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Abstract
Various sensors have been installed in cable-stayed bridges to monitor the behavior of structures and external conditions. 
These sensors alert the administrator to take appropriate action when an abnormal signal is detected. Although inherent 
meaningful information about the history of structural responses in long-term accumulated measurement data are available, 
the methodology for utilizing such data in the long-term point of view has not yet been established. Structural response is 
determined by the mechanical principle of external loads and the structural system characteristics. Assuming that structural 
responses have a certain pattern in a constant condition, the state of the structure can be estimated to have changed or not 
through an analysis of the pattern variation of the measured data. This study utilizes the temperature and displacement data of 
a cable-stayed bridge to analyze the pattern variation of the measurement data. An autoregressive model is used to define the 
pattern of the time series data. A pattern model is then constructed with the data adopted as a reference for comparison. The 
compared data are applied to the pattern model to simulate the data reflecting the reference data pattern. Subsequently, the 
simulated data are compared with the actual data, and the pattern difference is computed through the error discriminant index.

Keywords  Cable-stayed bridge · Long term · Measurement data · Data analysis · Pattern analysis · Autoregressive model

1  Introduction

In principal infrastructures like cable-stayed bridges, moni-
toring systems are used to evaluate the integrity of structures 
at all times through various measurement sensors. The moni-
toring system measurements include structural responses, 
such as girder and pylon displacement, acceleration at a 
cable and some specific locations, and environmental ele-
ments, such as temperature, wind speed, and earthquake. 
These measurement data are used to directly or indirectly 
evaluate the state of a structure through various methods. 
They are then stored and managed such that they can be used 
for analysis when needed.

One of the methods of directly using the measurement 
data is evaluating structure safety by comparing these meas-
urement data with specific control criteria determined by 
various methods, such as structural analysis or load test. 
Accordingly, appropriate judgments and actions should be 

taken when a value that is not within the criteria is observed. 
However, no manuals or guidelines have yet been provided 
for that, and many studies were conducted to determine the 
criteria rationally (Cho et al. 2005; Chung et al. 2014; Kim 
and Song 2016). A number of researchers have attempted 
to evaluate the state of structures by directly using the 
measurement data. Kim (2017) assessed the soundness of 
a cable-stayed bridge by analyzing the correlation between 
temperatures and displacements. Wang et al. (2017) devel-
oped a time-dependent method for evaluating fatigue crack 
using limited measurement data. Meanwhile, Xia et  al. 
(2017) suggested a damage identification method consid-
ering the temperature effect using strain data. Zhou et al. 
(2018) evaluated the status of a bridge using monitoring 
data of 2 years and a finite element analysis. Ye et al. (2020) 
studied the evaluation of the prestress loss behavior of pre-
stressed concrete using fiber optic sensors. These methods of 
directly using the measurement data need further studies for 
practical application because of the restriction of available 
data, simulation- and experiment-based verification, limited 
application range, and so on.

The indirect methods for evaluating structures include 
damage detection methods based on a signal analysis and 
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modal analysis methods in the frequency domain. Sohn et al. 
(2001) developed a method for detecting structural damage 
through autoregressive (AR)-based models. Langone et al. 
(2017) developed an integrated damage detection algorithm 
using two complementary damage indicators and the ker-
nel spectral clustering algorithm. Meanwhile, Hearn and 
Testa (1991) verified, through an experiment, that damage 
can be estimated with modal parameters, such as the natural 
frequencies and damping ratios of structures. Cross et al. 
(2013) analyzed the effects of temperature, wind speed, and 
traffic load on natural frequencies using acceleration data 
and suggested a model for predicting the changes in natural 
frequencies considering external factors. Islam and Bagchi 
(2014) conducted a statistical analysis of the measurement 
data to evaluate structure damage. Choi et al. (2017) devel-
oped a technique for estimating the entire structure behavior 
using limited displacement data. In order to estimate the 
state of the structure indirectly, various studies have been 
attempted using measurement data.

Moreover, many studies on the methods of using arti-
ficial intelligence have lately been conducted in the field 
of structural damage detection. Abdeljaber and Avci (2016) 
developed a nonparametric damage detection algorithm 
with ambient vibration response and verified its applicabil-
ity through a finite element model. Abdeljaber et al. (2017) 
also developed a vibration-based structural damage detection 
method using convolutional neural networks and experimen-
tally verified the efficiency of the proposed method. In addi-
tion, Lin et al. (2017) developed a method for identifying 
damage locations using a deep convolutional neural network 
and validated its strengths with a numerical simulation. Padil 
et al. (2017) proposed a damage detection method using the 
modal characteristics of the structure and non-probabilistic 
artificial neural networks. Consequently, they verified the 
method with a numerical model and a laboratory test. Teng 
et al. (2019) proved that the damage detection accuracy can 
be improved by using convolutional neural networks with 
modal strain energy and dynamic response as inputs. Most 
of these AI-related studies focused on improving algorithms 
for learning various intended damage cases.

Structural responses are determined by the mechani-
cal relations of a structural system and the external loads. 
Although different responses can be obtained depending 
on the applied loads, the responses would be in a certain 
possible range when the structure constantly maintains its 
condition, and the loads are in a normal range. Assuming 
that the structure responses in a constant state have a certain 
pattern, the measured data pattern can be regarded as repre-
senting the structural system state. A change in the structural 
state (e.g., a partial defect of a structural element) can affect 
some responses related to it. Changed responses can lead to 
a change in the other responses and can be represented in the 
pattern change of a certain response of the structure. When 

the pattern change of the structural response is identified, 
it can be suspected that some structural systems have been 
changed, even though the significance of the amount of pat-
tern variation is not exactly known.

Pattern changes can occur not only temporarily from acci-
dental events, but also gradually over long periods of time. 
If the pattern change caused by an accident is sustained, 
the structural system can be regarded as changed by that 
event. Long-term accumulated data represent the histori-
cal information of structural behaviors, rather than only the 
quantitative data increase, and can be used to estimate the 
gradual degradation of the structural performance over a life 
cycle. If the tendency of the structural degradation can be 
determined, then the structural life can efficiently be man-
aged by establishing appropriate maintenance strategies in 
a long-term perspective. Analyzing the data pattern change 
considering the mechanical relation between the data and 
the structure makes it possible to estimate the change of the 
structural system causing the pattern change.

In monitoring the variation of the measurement data pat-
tern, the pattern must be numerically represented, and the 
difference between the patterns must be quantified. This 
study aims to analyze the long-term accumulated measure-
ment data based on a pattern analysis and propose a method 
for evaluating the pattern variation and represent it with a 
numerical quantification. The autoregressive model has been 
used to numerically represent the pattern of time series data, 
while the reference pattern model has been constructed using 
representative data. All data are applied to the reference pat-
tern model, and it leads to simulate the data reflecting the 
reference data pattern. The pattern differences are computed 
by comparing the simulated data with the actual data. The 
measurement data of the cable-stayed bridge, which have 
been accumulated for approximately 3 years, are analyzed 
using the proposed method.

2 � Methodology

2.1 � Autoregressive Model

The AR model is based on the assumption that the value 
of the data over time varies depending on its past value. 
As shown in Eq. (1), the data at time t is represented by the 
linear combination of previous data and error term.

where, y(t) is the time series value at time t; p and ∅i repre-
sent the order and parameters of the AR model respectively; 
and et is a white noise.

The analysis of the time series data using the AR model 
has been widely conducted to date based on Yule’s research 

(1)y(t) = �
1
y(t − 1) +⋯ + �py(t − p) + et
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(1927) on predicting the annual changes in sunspots (Figue-
iredo et al. 2010; Yao and Pakzad 2012; Guidorzi et al. 2014; 
Datteo et al. 2017; Kaloop et al. 2019).

2.2 � Autoregressive with Exogenous Input Model

The structural response data come from various external 
factors, but the AR model cannot consider these effects of 

Fig. 1   Measured data used

(a) Longitudinal displacement and temperature at the top of the left pylon

(b) Transversal displacement and temperature at the top of the right pylon

(c) Vertical displacement and temperature at the center of the girder

Table 1   Statistical features of 
the used data

Displacement Temperature

Pylon (L) Pylon (R) Girder Pylon (L) Pylon (R) Girder

Mean − 13.79 1.991 5.915 16.31 16.56 19.92
STD 28.70 6.223 20.51 7.951 7.988 10.87
Skewness − 0.037 0.201 1.273 − 0.246 − 0.248 0.201
Kurtosis 2.127 9.596 32.98 2.028 2.034 2.399
Missing data 800 800 902 16 69 0
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external factors. In the AR-based model, the model for rep-
resenting the relationship between the input and the output 
in the time domain is autoregressive with exogenous input 
(ARX) calculated as shown in Eq. (2):

where, u(t) and y(t) are the input and output data at time t; 
and na , nb , and ai , bi represent the orders and the parameters 
of the output and input data, respectively.

The time series pattern can be defined by the ARX model 
considering the input data. Moreover, the pattern difference 
with the other data can be checked using this pattern model. 
In this study, the ARX model was used to analyze the pattern 
change of the measured data from the cable-stayed bridge.

2.3 � Measured Data

The data used were the temperature and the vertical dis-
placement at the center of the girder hereinafter referred to 
as the girder vertical displacement (GVD) data and the tem-
perature and lateral displacement at the top of both pylons in 
an operating cable-stayed bridge. The lateral displacement 
at the left pylon was the longitudinal direction and herein-
after referred to as the left pylon longitudinal displacement 
(LPL) data. The transversal displacement was used at the 
right pylon and hereinafter referred to as the right pylon 
transversal displacement (RPT) data. The 1 h-averaged data 
were used for the pattern analysis. In addition, the tempera-
ture and displacement data were utilized as the input and the 
output, respectively. As shown in Fig. 1, a number of outli-
ers and missing values are included in the measured data 
for approximately 3 years from January 2016 to November 
2018. However, no preprocessing for correcting these data 
was conducted herein because artificial corrections may 
affect the pattern analysis.

Table 1 presents the statistical features of the data (i.e., 
mean, standard deviation (STD), skewness, and kurtosis) 
with the number of missing data. The mean value for the 
LPL data was approximately − 13.79 mm, indicating that the 
pylon was slightly inclined to the abutment. Meanwhile, the 
mean value of the RPT data was approximately 1.991 mm. 
The standard deviation showed a larger value in the LPL 
and GVD data than in the RPT data. The GVD data had a 
skewness value of 1.273, showing a little biased distribu-
tion compared to the lateral displacements of both pylons. 
Such a biased distribution of the GVD data can be regarded 
as caused by the vehicle loads applied on the girder at all 
times. The LPL data had a kurtosis of approximately 2.127, 
which is lower than 3 (i.e., kurtosis of a normal distribution), 
but the RPT and GVD data had large values of 9.596 and 
32.984, respectively. The data that are more outlier-prone 

(2)

y(t) + a
1
y(t − 1) +⋯ + ana y

(

t − na
)

= b
1
u(t − 1) +⋯ + bnbu

(

t − nb
)

+ e(t)

than the normal distribution show a larger kurtosis value 
than 3. Figure 1 shows that the RPT and GVD data had many 
outliers, and such excessive outliers enlarged the kurtosis 
value. The mean and the standard deviation of the tempera-
ture data at the girder had slightly larger values than those of 
both pylons. Moreover, more missing data were distributed 
in the displacement data than in the temperature data.

2.4 � Pattern Analysis Scheme

The pattern analysis of the measured data was conducted as 
shown in Fig. 2. The data were divided into subsets with a 
certain length to determine the pattern variation progress. 
Subsequently, the pattern differences of each set were ana-
lyzed. Therefore, the continuous input and output data of the 
same time span, which did not include the missing values, 
were set to be one dataset. The dataset length should be 
appropriately determined considering the data characteris-
tics. The length of one dataset herein was set to 30 days.

Prior to the pattern analysis, all the input and output data 
were divided into datasets with a constant length and the 
same measured time, except for the missing range. The data 
of both pylons and the girder consisted of 27 and 26 pairs of 
datasets, respectively. The shaded area in Fig. 3 represents 
the inappropriate range for composing the dataset, in which 
the missing values were contained and cannot be continuous 
for 30 days.

Fig. 2   Pattern analysis procedure
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The reference pattern for comparing the differences must 
first be defined to analyze the pattern change. These refer-
ence data can be selectively used with appropriate methods 
from the entire data, or the initial data can be used. This 
study uses the first dataset as the reference data. The ARX 
model was employed to formulate the input and output rela-
tion of the reference dataset (i.e., pattern). The ARX model 

orders for the pattern model construction should be ration-
ally determined considering the data characteristics. Once 
the ARX model orders were determined the ARX model can 
be constructed by calculating the parameters that best match 
with the reference data. Various optimization methods can 
be used for calculating the ARX parameters. Among them, 
the least square method was used in this study.

Fig. 3   Dataset configuration
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The constructed ARX model exhibited a relationship 
between the input and the output of the reference dataset. 
Thus, the virtual output values reflecting the reference data 
pattern can be simulated by applying the input and the out-
put of the other datasets to the reference pattern model. If 
the applied dataset pattern is similar to the reference dataset, 
the resulting output will match the actual value well; other-
wise, it will show some differences. Therefore, the difference 
between the values of the simulated output data from the 
pattern model of the reference dataset and its actual val-
ues meant the difference of the patterns between the data 
and the reference data. These differences can be determined 
through various discriminant indexes. The normalized root 
mean square error (NRMSE) fitness value in Eq. (3) was 
used to quantify the differences.

where, yi is the measured output data; ŷi is the simulated 
output data through the ARX model; and ȳ is the mean of 
the measured output dataset. The input and the output of all 
the data were applied to the ARX model in Eq. (2). Subse-
quently, ŷi , which reflects the reference data pattern, was 
simulated step by step. The difference between the measured 
( y ) and simulated ( ̂yi ) data for each dataset was calculated 
using Eq. (3).

The model accuracy according to the ARX order was 
analyzed with the reference data of the left pylon dis-
placement using the NRMSE value to determine the ARX 
model orders. The ARX parameters for each ARX order 
were derived using the least square method. Figure  4 
plots the difference between the actual data and the ARX 

(3)NRMSE = 100
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model-reflected data. The ARX model accuracy gradually 
increased with the ARX order and appeared to converge near 
25 of the order. Due to the data used herein are 1 h-averaged 
data, both the input and output orders of the ARX model 
were set to 24 considering the periodicity of 24 h per day.

Fig. 4   Model accuracy according to the ARX order
(a) ARX parameters of the data at the top of the left pylon

(b) ARX parameters of the data at the top of the right pylon

(c) ARX parameters of the data at the center of the girder

Fig. 5   Input and output parameters of the ARX order
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3 � Measured Data Pattern

The first dataset was used as the reference data for compar-
ing the whole data patterns. The pattern of the input and out-
put relations over time of the reference dataset was defined 
through the ARX model. The input and output orders of the 

ARX model were applied as 24, indicating that 24 input and 
output data were used to estimate one output data value. The 
ARX parameters that best fit the reference dataset pattern 
were determined by the least square method. Figure 5 shows 
the ARX model parameters of each reference dataset. In the 
output parameters, the first parameter had the largest value 
in all models, implying that the pattern of the measured dis-
placement data was most affected by the data just before. No 
tendency of decrease was observed in the parameters even 
if the ARX orders increased. Thus, it is considered that the 
influence of all data was properly reflected in defining the 
pattern models.

Table 2 presents the statistical features of each ARX 
model. The maximum and mean values were the absolute 
parameter values. The pattern contribution value (PCV) was 
defined to check the influence of the input and the output in 
ARX model construction. The data and the ARX parameters 
had different scales of variation range; thus, these differ-
ences were considered with the standard deviation of each 
value. Let the standard deviation of the data be denoted as 
STDd and that of the ARX parameters be STDp. The PCV is 
then expressed in Eq. (4) as

Table 2   Summary of the ARX 
parameters

Left pylon Right pylon Girder

a
i

b
i

a
i

b
i

a
i

b
i

Max (abs) 1.033 0.439 1.130 0.629 0.792 3.897
Mean (abs) 0.236 0.144 0.154 0.272 0.134 1.291
STD 0.318 0.192 0.267 0.344 0.205 1.637
PCV 9.134 1.527 1.659 2.748 4.208 17.80
PCV ratio 5.980 0.604 0.236

(a) Validation of the ARX model at the top of the left pylon

(b) Validation of the ARX model at the top of the right pylon

(c) Validation of the ARX model at the center of the girder

Fig. 6   Measured and simulated data of the reference dataset

Table 3   Validation results of the defined pattern model

LPL data RPT data GVD data

Error max (abs) 3.042 4.252 10.828
Error mean (abs) 0.657 0.795 2.270
Error STD 0.851 1.038 2.922

Table 4   Normalized validation results of the defined pattern model

LPL data RPT data GVD data

STD of data 10.39 3.882 13.43
Error max (abs) 0.293 1.095 0.806
Error mean (abs) 0.063 0.205 0.169
Error STD 0.082 0.267 0.218
NRMSE 91.81 73.25 78.24
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The PCV represents the effectiveness of the ARX param-
eter considering the data variation. Let the ratio of PCVo in 
the output parameters over PCVi in the input parameters be 
defined as the PCV ratio that represents the ratio of the effec-
tiveness of the output and input data used for pattern defini-
tion. A larger value of the PCV ratio meant a lower influence 
of the input data for defining the output data pattern. This 
result implies that the LPL data pattern was dependent on 
its own past value compared to the temperature, while the 
GVD data had a temperature-dependent pattern. The input 
and output influences were evenly reflected in defining the 
RPT data pattern.

Figure 6 shows the output values of the actual and simu-
lated data from the reference ARX model. The pattern of all 
datasets was properly defined because the simulated data 

(4)PCV = STDd × STDp
represented the actual data well. Table 3 briefly summa-
rizes the difference between the actual and simulated data. 
The maximum and mean values were the absolute error val-
ues. Compared with the results of both pylons, the maxi-
mum, mean, and standard deviation values of the difference 
between the measured and simulated GVD data had larger 
values. The large variation of the GVD data was consid-
ered to cause these results. In order to exclude such differ-
ences, the results were divided by each standard deviation 
(Table 4).

The highest NRMSE value in the normalized results was 
91.91 in the LPL data. Although the influence of the input 
data on defining the LPL data pattern was low, an accurate 
pattern model was derived. From this result, the longitudinal 
displacement of the pylon can be regarded to have a pattern 
that depended on its own past values. The NRMSE values of 
the RPT and GVD data were 73.25 and 78.24, respectively. 

Fig. 7   Measured data and simu-
lated data in all datasets

(a) Validation of all datasets at the top of the left pylon

(b) 

(c) 

Validation of all datasets at the top of the right pylon

Validation of all datasets at the center of the girder
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The pattern model of the RPT data that relatively evenly 
considered the influences of the input and the output showed 
a less fit result than the GVD data, which had an input-
dependent pattern model.

4 � Pattern Analysis Results

In the pattern analysis of the measured data, the variation 
of the pattern differences was examined based on the first 
dataset pattern. The reference pattern model of each data 
was used to derive the simulation data throughout the entire 
dataset. The simulated data were compared with the actual 
values to determine the difference in the patterns. Figure 7 
shows the measured and simulated data for the entire dataset. 
The simulated data represented the measured data well in all 
datasets, except for that containing outliers.

Figure 8 depicts the NRMSE values for each dataset. The 
NRMSE values, which were supposed to be in the normal 
condition, fluctuated between 85 and 90 for the LPL data, 
65 to 75 for the RPT data, and 70 to 80 for the GVD data. 
Transient differences in the NRMSE values were found in 
dataset No. 22 of the LPL data, dataset nos. 14 and 23 in 
the RPT data, and dataset nos. 4, 19, and 21 in the GVD 
data. Figure 9 shows the measured and simulated data of 
these datasets that represent temporary differences. In all 
datasets containing outliers, the errors between the measured 
and simulated data rapidly increased after the outliers were 
found. Settling such sudden errors took time. The errors 
were accumulated in this settling time and led to noticeable 
differences.

An analysis of the temperature and displacement data pat-
terns of both pylons and the girder showed no meaningful 
change or gradual tendency in the pattern for approximately 
3 years. That is, no change in the structural system was 
observed for this measured period.

5 � Conclusion

This study investigated a methodology for analyzing the 
pattern variation of measured data. The pattern variation 
identification can be used in the structural maintenance field 
in various manners through further studies on its applica-
tion, although the pattern of the structural response data is 
not directly related to the structure performance. Assuming 
that the structural performance degradation induces a pat-
tern change in structural responses, the structural damage 
occurrence or structural performance deterioration can be 
evaluated in a long-term point of view through a pattern 
analysis of the measured data. The measured data of the 
cable-stayed bridge for approximately 3 years were used 

herein to examine the data pattern. The pattern variation of 
the displacement data was analyzed with the temperature 
data as an input. The following conclusions are drawn:

(1)	 From the result that no significant pattern change was 
observed, it is considered that the structural perfor-
mance degradation did not occur during the measured 
period of the data used herein.

(2)	 For the dataset containing outliers, the error of the 
ARX model rapidly increased, requiring some settling 
time to reduce the error, such that the pattern difference 
remarkably appears.

(3)	 For the data showing a difference in pattern com-
pared with the other data even though no outliers were 

(a) NRMSE variation of the data at the top of the left pylon

(b) NRMSE variation of the data at the top of the right pylon

(c) NRMSE variation of the data at the center of the girder

Fig. 8   NRMSE variation in all datasets
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included, the event that occurred, which caused the 
change, or the sensor inspection history at that time 
should be checked.

(4)	 The methodology used can be applied to establish a 
monitoring strategy for the structural behavior in a 
long-term point of view and support decision making 
relevant to structural maintenance.
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