. The cars located at the left side of the ori-
gin take negative values, while the opposite of mentioned 
definition is true for the cars located at the right hand. The 
cars searching for the object p, have two main specifications 
namely desired velocity ( Vn ) and their current positions ( Xn ). 
All the cars can change their desired velocity to find the 
object p. When one of the car finds the probably position of 
the object p, all the cars will move to there to find the exact 
position of the object p. Considered algorithm optimizes the 
problems by following steps:

1. Randomly generates the initial car population location 
shown by Xij . In which, i expresses the initial population 

(17)
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Mco

]
=
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[M]n×n {0}n×1
{0}

1×n m(n+1)×(n+1)

]

(n+1)×(n+1)

and j states the number of cars in a population. Here, the 
optimization process is one-dimensional, j is 1.
2. Randomly creates the desired velocity and position of 
the car population placed at the determined range.

3. After initial movement, replaces the car population 
position into object function to find the probable object p 
found by the car population.

4. Finds the best value of objective function, denoting the 
most probability of finding the object p.
5. In the last step, the car population are divided to two 
main groups conducting local and global searching to find 
the best solution.

Car tracking algorithm as a new metaheuristic optimiza-
tion algorithm is highly competitive compared with the other 
ones and suitably reduces the time of computation. Fifth 
step prevents algorithm to fall in local minima, confirming 
the verification of optimum computed answers. Five steps 
of mentioned algorithm are briefly defined here, and more 
details of its computational phases have been represented by 
Chen et al. (2018).

6  Numerical Analysis

The Golden Gate suspension bridge, placed in San Fran-
cisco, is chosen for case study. It is one of the longest 
bridges in the world with 1281 m center span and two 341 
m symmetric side spans. Stiffening girder is a two hinged 
truss type which has 7.6 m depth and 27 m width, and is sus-
pended from the main cables by extensible vertical hangers. 
The height of both towers is 214.1 m and they bear the main 
cable’s load, 17,500 kg

m
 , at the top of themselves. Figure 4 

shows the whole structure of it. During computation, side 
spans are divided to 11 elements, while main span contains 
28 elements. Table 2 represents some properties of men-
tioned bridge and more details are summarized by Rubin 
et al. (1983).

The modal properties and shapes are provided in Table 3 
and Fig. 5.

In order to continue the analysis, the flutter derivatives 
are drawn according to Scanlan and Tomko (1971) shown 
in Fig. 6.

It is assumed that the effects of H∗
4
 and A∗

4
 are negligi-

ble, and also A∗
1
 is about zero for all reduced velocity 

(
U

NB

)
 . 

By the way, N is the frequency in account to Hertz. The 
flutter analysis of bridge is conducted in five independent 

(19)Xij(t) = Xij + Vij

(20)Pi(t) = function
(
Xi

)
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condition, involving different considered number of 
modes. The results of computation for each condition and 
participation factors are provided in Tables  4 and 5, 
respectively.

Table 5 indicates that by increasing considered num-
ber of modes, the flutter conveys from lower modes to 
higher ones and This is due to decrease of the reduced 
velocity. Hence, opposite of short span suspension bridge, 
instead of one specific mode, some certain modes should 
be controlled.

It is recognizable from Table 5, that in each condition, 
one of the torsional modes plays critical role in the flut-
ter of bridge. First, third and fifth torsional modes are the 
dominant ones during flutter, respectively. Hence, these 
modes should be controlled, and a TMD tuned to one of 
them should guarantee the avoiding of flutter of bridge’s 
vulnerable modes.

Fig. 4  Total structural view of Golden Gate bridge

Table 2  Properties of Golden 
Gate suspension bridge

Parameter Value

Geometric Length of center span (m) 1280
Length of Side span (m) 343
Width of deck (m) 27.45
Torsion constant of the stiffening structure of side spans ( m4) 1.55
Torsion constant of the stiffening structure of center span(m4) 1.55
Warping constant of the stiffening structure of side spans ( m6) 488.51
Warping constant of the stiffening structure of center spans ( m6) 757.51
Virtual length of main cable (m) 2346
Cross section area of one main cable ( cm2) 5367

Load Total dead load of side span (kg/m) 17,040
Total dead load of center span (kg/m) 17,200
Horizontal tension of the main cable (KN) 237,915

Structural Modulus of elasticity of the stiffening structure ( MN∕m2) 200,027
Modulus of elasticity of the main cable ( MN∕m2) 200,027

Table 3  Modal properties of bridge

Mode no. Frequency 
(rad/s)

Period (sec) Mode type

1 0.59 10.65 V-AS
2 0.77 8.16 V-S
3 0.97 6.48 V-S
4 1.13 5.56 V-AS
5 1.16 5.52 T-AS
6 1.27 4.95 V-S
7 1.32 4.76 T-S
8 1.59 3.95 V-S
9 1.79 3.51 V-S
10 1.82 3.45 T-S
11 2.1 2.99 V-AS
12 2.19 2.87 T-AS
13 2.36 2.66 T-S
14 2.58 2.43 T-S
15 2.6 2.42 V-S
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7  Problem Definition

Flutter condition has been controlled by using many 
active, semi-active, and hybrid control systems (Xue et al. 
2020; Liu 2015; Wen and Sun 2015). These systems can 
change their characteristics in account to the wind velocity 
or impose a force, prepared by an external source, in order 
to control the vibration. For example, when the velocity 
of wind exceeds from a determined value during using 
active tuned mass damper (ATMD), an external source 
will impose forces by its actuators in opposite phase of 
motion. But, when a passive system is used to control flut-
ter, changing of characteristics or imposing an external 

Fig. 5  First three a antisymmetric and b symmetric mode shapes of bridge

Fig. 6  Flutter derivatives of Golden Gate bridge according to Scanlan and Tomko (1971)

Table 4  Flutter properties of bridge

Condition Number 
of modes 
considered

Flutter 
frequency 
(rad/s)

Reduced 
velocity

Reduced 
frequency

Flutter 
speed 
(m/s)

1 5 1.14 7.95 0.79 39
2 7 1.14 7.95 0.79 39
3 9 1.76 6.21 1.01 47
4 13 2.25 5.8 1.08 56
5 15 2.25 5.8 1.08 56
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force is impossible. TMD, as a passive system, in tradi-
tional design, just can control one of the modes of struc-
ture which is dominant amongst them. So, how to design 
of TMDs to control the flutter of long span bridges con-
taining the more torsional spaced modes should be revised. 
They should be designed in a manner that can control the 
most vulnerable modes against flutter. On the other hand, 
TMD does not have the ability to change its parameters 
under variation of air flow. Hence, here, optimization pro-
cess should be simultaneously done in a manner that safely 
avoid flutter concern of specific mentioned modes. In this 
regard, some considerations are taken account as follows:

(1) Placement of TMDs is specified according to the shape 
of considered modes. According to this issue, the most 
important points areLs

2
 , Lc

6
,Lc
4

 , andLc

2
 . Sub-index s and 

c denote side and center spans, respectively. Also, 
because of that symmetric geometric of bridge, all the 
points are specified according to left side and left part 
of center spans. therefore, the points placed in the right 
side and right part of center spans will be determined 
by the symmetry. So, totally seven TMDs may be used 
to control the flutter. The optimum number of TMDs 
should avoid flutter concern of mentioned modes.

(2) Parameters of TMDs placed at the different candidate 
points, have various values which should be optimized.

(3) Instead of tuning of TMDs to a certain mode’s fre-
quency, a novel parameter called tuning frequency 
ratio is introduced. This parameter is ratio of TMD’s 
frequency to the most vulnerable mode’s frequency, 
which is the first mode in this study. it considers the 
role of all the modes participating in the final response.

(4) It was shown that the effects of vertical modes on the 
ultimate flutter response is negligible in long span truss 
type suspension bridges, so the TMDs should be opti-

mized according to its torsional properties. According 
to Table 1, torsional mass parameter of TMD stated by 
mass polar moment of inertia contains gyration radius, 
in addition to mass ratio. So, two independent param-
eters should be considered.

(5) Considered bridge includes one central and two sym-
metric side spans that provide various responses. 
Hence, TMDs should be optimized according to each 
span’s specifications, increasing the parameters that 
should be optimized.

According to mentioned content, one TMD in each side 
span and five TMDs in center span may be optimized. TMDs 
placed at the middle point of side spans have same param-
eters. This is also true for TMDs placed at Lc

6
 and Lc

4
 and 

their corresponding symmetrical points. As mentioned, 
totally seven TMDs may be optimized that due to symme-
try reduces to four numbers. The considered parameters are 
separately mass ratio, gyration radius, damping ratio, host 
nodes, and tuning frequency ratio for each TMD. So, each 
TMD has five parameters and there are four different TMDs, 
providing twenty independent parameters which should be 
optimized. The possible upper and lower bound of param-
eters are according to Table 6.

Also, the absolute difference of the eigenvalue of real and 
imaginary parts is selected as the cost-function:

In which, w represents the eigenvalue, and re and im 
denote real and imaginary parts, respectively. The opti-
mization continues till the value of cost function tends to 
neighborhood of zero. In this condition, the optimal values 
of the considered parameters correspond to the maximum 
value of the reduced velocity. In computation, firstly, value 

(21)f = ||wre − wim
||

Table 5  Magnitude of modal 
participation factor
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of reduced velocity is fortuitously determined, then the val-
ues of specified parameters are randomly assigned. After 
computation of the first iteration, the set of parameters move 
toward their optimum values by the mechanism of car-track-
ing algorithm, which was faster and more accurate compared 
with other previously used algorithms utilized to optimize 
the parameters of TMD under seismic excitation (Lavasani 
et al. 2020a and 2020b; Alizadeh and Lavasani 2020). Also, 
all the computation has been done in Matlab R2016b.

8  Results and Discussion

Optimization process was simultaneously conducted for 
all considered variables and modes by various optimiza-
tion algorithms which are Genetic, Particle swarm, Teach-
ing–learning-based, Observer-teacher-learner-based, and 
mentioned car tracking (Eberhart and Kannedy 1995; 
Pourzeynali et al. 2007). The results are provided in Table 7.

All algorithms represent optimum parameters such that 
can properly increase the flutter velocity. Amongst opti-
mum values, the parameters of mass polar moment of iner-
tia related to the car tracking algorithm is the most opti-
mum. Why so it distributes a lighter mass in a more suitable 
manner compared to other algorithms. In fact, appropriate 
distribution of mass block around the torsion axis causes 
more optimal mass polar moment, however, its mass ratio 
is the least. This matter is utilized as the selection criterion 
of optimization algorithm. Table 7 shows that tuning fre-
quency ratio is about 1, indicating the importance of first 
mode as the most susceptible one. Also, Table 7 does not 

inform any TMDs in the side spans, expressing the lower 
notability of them compared to main span, and in center 
span just two TMDs is enough, while five TMDs had been 
predicted. Separating of mass polar moment of inertia to two 
absolute variables (i.e. gyration radius and mass ratio) makes 
lighter TMDs, why so optimized gyration radius decreases 
the mass ratio parameter. By the way, the ratio of optimized 
gyration radius to width of the deck resulting in 0.12, which 
can be noted as a practical point during designing of TMD. 
Host nodes express that two TMDs should be placed at 0.3 
Lc and 0.7 Lc points. According to the mentioned results, 
two optimum TMDs, in account to the mentioned optimum 
values, are computed for controlling the flutter of considered 
modes. The novel flutter properties of bridge are summa-
rized in Table 8.

Comparison of differences between frequencies and flut-
ter frequencies in Tables 4 and 8, indicates that A∗

3
 deriva-

tives affects more considerably combined system. In other 
words, it has higher rate of depreciation of stiffness. Also, 
because of that considering first mode as the basis of com-
putation, the corresponding flutter velocity of it noticeably 

Table 6  Allowable variation of 
values of considered parameters

Bound

Span Mass ratio (%) Gyration radius(m) Tuning fre-
quency ratio

Damping 
ratio (%)

Host nodes

Side [0,5] [0.5,27] [0.5,1.5] [1,20] L
s

4

Center [0,5] [0.5,27] [0.5,1.5] [1,20] [0.75
L
c

6
.1.25

L
c

6
]

Center [0,5] [0.5,27] [0.5,1.5] [1,20] [0.75
L
c

4
.1.25

L
c

4
]

Center [0,5] [0.5,27] [0.5,1.5] [1,20] L
c

2

Table 7  Optimized parameters Algorithm Span Parameter

Mass ratio (%) Gyration 
radius ( m)

Tuning fre-
quency ratio

Damping 
ratio (%)

Host nodes

Car tracking Center 2.4 3.3 1.01 10 0.3 L
c
 , 0.7 L

c

GA Center 2.5 3.05 1.04 9 0.3 L
c
 , 0.7 L

c

PSO Center 2.5 3.1 1.05 8.5 0.3 L
c
 , 0.7 L

c

TLBO Center 2.7 3.1 1.1 11 0.3 L
c
 , 0.7 L

c

OTBLO Center 2.5 3.2 1.04 9 0.3 L
c
 , 0.7 L

c

Table 8  Flutter properties of combined system

Mode 
(tor-
sional)

Fre-
quency 
(rad/s)

Flutter 
frequency 
(rad/s)

Reduced 
velocity

Reduced 
frequency

Flutter 
speed 
(m/s)

1 1.58 1.27 40.17 0.16 223
3 1.57 1.35 26.3 0.24 155
5 2.55 2.1 12.75 0.5 117
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increases. Needless to say, the other modes experience 
increasing of flutter velocity too. Optimum parameters of 
TMDs and the corresponding flutter velocity evaluated here 
and by other researchers are listed in Table 9.

Based on Table 9, the suggested TMDs of present study 
provide the highest flutter velocity. The configuration of two 
first cases is identical; But, tow last cases utilized TMDs in 
a different manner, perfectly explained by Kwon and Park 
(2004). Case four suggested five TMDs that the sum of their 
mass ratio is 3%, providing the lightest TMD. Case 1 reports 
a slightly larger mass ratio compared to case 4 (its mass ratio 
was represented according to the whole weight of bridge); 
Also, case 2 proposed 3 TMDs that their total mass ratio 
is 9%, providing the heaviest one. About damping ratio, 
the differences are not remarkable. All cases determine the 
first torsional mode as the dominant one and specify nearly 
same frequency ratio. Case 3 and 4 did not ascertain any 
optimum location to place the TMDs. Case 2 introduced 
the middle point of spans as the optimal points which may 
be not correct in long suspension bridges like Golden Gate 
(represented mode shapes in Fig. 5 verify this issue). In fact, 
the optimal possible range that host nodes are placed them 
should be determined based on mode shapes. The highest 
flutter velocity is achieved by utilizing the corresponding 
parameters of case 1.

Figure  7 shows the absolute maximum response of 
bridge’s node based on each dominant mode in their corre-
sponding flutter velocity in both controlled and uncontrolled 
conditions.

Figure 7 indicates that two optimized TMDs could suc-
cessfully reduce the response of central span in mode one. 
About third mode the response of side and side part of center 
spans were considerably reduced, and middle part of center 
span demonstrates the necessity of an additional TMD. Of 
course, increasing of bridge’s weight should be avoided. 
On the other hand, the flutter velocity has been adequately 
increased for this mode. Fifth mode reveals that receding 
from mode one, designated for tuning frequency of TMDs, 
reduces the performance of TMD. However, flutter velocity 
of this mode is placed at the safe point.

9  Conclusion

In this study, the flutter analysis of long span suspension 
bridges was conducted by multi-mode method in time 

Table 9  Computed values for TMD system

Case Research Bridge Number 
of TMD

Mass ratio (%) Damping 
ratio (%)

Dominant mode Fre-
quency 
ratio (%)

Host nodes Flutter 
velocity 
( m∕s)

1 Present study Golden Gate 2 1.9 10 First torsional 1.01 0.3 L
c
 , 0.7 L

c
223

2 Pourzeynali and Datta 
(2002)

Vincent Thomas 3 3 10–20 First torsional 0.8 0.5 L
s
 0.5 L

c

0.5 L
s

102

3 Gu et al. (1998) Sectional model 
of Tiger Gate

1 5.6 8 First torsional 0.98 – 25.2

4 Kwon and Park (2004) Golden Gate 5 0.6 – First torsional – – 67

Fig. 7  Total response of bridge along the spans
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domain. Subsequently, the TMD, optimized by metaheuristic 
optimization algorithms, was utilized to control the flutter. 
The Golden Gate suspension bridge and car tracking algo-
rithm were chosen for case study and optimization process, 
respectively. The most important results can be listed as 
follows:

In long span suspension bridges, more initial torsional 
modes are vulnerable against flutter concern. Utilized Con-
trol systems should properly prevent the occurrence of flutter 
condition from the vulnerable modes.

The effect of A∗
3
 derivatives on dissipating of stiffness 

matrix of combined system is higher compared to pure 
bridge.

In long span suspension bridges, maybe some spaced 
modes play dominant role in various reduced velocity, so 
all of them should be controlled. In this regard, the TMD’s 
parameters should be optimized according to the first mode’s 
properties, which is reasonable.

Optimization of mass polar moment of inertia in two 
independent phases related to gyration radius and mass ratio 
parameters, makes lighter TMD which is desirable. Also 
ratio of gyration radius to deck’s width, 0.12 for the Golden 
Gate bridge, can be noticed for designing of TMD in long 
span suspension bridges.

The center span of long span bridges has the dominant 
role during flutter and the best place of attaching TMD to it 
is between Lc

4
 and Lc

2
 from the each tower; The best point can 

be find by the optimization process which was 0.3 Lc and 0.7 
Lc for the Golden Gate bridge.

Optimized passive TMD controlling three different tor-
sional modes suitably increased the corresponding flutter 
velocities, and also reduced the maximum response of each 
node.
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