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Abstract
The plastic analysis of moment frames by the combination of elementary mechanisms is one of the classic problems in the 
field of nonlinear analysis of structures. This method, based on the principles of the upper-bound theorem, has so far been 
used in much research. The application of optimization algorithms in structural engineering resulted in the use of this method 
for high-rise structures and determination of the collapse load factor along with the critical failure mode. The most important 
feature of this method is the simplicity of application without the need for complex analysis or software. Nevertheless, the 
only disadvantage is its exclusivity for moment frames. In this study, with the help of the existing principles for moment 
frames, the method is developed for braced frames. To this end, various optimization algorithms have been used to examine 
the convergence rate and compare them with each other. In this research, the genetic, modified dolphin echolocation, grey 
wolf, and whale algorithms are used to optimize the proposed method. By comparing the results for three samples, the genetic 
and modified dolphin echolocation optimization algorithms provided far more accurate results. Although, there is a little 
error in the grey wolf algorithm and much more in the whale algorithm.

Keywords Plastic analysis · Braced frame · Optimization · Genetic · Modified dolphin echolocation · Grey wolf · Whale

1 Introduction

The plastic analysis of moment frames consists of a set of 
methods that are used as a tool for studying the nonlinear 
behavior of frames. For over half a century, the method has 
created new possibilities for engineers for designing and ana-
lyzing nonlinear behavior of structures. In this method, loads 
are applied to the structure continuously until it reaches the 
collapse threshold. This method, aiming to calculate the 
critical load factor of the frame, is called plastic analysis in 
reference books (Baker et al. 1980; Chen and Sohal 2013; 
Wong 2011). Since the beginning of the approach, various 
methods have been proposed, depending on the specific 
conditions of the problem and existing constraints. The 
method of combining the elementary mechanisms is one 
of these methods. Despite the desirability of this method, 

its deficiency in high-rise structures made the method less 
attractive for researchers in several years until the achieve-
ments in optimization tools and algorithms. The main advan-
tage of this method, beyond its simplicity, is to recognize the 
structure’s failure mode and investigate its nonlinear behav-
ior. The method itself does not have a particular complexity, 
but with the increase of structural elements, the search space 
for the critical load factor determination of the structure sig-
nificantly increases. With the development of a variety of 
optimization algorithms in recent years, this problem can 
be solved efficiently without the requirement of complicated 
calculations.

In the combination of elementary mechanisms, the num-
ber of mechanisms that should be considered as elementary 
mechanisms is usually not limited, which means that these 
mechanisms increase with increasing of structural elements. 
Therefore, combining the elementary mechanisms to find the 
actual collapse mechanism is a tedious and time-consuming 
practice. This limitation obliges the application of methods 
that provide the fastest and most accurate answers as quickly 
as possible. This is where the heuristic and meta-heuristic 
algorithms can play an important role. At present, optimi-
zation tools can be divided into two general categories: the 
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first category consists of mathematical programming that 
has a long history of optimization, and the second category 
includes heuristic and meta-heuristic ones that have been 
located among optimization tools for about three decades.

In the problem of plastic analysis of moment frames, many 
researchers have applied some of these optimization algo-
rithms over time in order to find the collapse load factors and 
the corresponding failure mechanisms. Kaveh and Khanlari 
(2003, 2004), Kaveh and Jahanshahi (2004) and Kohama et al. 
(1997) presented studies on the determination of collapse load 
coefficients of planar frames by genetic algorithm. Kaveh and 
Jahanshahi studied the limited plastic analysis of frames using 
meta-heuristic algorithms and ant colony system (Kaveh and 
Jahanshahi 2006, 2008; Jahanshahi and Pouraghajan 2013; 
Kaveh et al. 2008). Subsequently, Jahanshahi et al. revealed a 
comparative study on determining the collapse load of planar 
frames by the neural network, genetic, and ant colony algo-
rithms (Jahanshahi et al. 2017). Greco et al. (2017) studied the 
seismic collapse of moment frames, introducing a method for 
simulating seismic conditions, and used SAP2000 software to 
validate this method. Daryan et al. (2019) also determined the 
failure mechanisms and collapse loads of steel moment frames 
using plastic analysis and presented the modified dolphin echo-
location algorithm. In the case of braced frames, both design 
(Lee et al. 2016) and analytical concepts exist in the literature. 
Saedi Daryan and Palizi (2020) applied the genetic algorithm 
for the collapse prediction and hinge formation of braced 
frames by developing the plastic analysis theory of moment 
frames to the frames containing braces.

Although numerous studies have been carried out on the 
plastic analysis of moment frames, few considerations for 
determination of the failure mechanism of braced frames with 
the help of the plastic analysis theory exist in the literature. 
There might be some reasons in this regard, including the 
presence of significant axial and shear forces in the members, 
which makes it difficult to determine the elementary mecha-
nisms. In this research, a new approach is introduced that can 
use the same procedure of mechanism combination in moment 
frames for the frames with bracings. The procedure starts with 
the elimination of individual bracings, and their axial capacity 
is replaced in the exact location instead. Then, the axial and 
shear forces exerted on the other members, including beams 
and columns, corresponding to the applied load are calcu-
lated. For instance, consider a one-bay and three-story frame 
that contains a bracing in each story. First, the bracing of the 
first story is omitted and replaced by its capacity load. Then, 
the axial and shear forces are calculated in each column and 
beam under that force. Second, the bracing of the second story 
is omitted and replaced by its ultimate force. The axial and 
shear force of other members are determined again. The same 
procedure is applied to the third bracing. Then, the omission 
of two bracings is considered (bracing one and two, bracing 
one and three, and bracing two and three). After that, all three 

bracings omission is examined, as well. Each time, when a 
case of omission happens, and new axial and shear forces are 
determined, plastic analysis of the same procedure for moment 
frames is performed. The difference here is that by applying 
axial and shear forces to a member, its plastic moment capacity 
can be reduced. Thus, the plastic analysis procedure is applied 
to the newly obtained frame. When the method applied to all 
the above-mentioned cases, the critical state, or the case with 
the lowest collapse load factor, is selected as the final solu-
tion. Consequently, the bracing mechanism effect is taken into 
account internally. In this research, the process of optimization 
is performed by the genetic algorithm and is compared by three 
other algorithms: modified dolphin echolocation, grey wolf, 
and whale optimization algorithms.

2  Theory

The whole procedure adopted in this research is expressed 
in three steps as below:

Step 1: Plastic analysis theory and combination of mech-
anisms methods

In the classic plastic analysis theory of frames, gravity 
loads are exerted in the middle of the beams as point loads, 
and the lateral loads are applied on each floor. The possi-
ble locations of hinge formation are named critical points 
(Fig. 1a). Elementary mechanisms in moment frames are 
beam and floor mechanisms that are also depicted in Fig. 1b, 
c, respectively. Joint mechanisms, which are the keys to 
minimizing the load factor, are also depicted in Fig. 1d. In 
this theory, a work equation is written for each elementary 
mechanism, and the corresponding load factor is determined. 
The role of joint mechanisms can be perceived when the ele-
mentary mechanisms are combined in order to get a lower 
load factor in the virtual work equation. By writing the work 
equation, the collapse load factor is determined as Eq. 1. The 
external virtual work is determined by multiplying the forces 
applied to the nodes (�) in the corresponding displacement of 
those joints for each specific mechanism (Eq. 2). The internal 
virtual work is also achieved for each mechanism by mul-
tiplying the rotations of the plastic hinge ( �) in the plastic 
moment of the members where the hinges are formed (Eq. 3).

In order to codify the plastic analysis procedure and 
determine the displacements and rotations automatically, 
the following procedure is applied.

(1)�c ∗ (external virtual work) = internalvirtualwork

(2)external virtual work = PTd

(3)internal virtual work = MT
p
|r|
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First, the compatibility matrix (C) should be formed. 
Each unrestrained joint has a horizontal and vertical move-
ment degree of freedom. The compatibility matrix is writ-
ten based on the length variation of members in the local 
coordinates and then is converted to the global coordinates 
by assembling them. As shown in Fig. 2, (�) is a vector 
that expresses the displacements of the joints and (e) is the 
changes in the length of each member in the defined degrees 
of freedom. Referring to Fig. 2, the change in the length of 
each element can be determined in the form of Eq. 5. By 
converting the length variation into global coordinates, the 
compatibility matrix (�) is concluded. Due to the assump-
tion of the plastic analysis that the elements do not elongate, 
Eq. 6 needs to be solved by applying the Gaussian elimina-
tion on the matric (C). Now, the independent and dependent 
displacements can be divided and written in Eq. 7 format in 
terms of the identity matrix (I). Thus, (��) which indicates 

Fig. 1  Critical points and hinge formation in possible mechanisms

Fig. 2  Details of an element in the global space
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the independent displacements, can be written in terms of 
(��) , or the dependent displacements as Eq. 8.

After coding the plastic analysis procedure and deter-
mining the displacements and rotations due to elementary 
mechanisms, it is time to combine them and try to obtain the 
mechanism that includes the minimum load factor. This is 
the critical load factor, and its corresponding failure mecha-
nism is called the critical failure mechanism of the frame. It 
is clear that this procedure noticeably increases by increas-
ing the size of the structure; the more the elementary mecha-
nisms, the more possibilities of combinations. Performing 
this procedure is a time-consuming and demanding task that 
even the coded format takes a significant computational 
effort. This is where the optimization algorithms can be 
helpful while the search space increases. These algorithm’s 
role is to solve these types of problems. In this research, four 
optimization algorithms are utilized to solve the problem, 
and then the results are compared. These algorithms include 
the genetic algorithm (GA) (Man et al. 1996), modified dol-
phin echolocation (MDE) (Daryan et al. 2019), grey wolf 
optimization (GWO) (Mirjalili et al. 2014), and whale opti-
mization algorithms (WOA) (Mirjalili and Lewis 2016). In 
Sect. 3, a summary of these algorithms is stated. For detailed 
explanations, one can refer to the corresponding papers.

Step 2: Modifying the moment frames procedure for 
braced frames

In the plastic analysis theory of moment frames, beam and 
floor as two independent mechanisms are supposed to be com-
bined to find the critical collapse load factor. In a braced frame, 
one possibility might be the consideration of another elemen-
tary mechanism for bracings, but the problem here is that by 
considering the brace mechanism, no hinges removal occurs 
when combining other mechanisms with them. Hence, no 
reduction of load factor happens, and the process of combina-
tion is worthless. In order to solve this issue, instead of consid-
ering an independent mechanism, each bracing is eliminated 
individually. Then, the ultimate tensile limit load is replaced 
instead. Due to this force, axial and shear forces are created 
in other members. The existence of these forces leads to a 
decrease in moment plastic capacity of each member (Chen 

(4)Cd = e

(5)e =
(
dxj − dxi

)
cos� +

(
dyj − dyi

)
sin�

(6)Cd = 0

(7)
[
I|Cd

]{ di

dd

}
=

{
0

0

}

(8)di = −Cddd

and Sohal 2013; Wong 2011). By applying the brace forces 
individually and finding the reduction in the plastic capacity 
of the members, several new frames are derived on which the 
plastic analysis should be performed. For example, for a frame 
of one span and two floors containing a tension brace on each 
floor, the plastic analysis should be done in four cases. The 
first case is when neither of the two braces is yielded. The sec-
ond and third cases are considered when the first and second 
floor’s brace is eliminated individually, and the fourth case is 
related to the removal of both braces. In each case, different 
axial and shear forces are exerted on the members; therefore, 
the reduced plastic capacity in the members is different for 
each case. For each structure, the plastic analysis is performed, 
and a minimum load factor is determined, which indicates the 
critical mechanism in that structure. Among these minimum 
load factors of each frame, the minimum one is revealed as 
the critical load factor of the real structure. The correspondent 
frame of the critical load factor demonstrates which bracing 
contributes to the final collapse mechanism. This operation 
can be done with the aid of optimization algorithms. These 
algorithms are adopted when the elementary mechanisms are 
combined since the search space increases dramatically as the 
spans and floors of the structure increases.

The proposed procedure covers all possible mechanisms 
for a multi-story frame, except the one that is related to 
the case when the single mechanism of the brace is criti-
cal. Although this particular mechanism rarely happens, in 
order to generalize this method, an attempt has been made 
to cover this case as well. Thus, the work equation for the 
sole mechanism of the yielding brace is determined, and 
the collapse load factor is calculated using the Eq. 9. In this 
equation, A is the cross-section of the brace, Fy is the steel 
yield stress, and λ is the load factor (see Fig. 3).  

Step 3: How to apply the reduction of plastic moment 
capacity

(9)λV .Δ =
(
A.Fy.sin�

)
.Δ

Fig. 3  Figure correspondent to Eq. 9
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After removing each brace, the ultimate tensile yield 
force of the brace is replaced instead. Figure 4 shows how 
this force is applied. This force results in axial and shear 
forces in other members, i.e., beams and columns. Thus, 
there is a reduction in the plastic moment capacity of those 
members. In order to find this reduction, many solutions 
exist in the literature (Chen and Sohal 2013; Wong 2011). 
The interaction relation is mostly adopted for this purpose. 
Equation 10 for the H sections is presented with the assump-
tion of the stress distribution of Fig. 5.

In Eq. 10, (Mpc) is the reduced plastic flexural capacity, 
(σy) is the yield stress and (σ) is the normal stress of the web, 
which can be expressed in terms of shear force ( V ) using 
(τ =

V

twdw
) and the Von Mises relationship ( σ2 + 3τ2 ≤ σ2

y
 ). 

(y0) can also be related to the axial force (P) with the equa-
tion (P = 2twy0σ).

The coding procedure is implemented in Matlab soft-
ware. This code can remove each brace and replace it with 

(10)Mpc = �ybtf df + �tw

(
d2
w

4
− y2

0

)

the corresponding ultimate force. Then, the new frames are 
determined, and the plastic analysis is performed by the 
employment of optimization algorithms. A concise expla-
nation of all four algorithms is presented in the next section.

3  Optimization Algorithms

3.1  Genetic Algorithm (GA)

The genetic algorithm is one of the first-offered algorithms 
for optimization and has been applied extensively in engi-
neering problems. In the genetic algorithm, better-fit genes 
have a higher likelihood of survival and pairing with other 
survivors to construct new generations. Individuals produced 
from generation to generation have this feature that inherits 
the positive aspects of their parents and eliminate weaker 
ones. These algorithms are used to select the appropriate 
elementary mechanisms for the combination process.

Chromosomes are strings of binary bits whose number of 
bits is considered to be the number of independent mecha-
nisms. Number 1 for each bit indicates that its corresponding 
mechanism is involved in the combination of mechanisms, 
and 0 means that it is not involved.

Crossover is an operation in which two strings are cut and 
produce new strings. A cut limit with an equal probability 
(Pc) between the first bit and the last bit of strings must be 
selected.

Mutation is the random change of a randomly-selected 
bit from zero to one and vice versa. To begin the search for 
the minimum load factor, an early generation is produced 
arbitrarily, and a genetic operation is performed on it. The 
best-fit ones are copied to the new generation, and the same 
process is repeated over and over, so that a reasonable esti-
mate can be obtained. The best-fit criterion is the result of 
the evaluation of a function called fitness or cost function, 

Fig. 4  Application of tensile yield limit force

Fig. 5  Stress distribution in the 
section
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which its goal here is to minimize the load factor of the work 
equation (Kaveh and Jahanshahi 2008).

3.2  Modified Dolphin Echolocation Algorithm 
(MDE)

The main steps of dolphin echolocation for discrete optimi-
zation are as follows:

 1. Initiate (NL) locations for a dolphin randomly.
 2. Calculate the (PP) of the loop using Eq. 11.

   Changes in (PP) in an optimization with 200 num-
bers of loops is presented in Fig. 6 by altering the 
power in the above equation.

 3. Calculate the fitness of each location. Fitness should be 
defined in a manner that the better answers get higher 
values. In other words, the optimization goal should be 
to maximize the fitness or minimize the cost.

 4. Distribute fitness of each location to its neighbors 
according to a symmetric triangular distribution 
(Fig. 7) or any symmetric distribution (Number of 
neighbors that are affected is Re).

 5. Add all devoted fitnesses to each variable of each loca-
tion to form accumulative fitness.

 6. Add a small value of (ε) to (AF) matrix to avoid local 
optimization. (ε) should be chosen according to the 
way the fitness is defined. It is better to be less than or 
equal to minimum possible fitness.

 7. Find the best location achieved and set its (AF) to zero.

(11)

PP(Li) = PP1 + (1 − PP1)
LPower
i

(LoopsNumber)Power − 1

(12)AF = AF + �

 8. Calculate the probability by normalizing (AF) as:

Where  (Pij)is the probability of the ith alternative to 
appear in the jth dimension;  (AFij) is the accumulative 
fitness of the ith alternative to be in the jth dimension; 
(MaxAj) is the maximum number of alternatives avail-
able for the jth dimension.

 9. Select (PP (Loopi)) percent of next step locations 
from best location dimensions. Distribute other values 
according to  (Pij).

 10. Repeat steps 2 to 9 for as many times as the Loops 
Number

The parameters of this algorithm include:

A: Number of loops: For each optimization problem, the 
computation costs increase with increasing number of 
loops. The number of loops can be determined by sen-
sitivity analysis when high precision is required. For all 
investigated problems, (NL) is considered to be 20. Addi-
tionally, it is the termination criteria in this problem.
B: Convergence curve relation: It is recommended to 
start the work with a linear curve and then use curves 
that spend more time (more loops). That is, initially start 
with (Power = 1), which usually yields good results, and 
then test states with (Power < 1) to control the improve-
ment of the results. Here, for plastic analysis problem, the 
(Power = 1) is adapted, and good results obtained, so that 
there were no need to try other curves.
C: Effective radius (Re): This parameter should be 
selected based on the size of the search space. It is usu-
ally advisable to select less than 1/4 of the search space. 
In this problem, it is assumed zero for convenience in 
this problem.
D: Number of Positions (NL): This parameter is the same 
as the population size in the genetic algorithm, which 
should be selected logically. The amount used for these 

(13)Pij =
AFij

∑MaxAj

i=1
AFij
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Fig. 6  Graphs related to Eq. 11

Fig. 7  Triangular distribution of fitness for ith variable of jth location
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problems is 5 for the second example, and 10 for the third 
one. It is worth mentioning that increasing this amount 
irrationally will lead to unnecessary calculation process.
E: It is rational to dedicate a number more than 50 for the 
probability of success in the first loop for a binary prob-
lem as there are just two options (0 or 1). Thus, (PP1) in 
Eq. 11 is considered 60.
F: Fitness Function: As mentioned in the context, the goal 
of plastic analysis theory in combination of mechanisms 
method is to minimize the load factor by combining the 
elementary mechanisms. Thus, the fitness function here 
is Eq. 1.

3.3  Grey Wolf Optimization Algorithm (GWO)

Grey wolves are hunters who are more likely to live in herds. 
The average population of the herd is 5 to 12 members. Their 
main behavioral feature is that they have a socially dominant 
ranking according to Fig. 8.

Leaders in a group of a woman and a man are called 
Alpha, who are often responsible for making decisions about 
hunting, sleeping, waking up, and so on. Alpha’s decisions 
are dictated to the group. The second rank of wolves is called 
Beta. Beta wolves are under the Alpha’s commands, which 
help Alpha in decision-making and other group activities. 
Beta wolves can be males or females and are the best alterna-
tives to Alpha wolves when they die or become too old. The 
lowest wolf numbers are Omega. They have to obey other 
wolves and are the last members allowed to eat. If a wolf 
were not Alpha, Beta or Omega, this wolf would be called 
under the command or the Delta. Delta wolves must obey 
Alpha and Beta, but they are superior to Omega. Scouts, 
guards, aged wolves, predators, and supervisors belong to 
this group. In addition to social wolf ranking, group hunting 
is another exciting behavior of grey wolves. The main phases 
of their hunting are as follows:

• Tracking, chasing and approaching the prey.
• Following, besieging and harassing the prey until it stops.
• Attack toward the prey.

In the grey wolf algorithm, this hunting method is mod-
eled mathematically for optimization purposes. In this algo-
rithm, the best answer is defined as the Alpha, the second 
and third best answers are also defined as Beta and Delta, 
respectively, and the rest of the responses are assumed to be 
Omega. Hunting is usually conducted by Alpha, although 
Beta and Delta occasionally participate in hunting. For 
mathematical simulation, it is assumed that Alpha (the best 
response candidate), Beta, and Delta have better informa-
tion about the position of the prey. Therefore, the first three 
responses are stored and oblige other members (including 
Omega) to update their position according to the position of 
the best answer.

In summary, the search process begins by creating a 
random population of wolves in the algorithm. During the 
repetition process, Alpha, Beta, and Delta guess the prob-
able position of the prey, and then each response candidate 
updates its distance from the prey. The relations correspond-
ent to this algorithm are described as following:

In these relations (t) expresses the current repetition num-
ber, (��⃗�) and (��⃗�) are the coefficient vector, (��⃗��) is the position 
of the prey vector, and (��⃗�) is also the position of the grey 
wolf vector. The vectors (A) and (C) are obtained as Eqs. 16 
and 17, in which the component (a) decreases linearly from 
2 to 0 during the repetition stages. ( �⃗�1) and ( �⃗�2) are random 
vectors in the range of [0, 1]. In Eq. 20, the wolves’ posi-
tion is updated. In fact, Alpha, Beta, and Delta assume the 
position of the prey, and other wolves update their position 
randomly around the prey. Regarding the cases mentioned 
in the grey wolf algorithm, only two parameters (a) and (C) 
must be set. This ease of operation with the algorithm is one 
of the capabilities of most of the meta-heuristic algorithms.

(14)��⃗D =
|||
��⃗C. �⃗Xp(t) −

�⃗X(t)
|||

(15)�⃗X(t + 1) = �⃗Xp(t) −
�⃗A.��⃗D

(16)�⃗A = 2 �⃗a.r⃗1 − �⃗a

(17)��⃗C = 2.r⃗2

(18)

��⃗D𝛼 =
|||
��⃗C1.

�⃗X𝛼 −
�⃗X
|||,
��⃗D𝛽 =

|||
��⃗C3.

�⃗X𝛽 −
�⃗X
|||,
��⃗D𝛿 =

|||
��⃗C3.

�⃗X𝛿 −
�⃗X
|||

(19)

�⃗X1 =
�⃗X𝛼 −

�⃗A1.
(
��⃗D𝛼

)
, �⃗X2 =

�⃗X𝛽 −
�⃗A2.

(
��⃗D𝛽

)
, �⃗X3 =

�⃗X𝛿 −
�⃗A3.(

��⃗D𝛿)

(20)�⃗X(t + 1) =
�⃗X1 +

�⃗X2 +
�⃗X3

3

Fig. 8  Social Rating of wolves (Mirjalili et al. 2014)
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3.4  Whale Optimization Algorithm (WOA)

The whales are the largest mammals in the world and are 
mainly considered as hunters. One of the largest species of 
them is called humpback whale, which has dimensions as 
much as a school bus, and their prey is small snails and 
groups of small fish. The most interesting fact about these 
whales is their hunting method. It has been observed that 
the search for prey is done by creating numerous bubbles 
in circles similar to the number 9. This behavior has been 
modeled mathematically for optimization problems.

Humpback whales can detect the position of the prey and 
surround them. Since the position of the optimal design is 
not known yet, the WOA assumes that the best response 
candidate is the target prey, or it is close to optimal response. 
Once the best agent is defined, agents try to update their 
position toward the best agent. The following relationships 
represent this behavior.

where (t) is the current repetition number, (��⃗�) and (��⃗�) are 
coefficient vectors, (����⃗�∗) is the position vector of the best 
answer already obtained, and (��⃗X) is the location vector. In 
addition, if there is a better response, (����⃗�∗) should be updated 
at each repetition. The vectors (A) and (C) are also comput-
able as follows:

In these relations, ( �⃗�) decreases linearly from 2 to zero 
during repetitions, and ( �⃗�) is a random vector in the range of 
[0, 1]. In order to model the bubble creating behavior, two 
approaches are designed as follows:

(a) Contracting surrender mechanism: This behavior is 
obtained by reducing the value of ( �⃗�) in Eq. 17. Note 
that the variation range of (��⃗�) also decreases by ( �⃗�) . In 
other words, (��⃗�) is a random value in the range [− a, a], 
in which ( �⃗�) decreases from 2 to 0 during the repetition 
process. By assigning random values of (��⃗�) in [− 1, 1], 
the new agent position is determined anywhere between 
the main position of the agent and the position of the 
best current agent.

(b) Updating the position as spirals: This approach first 
calculates the distance between the whale at the point 
(X, Y), and the prey that is calculated at the point ( X*

,Y* ). A spiral relationship between the position of the 

(21)��⃗D =
|||
��⃗C. ���⃗X∗(t) − �⃗X(t)

|||

(22)�⃗X(t + 1) = ���⃗X∗(t) − �⃗A.��⃗D

(23)�⃗A = 2 �⃗a.r⃗ − �⃗a

(24)��⃗C = 2.r⃗

whale and the prey is determined to simulate the spiral 
mode of the humpbacked whales as follows:

In this equation, ���⃗D�

= |����⃗X∗
(t) − ��⃗X(t)| and represents the 

distance between the i whale and the prey (the best answer 
so far), (b) is constant for determining the shape of the loga-
rithmic spiral and (l) is a random number in the range [− 1, 
1].

Based on variations of (��⃗�) , a similar approach can be used 
to search for the prey. In fact, the whales perform a search 
according to the location of each other randomly. Thus, for 
(��⃗�) , random values greater than (1) and smaller than (− 1) 
are considered to force agents to move away of the refer-
ence whale. Unlike the previous state, the agent location is 
selected randomly rather than the selection of the best agent 
already obtained. This mechanism, and ( ����⃗|A| > 1) , allows 
the algorithm to perform a global search. Its mathematical 
model is expressed as follows:

In these equations (�����) is the random position vector 
that is selected from the existing population.

The WOA algorithm begins with a set of random 
responses. In each repetition, the agents update their position 
either with regard to agents selected as random or based on 
the best obtained answer. The parameter (a) decreases from 
2 to 0. A random agent is selected when (�����⃗|�| > 1) , while 
the best answer is chosen when (�����⃗|�| < 1) . Depending on 
the value of (p), the algorithm is able to move between any 
spiral or circular movement. Finally, the WOA algorithm 
terminates with the satisfaction of the termination criteria.

Theoretically, the WOA algorithm can be considered as 
a global optimizer, since the mechanism described above 
defines the search space in the neighborhood of the best 
answer, and allows other agents to extract the best exist-
ing response from this range. Moreover, with a decrease of 
(��⃗�) , some repetitions are allocated to the inspection phase 
( ����⃗|A| ≥ 1) , and the rest are allocated to the extraction phase. 
Finally, for this algorithm, only two main internal param-
eters must be set which are (A) and (C).

After explaining the proposed method in Sect. 2, and the 
procedure of each algorithm in this section, the whole pro-
cess can be explained as the following steps:

Step 1  Obtain the frame properties in terms of geometry, 
plastic capacity, and the location of the braces.

(25)�⃗X(t + 1) =
����⃗
D

�

.ebl.cos(2𝜋l) + ���⃗X∗(t)

(26)��⃗D =
|||
��⃗C. �������⃗Xrand −

�⃗X
|||

(27)�⃗X(t + 1) = Xrand −
�⃗A.��⃗D
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Step 2  Eliminate braces, and replace their capacity loads 
on the exact location of their removal.

Step 3  Generate new frames by considering all possible 
combinations of brace removal.

Step 4  Perform the plastic analysis theory of elementary 
mechanism combination on the newly obtained 
frames.

Step 5  Apply the optimization algorithm to investigate 
the critical load factor and its corresponding fail-
ure mode by searching the possible combinations 
of elementary mechanisms. Note that the concept 
is the same for all algorithms, but the formulation 
of the algorithms are different, which are presented 
in Sect. 3.

Step 6  Determine the critical load factor of each frame and 
report the minimum of them.

Step 7  Decode the derived mechanism to determine which 
braces contribute to the critical mechanism.

Step 8  Apply the pushover analysis to verify the proposed 
method, which is performed for two examples in 
the following section.

4  Verification

As mentioned in previous sections, validating the proposed 
method is performed by a static nonlinear pushover analysis. 
In this analysis, the structure is subjected to gravity, and 
lateral loadings, which continuously increase until an ulti-
mate condition is reached. This procedure is very similar to 
the plastic analysis of frames of the elementary mechanism 
combination method. In pushover analysis, loads increment 
until the plastic hinge formation leads to the collapse of the 
structure. However, in the plastic analysis method, a reverse 
concept is observed. This method provides several failure 
mechanisms, each time with different hinge formation. Then 
investigates whether this failure mode satisfies the ultimate 
conditions or not. This condition is related to the critical 
load factor of the structure, which must be minimum. Based 
on this similarity, the pushover analysis is performed for two 
sample frames in the commercial software Etabs2015.

4.1  Sample One

A single-story and single-span frame is considered as Fig. 9. 
The sections of the members and their properties are shown 
in Table 1. This frame includes beam, floor, and brace mech-
anisms as three elementary mechanisms. The beam and floor 
mechanisms are similar to those of the moment frame where 
the brace mechanism is added to. In order to consider the 

brace mechanism, the yielding of the brace section, which 
is equivalent to the tensile yield limit force ( A × Fy ) of the 
brace section, is applied to the frame according to Fig. 10.

By replacing the yield limit force of the brace ( Py ) with 
the brace and obtaining axial and shear forces generated in 
the beam and the columns, the reduced capacity of the mem-
bers will be obtained according to step three in Sect. 2 which 
is shown in Fig. 11. Note that Mpc is the reduced plastic 
capacity of the members.

By extracting new plastic moment capacities, new frames 
are obtained and the plastic analysis needs to be performed 
for each frame. Due to few number of elementary mech-
anisms for this specific example, without the need for an 
optimization algorithm, the code is able to obtain the exact 
collapse mechanism by examining all of these situations. 
These are all the possible situations of the combination of 
the mechanisms that are shown in Fig. 12. The correspond-
ing load factor is also written below each one.

As can be seen, with the help of the plastic analysis the-
ory and by combining the elementary mechanisms together, 
all possible situations are investigated. The critical collapse 
mechanism in this example is a mechanism with the lowest 
load factor ( λ = 2.74 ). In Fig. 13, the results of the stand-
ard nonlinear static analysis of this frame in the Etabs2015 

Fig. 9  Sample one frame

Table 1  Section properties of the frame sample one

Sample one Section Plastic 
moment 
capacity 
(kN m)

Area  (cm2) Length (m)

Beam IPE160 29.8 20.1 4
Columns IPE200 53 28.5 3
Brace TUBO60*42*8 – 9 5
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software are presented. As can be seen, the results are 
exactly the same as the ones obtained from the presented 
MATLAB code. As the structure becomes larger, with the 
increase in the number of elementary mechanisms, the 
stated method will actually lose its effectiveness. However, 
using optimization algorithms, the correct response can be 
obtained in the shortest possible time. The following two 

examples will show the application of this algorithm using 
the stated theory.

4.2  Sample Two

A larger frame is investigated here. The geometry of the 
frame, and the properties of the sections are shown in Fig. 14 

Fig. 10  The elementary mecha-
nism of the sample one

Fig. 11  Axial and shear forces 
and new plastic capacities in the 
members

Fig. 12  Possible situations of 
the collapse mechanisms in 
sample frame one
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and Table 2 respectively. By replacing the braces with their 
yield limit load individually, and obtaining the axial and 
shear forces for each case, new frames for plastic analysis is 
investigated. For this example, all possible cases are depicted 
in Fig. 15. These cases represent the following frames:

• Frame with no braces being yielded
• Frame with only the second floor brace being yielded
• Frame with only the first floor brace being yielded
• Frame with both the first and the second floor braces 

being yielded

The code here is able to calculate the axial and shear 
forces due to braces removal, and then perform the plastic 
analysis by utilizing four optimization algorithms described 
in the previous sections. The actual collapse mechanism 
of this frame derived from pushover analysis is shown in 
Fig. 16. By applying GA, MDE, and GWO, this collapse 
mechanism also achieved. However, WOA presented another 
collapse mode, depicted in Fig. 17, with a different critical 
load factor. The convergence diagram of all algorithms is 
shown in Fig. 18 as well.

4.3  Sample Three

A five-story, two-span frame is studied here as Fig. 19. The 
sections are stated in Table 3. This frame is also analyzed by 
four optimization algorithms. Using the Genetic and Modi-
fied Dolphin Echolocation algorithms, and implementing the 
related code, the collapse mechanism is determined accord-
ing to Fig. 20. The obtained critical collapse mechanism, 
which is derived from the code, has a convincing agree-
ment with the response obtained from the pushover analy-
sis (Fig. 21). The only minor difference is observed in a 
hinge formation in the column of fourth-floor, which was 
formed in the fifth floor’s beam of the Etabs model. This 
can be considered as an acceptable error, such that had been 
observed in the classic plastic analysis of moment frames. 
This frame is also analyzed by two other optimization algo-
rithms: grey wolf, and whale optimization algorithms. This 
time, the collapse mechanism is derived distinctly different 
in comparison with the pushover analysis in Etabs2015. The 
GWO and WOA collapse mechanism is depicted in Fig. 22. 
The convergence diagram of all algorithms is illustrated in 
Fig. 23. In order to compare these results together, Table 4 
is drawn.

Fig. 13  The pushover analysis result of sample one

Fig. 14  Sample two frame

Table 2  Section properties of the frame sample two

Sample 
two

Section Plastic 
moment 
capacity 
(kN m)

Area  (cm2) Length (m)

Story 1
Beams IPE240 88 39.1 4
Columns IPE240 88 39.1 3
Brace TUBO60*60*8 – 16.6 5
Story 2
Beams IPE200 53 28.5 4
Column IPE200 53 28.5 3
Brace TUBO60*60*5 – 11 5
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Fig. 15  Studied frames in 
sample two
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5  Conclusions

In the present study, a new procedure for plastic analysis of 
braced frames is introduced by the application of optimiza-
tion algorithms. The combination of mechanisms method 
in plastic analysis theory of moment frames is a simple and 
efficient way for determining the critical load factor and the 
failure mechanism of a frame. In this way, optimization algo-
rithms facilitate the procedure. Although numerous studies 
are performed and then developed by various optimization 
algorithms, few studies are related to the plastic analysis 
of braced frames. The present research introduced a novel 

procedure to reach this goal. In this regard, the theory is 
applied in a single-story and single-span frame, and the 
result is compared with the manual solution. Hence, the 
accuracy is verified in the first step before the utilization 
of the optimization algorithms. In the second step, in order 
to develop the procedure for the larger frames, the genetic 
algorithm as the mostly employed optimization algorithm 
is used for determining the critical collapse mechanism of 
the frame. The result compared to the pushover analysis in 
the commercial software Etabs2015. Except for a negligible 
and, of course, predictable error in one hinge formation in 
the third example, the results were completely accurate. In 
the third step, the newly introduced procedure is done by 
three other optimization algorithms to develop the achieved 
results.

Modified dolphin echolocation, grey wolf optimization, 
and the whale optimization algorithms are the applied algo-
rithms. Among the results, MDE showed better results and 
convergence speed, even better than the GA. While GWO 
converged to the optimum result pretty fast, an error in the 
largest frame was observed that might be due to the local 

Fig. 16  The actual, GA, MDE, and GWO collapse mechanism of 
sample two

Fig. 17  The WOA collapse mechanism of sample two

Fig. 18  Convergence diagram of sample two in all algorithms

Fig. 19  Sample three frame
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Table 3  Section properties of 
the frame sample three

Sample two Section Plastic moment capac-
ity (kN m)

Area  (cm2) Length (m)

Story 1
Beams IPE400 31.4 84.5 4
Columns IPE400 31.4 84.5 3
Brace TUBO70*70*5 – 13 5
Story 2
Beams IPE300 15.1 53.8 4
Column IPE300 15.1 53.8 3
Brace TUBO70*70*5 – 13 5
Story 3
Beams IPE270 11.6 45.9 4
Column IPE270 11.6 45.9 3
Brace TUBO60*60*5 – 11 5
Story 4
Beams IPE270 11.6 45.9 4
Column IPE270 11.6 45.9 3
Brace TUBO60*60*5 – 11 5
Story 5
Beams IPE270 11.6 45.9 4
Column IPE240 88 39.1 3
Brace TUBO60*30*3.6 – 6 5

Fig. 20  Collapse mechanism obtained from GA and MDE in sample 
three

Fig. 21  Collapse mechanism obtained from static nonlinear pushover 
analysis in ETABS2015 in sample three
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optimal point stuck. Nevertheless, WOA results were far 
from the optimum answer. It seems that this algorithm needs 
to be modified for binary problems because it has revealed 
accurate results in other optimization problems.

References

Baker, J., Baker, L., & Heyman, J. (1980). Plastic design of frames 1 
fundamentals (Vol. 1). Cambridge: CUP Archive.

Chen, W. F., & Sohal, I. (2013). Plastic design and second-order analy-
sis of steel frames. Berlin: Springer.

Daryan, A. S., Palizi, S., & Farhoudi, N. (2019). Optimization of plastic 
analysis of moment frames using modified dolphin echolocation 
algorithm. Advances in Structural Engineering, 22, 2504–2516.

Greco, A., Cannizzaro, F., & Pluchino, A. (2017). Seismic collapse 
prediction of frame structures by means of genetic algorithms. 
Engineering Structures, 143, 152–168.

Jahanshahi, M., Maleki, E., & Ghiami, A. (2017). On the efficiency 
of artificial neural networks for plastic analysis of planar frames 
in comparison with genetic algorithms and ant colony systems. 
Neural Computing and Applications, 28(11), 3209–3227.

Jahanshahi, M., & Pouraghajan, M. (2013). Enhanced ACS algorithms 
for plastic analysis of planar frames. Computational Methods in 
Civil Engineering, 4(1), 65–82.

Kaveh, A., & Jahanshahi, M. (2004). Plastic analysis of planar frames 
using kinematic method and genetic algorithm. Asian Journal 
of Civil Engineering (Building and Housing), 5(3–4), 145–160.

Kaveh, A., & Jahanshahi, M. (2006). Plastic design of frames using 
heuristic algorithms. In Proceedings of the eighth international 
conference on computational structures technology. Civil-Comp 
Press, Stirlingshire, Scotland, Paper (No. 108).

Kaveh, A., & Jahanshahi, M. (2008). Plastic limit analysis of frames 
using ant colony systems. Computers & Structures, 86(11–12), 
1152–1163.

Kaveh, A., Jahanshahi, M., & Khanzadi, M. (2008). Plastic analysis of 
frames using genetic algorithm and ant colony algorithm. Asian 
Journal of Civil Engineering, 9(3), 227–246.

Kaveh, A., & Khanlari, K. (2003). Collapse load factor for rigid-plastic 
analysis of frames using a genetic algorithm. In Proceedings of the 
seventh international conference on the application of artificial 
intelligence to civil and structural engineering, Paper (Vol. 33).

Kaveh, A., & Khanlari, K. (2004). Collapse load factor of planar frames 
using a modified genetic algorithm. Communications in Numeri-
cal Methods in Engineering, 20(12), 911–925.

Kohama, Y., Takada, T., Kozawa, N., & Miyamura, A. (1997). Collapse 
analysis of rigid frames by genetic algorithm. In Proceedings of 
the computer aided optimum design of structures (pp. 193–202).

Lee, D., Kim, Y., Shin, S., & Lee, J. (2016). Real-time response assess-
ment in steel frame remodeling using position-adjustment drift-
curve formulations. Automation in Construction, 62, 57–65.

Fig. 22  Collapse mechanism obtained from GWO and WOA in sam-
ple three

Fig. 23  Convergence diagram of sample three in all algorithms

Table 4  Comparison of the results

Summary Algorithm Load factor Iteration Pushover 
load fac-
tor

Example two GA 4.55 6 4.58
MDE 4.55 5
GWO 4.55 3
WOA 5.06 6

Example three GA 1.85 9 1.87
MDE 1.85 16
GWO 1.9 5
WOA 1.9 6



1150 International Journal of Steel Structures (2020) 20(4):1135–1150

1 3

Man, K. F., Tang, K. S., & Kwong, S. (1996). Genetic algorithms: Con-
cepts and applications [in engineering design]. IEEE Transactions 
on Industrial Electronics, 43(5), 519–534.

Mirjalili, S., & Lewis, A. (2016). The whale optimization algorithm. 
Advances in Engineering Software, 95, 51–67.

Mirjalili, S., Mirjalili, S. M., & Lewis, A. (2014). Grey wolf optimizer. 
Advances in Engineering Software, 69, 46–61.

Saedi Daryan, A., & Palizi, S. (2020). New plastic analysis proce-
dure for collapse prediction of braced frames by means of genetic 
algorithm. Journal of Structural Engineering, 146(1), 04019168.

Wong, M. B. (2011). Plastic analysis and design of steel structures. 
London: Butterworth-Heinemann.

Publisher’s Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.


	Plastic Analysis of Braced Frames by Application of Metaheuristic Optimization Algorithms
	Abstract
	1 Introduction
	2 Theory
	3 Optimization Algorithms
	3.1 Genetic Algorithm (GA)
	3.2 Modified Dolphin Echolocation Algorithm (MDE)
	3.3 Grey Wolf Optimization Algorithm (GWO)
	3.4 Whale Optimization Algorithm (WOA)

	4 Verification
	4.1 Sample One
	4.2 Sample Two
	4.3 Sample Three

	5 Conclusions
	References




