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Abstract
This paper treats the distortional and shear deformation effects on the elastic lateral torsional buckling of thin-walled box beam 
elements, under combined bending and axial forces. For the purpose, a nonlinear kinematic model based on higher order theory 
is used applicable to both short and long thin-walled box beams. Because in the kinematic model of the higher order theory 
integrates additional flexibility terms related to shear, distortion and warping effects, it accurately predicts the lateral torsional 
buckling of the straight box beams. Ritz’s method is adopted as solution strategy in order to obtain the nonlinear governing 
equilibrium equations, then the buckling loads are computed by solving the eigenvalue problem basing on the singularity 
of the tangential stiffness matrix. Owing to flexural–torsional and distortional couplings, new matrices are obtained in both 
geometric and initial stress parts of the tangent stiffness matrix. The proposed method with the new stiffness terms, is efficient 
and accurate in lateral torsional buckling predictions, when compared with the commercial FEM code ABAQUS results. Based 
on the existing European guidelines EC3, an extensive numerical investigation is performed to demonstrate the effects of 
both shear and distortional deformations on the moment carrying capacity. The convenience of the model is outlined and the 
limit of models developed without shear and distortion deformation effects on lateral buckling loads evaluation is discussed.

Keywords  Non-linear · Lateral-Torsional Buckling · Box beams · Ritz’s method · Distortion and shear deformations · 
Eurocode 3

1  Introduction

Steel box beams are very frequently incorporated into high 
rise buildings as an efficient means for providing resist-
ance to lateral forces arising from winds and strong ground 
motions. The box beams are also commonly used in plane 
frames for pipe supports, industrial structures in power 
plants, oil refineries, and petro-chemical industrial plants.

When designing these structures (box beams), it is impor-
tant to quantify their lateral torsional buckling resistance 
under in-plane loads. This resistance can be achieved by 
adopting a one-dimensional beam buckling element with 
shear and distortion degrees of freedom.

Following the Eurocode 3 (Eurocode 1992), LTB for rec-
tangular hollow section need not to be checked. This is due 

to the fact that their polar moment of inertia is very large 
and therefore the section is more vulnerable to local insta-
bility phenomena. This statement may be explained by the 
fact that Eurocode 3 rules are restricted to steel grades for 
which the yield strength, ƒy ≤ 265 MPa. However, with the 
recent development of high strength steels (ƒy> 700 MPa), 
the buckling strength of the box beam cannot be predicted 
through simplified code procedures, which neglect shear and 
distortion deformations. Instead the analyst could resort to 
shell finite element analysis; a viable but impractical option 
in typical design environments.

Additional guidelines for box cross section beams where 
the lateral buckling are described in Rondal et al. (1992). It 
was found from this report that, the adopted solutions are 
similar to the ones of classical thin-walled beams having open 
sections. They are derived from the linear stability theory, 
when the distortional and shear deformations are omitted.

Recently Saoula et al. (2016) have presented a simplified 
analytical model for more accurate LTB prediction of doubly 
supported beam under combined axial and bending loads. 
The authors have developed a powerful analytical method 
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for elastic lateral torsional buckling resistance for simply 
supported rectangular box beams. Regard to this model, the 
distortional deformation effect on LTB results have been 
considered. It has been demonstrated that when the stability 
of long beams are investigated, the shear deformation effects 
are not important for simple supported beam and the model 
leads to close buckling moments. However, the accuracy loss 
by this model cannot be avoided in the cases of cantilever 
short beams due to the shear forces contribution in the beam 
stiffness. They therefore provide an additional link between 
bending shear and distorsion deformations.

Within this context, the current study develops a simplified 
one-dimensional beam buckling element under combined bend-
ing and axial forces. The displacements field of the proposed 
element are affected by additional degrees of freedom represent-
ing transverse shear and distortion deformations. In the kine-
matical model finite torsion assumption has been admitted. This 
assumption is admitted when the stability of rectangular box 
beams with width to height ratio less than 0.5 are investigated.

Based on Ritz’s method, the governing equilibrium equa-
tions of a box beam are obtained. These ones are nonlinear 
and strongly coupled. This model provides the lateral buck-
ling resistance by requiring the singularity condition of the 
tangent stiffness matrix.

The objectives of this study are: (a) to present an improved 
analytical solution able to analyze the elastic LTB behavior of 
cantilever steel box beams under combined compressive and 
bending loads; (b) to provide the incidence of the obtained 
result of the LTB on the moment carrying capacity; and (c) 
to illustrate the influence of the yield stress on the moment 
carrying capacity given by the proposed approach.

2 � Literature Review

Past researches on box beams considering distortion deforma-
tion are focused only on static and free vibrations problems 
by adopting linear kinematic models. For these kinds of prob-
lems, the literature is rich in theories and numerical models.

A 3D model was employed to provide an exact solution 
capable of predicting the cross-section distortion (Hughes 
1983; Bull 1988). In the case of beams with small aspect 
ratio an improved analytical method was proposed (Boitzov 
1972; Boswell and Zhang 1984; Boswell and Li 1995; Hsu 
et al. 1995; Pavazza and Matokovic 2000; Pavazza 2002).

Balch (1986) and Balch and Steele (1987) have addressed 
the significant local influences related to sectional distor-
sion of thin-walled closed beam. Kim and Kim (1999, 2000, 
2002) have proposed a new one dimensional theory for static 
and dynamic analysis of thin-walled closed beam.

Recently, more improved higher-order beam theories ded-
icated to the box beam joint systems have been proposed by 
Gang-won et al. (2013) and Choi and Kim (2016a, b).

A large number of research papers concerned with the 
buckling of compressed rectangular box beams are available 
in the literature for example by Jombock and Clark (1961), 
Graves Smith (1967, 1971), Svenson and Croll (1975), Ska-
loud and Naprstek (1977), Braham et al. (1980) and Rhodes 
(2002) among many others.

Design specifications related to tubular members are 
available throughout the world, and research on tubular sec-
tions in materials such as stainless steel (Rasmussen 2000), 
or tubular sections filled with various materials such as 
concrete (Zhao and Grzebieta 2000), wood or polyurethene 
foam (Gupta et al. 2000) has been widely reported.

Kim and Yoo (2008) have examined the ultimate strength 
interaction between bending and torsion for built-up steel 
rectangular box beams by a nonlinear incremental Finite 
Element Method (FEM) using the commercial program, 
ABAQUS (2003).

Although some papers are focused on the LTB of steel 
thin-walled beams with open sections (Benyamina et al. 
2013; Mohri et al. 2015; Asgarian et al. 2013) scant works 
are available in the case of steel box beam structures (Saoula 
et al. 2016). For such structures, analysts and designers are 
compelled to resort to the rules and recommendations of 
design codes and standards, namely American Institute of 
Steel Construction (AISC 1994) and European Steel Code 
(Eurocode 3 1992).

3 � Equilibrium Equations for Buckling 
Analysis

3.1 � Kinematics

One considers a straight thin-walled box beam of length L 
as shown in Fig. 1. The width and height of the beam are 
denoted by b and h respectively and wall thickness byt.

In the case of a thin-walled box beam considered here, 
one describes the shell displacements of a point on the con-
tour in terms of the axial ui(s, x, n) , tangential v i(s, x, n) and 
normal wi(s, x, n)(i = 1.0.4) components as pictured in Fig. 2. 
These displacements are referenced to a curvilinear coordi-
nate system attached to each wall unit. The tangential coor-
dinate s is measured counter-clockwise along the tangent to 
the middle surface, while the normal coordinate n directs 
outwards from the surfaces as indicated in Fig. 2. Addi-
tionally to the mentioned local coordinate system (s, x, n) , 
a direct global coordinate system x, y and z is reported to 
represent the sectional deformation of a thin-walled beam 
by using a one-dimensional theory. The origin of this refer-
ential is located at the centroid G. Since the study concerns 
the bi-symmetrical shape section beams, the shear centre C 
coincides with the centroid G.
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Unlike the conventional thin-walled theory (Benyamina 
et al. 2013; Mohri et al. 2015; Asgarian et al. 2013) for open 
sections, the beams with closed cross sections are shown to 
exhibit significant distortional deformations. Also, in this 
study, we are mainly concerned with the beams that possess 
large bending and torsion stiffness. Under these conditions, 
he wall 3D displacements are expressed as follows:

This expression is a generalization of other previously pro-
posed in the literature (Kim and Yoo 2008; Meftah et al. 
2012).

In the above relationships u0(x), w0(x) and v0(x) repre-
sent the axial, vertical deflection and lateral displacement 
in y direction respectively, while �(x) denotes the rotation 
about x. Owing to the contribution of shear deformation, 
one introduced in the kinematics model the angles �y(x) and 
�z(x) , which measure the rotations about the y and z axes 
respectively (Fig. 2a–d).

(1)ui(s, x, n) = u0 + Zi(s) �y(x) + Yi(s) �z(x) −�i(s)��(x)

(2)
v i(s, x, n) = −�i

1
v0(x) − �i

2
w0(x) + hi(s)�(x) − �i(s, n) �(x)

(3)wi(s, x, n) = �i
1
w0(x) − �i

2
v0(x) − s�(x) + � i(s) �(x)

In this formulation (.)’ denotes the derivative with respect 
to the x variable.

The functions Zi(s), Yi(s), �i(s) , hi(s), �i(s, n) and � i(s) 
describe the contour deformations of the beam cross section. 
They are straightforward to write using box beam theory. They 
are defined as follows:
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Fig. 1   The local coordinate system, the origin is located at the centre of each wall
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In the above formulation, the functions �H(s) and �V (s) are 
selected to satisfy the in-plane moment equilibrium condi-
tion as suggested by Kim and Kim (2002). They may express 
the in-plane distortion or lozenging deformation denoted by 
χ(x) as shown in Fig. 2e.

In the case of thin-walled box section beams, the 
Green–Lagrange strains tensor which incorporates the large 
displacements is given by:

(5-a)� i
xx
= ui�(s, x, n) +

1

2

((
vi�(s, x, n)

)2
+
(
wi�(s, x, n)

)2)

(5-b)� i
ss

= − ni
�2 w i(s, x, n)

� s2

(5-c)

� i
xs

=
�ui(s, x, n)

�s
+

�vi(s, x, n)

�x
+

�vi(s, x, n)

�x

�vi(s, x, n)

�s

+
�wi(s, x, n)

�x

�wi(s, x, n)

�s

After substituting Eqs.  (1)–(3) into (5-a), the axial 
strain can be decomposed into both linear and nonlinear 
parts as:

while the linear part is given by:

And the nonlinear part, when only the quadratic terms 
are retained is:

The shear strain of the wall unit is:

Once the strain components are defined, the 
Piola–Kirchhoff stresses tensor for elastic material reads: 

where G and E are the shear and Young’s moduli 
respectively.

3.2 � Variational Formulations

Denoting by U the strain energy of the beam element and 
by W, the work spent by the external loads, the fundamen-
tal equilibrium is obtained by the stationary conditions of 
total potential, given by

where � denotes the virtual variation.
The variation of the strain energy is:

The above integration is calculated over the cross section 
area and the beam length L.

(6)�i
xx

= �i
l
+ �i

nl

(7-a)�i
l
= u�

0
+ Zi(s) ��
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Fig. 2   Deformation shapes of a cross section box beam, a bending 
about y axis, b bending about z axis, c twisting, d warping, e: distortion
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By substituting the linear and nonlinear strain–displace-
ment relations given by Eqs. (7-a), (7-b) and (8) and the 
stress relation Eq (9) into (11), the variation of the strain 
energy can be formulated as function of the stress resultants 
acting on the cross section of the box beam, arranged as:

In the above equation, the first terms �U(N) , �U(Mz) , �(My) , 
�U(B) , �U(Msv),�U(MR) , �U(Ty) and �U(Tz) represent 
respectively the contribution of the axial force N, bend-
ing moments MZ and My in the z and y directions, warp-
ing moment B (bimoment), St-Venant torsion moment Msv, 
higher order stress resultant, called also Wagner’s moment 
MR and shear forces Ty and Tz about y and z directions. They 
are expressed as:

(12)

�U = �U(N) + �U(M
z
) + �(M

y
) + �U(B) + �U(M

sv
)

+ �U(M
R
) + �U(T

y
) + �U(T

z
) + �U(M� ) + �U(M�y

)

+ �U(M�z
) + �U(M�R

) + �U(M�sv
)

(13-a)

�U(N) = ∫
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0

(x)dx + ∫
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�
0
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0

(x)dx

+ ∫
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Nw
�
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0
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+ ∫
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A
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+ B
3

)
��(x)���(x)dx

+ ∫
L
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F

(
A
15

+ B
15

)
� �(x)���(x)dx

+ ∫
L

2N

F

(
A
15

+ B
15

)
��(x)�� �(x)dx

+
2N

F

(
A
7

+ B
7

)
� �(x)�� �(x)

(13-b)

�U(Mz) = ∫
L

Mz��
�
z
(x)dx + ∫

L

My�
�(x)�v�

0

(x)dx

+ ∫
L

Myv
�
0

(x)���(x)dx

(13-c)

�U(My) = ∫
L

My��
�
y
(x)dx − ∫

L

Mz�
�(x)�w�

0

(x)dx

− ∫
L

Mzw
�
0

(x)���(x)dx

(13-d)�U(B) = ∫
L

B���
��(x)dx

Similarly �U(M� ) , �U(M�z) , �U(M�y) , �U(M�R) and 
�U(M�sv) are the additional strain energies due to the dis-
tortional deformation. They reflect the contribution of the 
variables ψH and ψv, given by:

The global cross section contact actions (N, My, Mz, Msv, 
MR, Ty, Tz, Mψ, Mψy, Mψz, MψR and Mψsv) are described by the 
usual constitutive equations

(13-e)�U(Msv) = ∫
L

Msv ��
�(x)dx

(13-f)�U(MR) = ∫
L

MR�
�(x)���(x)dx

(13-g)�U(Ty) = ∫
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− ��z)dx
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(
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0
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(15-c)

M
z
= E

[(
F
2

b
2

2

+ 2A
1

)
��
z
(x) −

(
F
2

b
2

2

+ 2A
1
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w
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(x)��(x)
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2
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2
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�
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]

The expressions of the stiffness coefficients Ai and Bj 
(i = 1,…,23) may be found in “Appendix” for rectangular 
box shape section. F1 and F2 are the cross section areas of 
the flange and web respectively. While F is the total cross 
section area of the box beam.

According to Saoula et al. (2016), the variation of the 
external work for a box beam under combined axial and 
bending loads with magnitudes qx and qz respectively is 
defined by the relationship:

The external axial force qx is applied at the centre 
line without any eccentricity, while the lateral load qz is 
applied along the line (rr’) located at the height ez from 
the shear centre (Fig. 3).
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In Eq (16), wr(s,x) is the deflection of (rr’) line. This 
displacement is linked to the shear centre (Eq 3), by con-
sidering the quadratic kinematic assumptions as:

(17)w r (s, x) = w0 (x) + ez
(� (x) + �(x))2

2
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Using Eq (17) in Eq (16), one gets:

The eccentricity ez is called “load height parameter”.
According to the equilibrium path expressed by Eq (10) 

and by considering Eqs. (12)–(14) and (18), the variation of 
the total potential is written as function of the virtual displace-
ments δu0(x), δv0(x), w0(x), θ(x), χ(x), βy (x) and βz(x), and 
their derivatives.

Once integrated by parts, for arbitrary variation �u0(x) , one 
gets the equilibrium equation along the axial direction writ-
ten as:

When axial loads are reduced to a concentric axial force P 
acting at the beam end, the above relationship becomes:

3.3 � Numerical Solutions of Lateral Buckling Loads 
of Cantilever Beam

In order to carry out numerical investigation of LTB resistance 
of box beams, Ritz method is chosen as a solution procedure. 
According to Ritz’s method, the solution of eigenvalue equa-
tion for continuous structural system can be expressed in term 
of linear combination of selected shape functions.

When applying the Ritz’s method, the shape functions 
are chosen to satisfy only the boundary conditions and not 
necessarily the equilibrium ones.

In the case of cantilever box beams, the following poly-
nomial functions forms are used

(18)

�W = ∫
L

(
qx�u0(x)

)
dx + ∫

L

(
qz�w0

(x)
)
dx

+ ez ∫
L

(
qz(�(x) + �(x))�(�(x) + �(x)

)
dx

(19)N� = −qx

(20)N = −∫
L

qxdx = −P

And their virtual variation forms are:

Where vi, wi, θi, χi, βyi and βzi are the associated displace-
ments and rotations amplitudes.

After substituting Eqs. (13) and (14) into Eq (12) and mak-
ing use of Eqs. (15), (18) and (21), 5 N coupled equilibrium 
equations are derived from Eq (10), by using the gradient 
operator as follow:

where {f } is a general residual that governs the non linear 
problem and the vector �d is the variation of Ritz coefficients 
given by:

It should be noted that, the equilibrium equations are non-
linear and highly coupled.

At this stage, one gets the tangent matrix Kt which is defined 
as the Jacobian matrix of the general residual {f } given in 
Eq (23), with respect to the Ritz coefficients Eq (21). The sta-
bility analysis of box beams is analyzed by taking into account 
the initial deflection in the prebuckling state (fundamental 

(21-a)

{
v0(x) w0(x) �(x) �(x)

}
=

N∑
i=1

{
vi wi �i �i

}( x

L

)i+1

(21-b)
{
� y(x) � z(x)

}
=

N∑
i=1

{
� yi � zi

}( x

L

)i

(22-a)

{
� v0(x) �w0(x) ��(x) ��(x)

}
=

n∑
i=1

{
� vi �wi ��i ��i

}( x

L

)i+1

(22-b)
{
��y(x) �� z(x)

}
=

n∑
i=1

{
��yi �� zi

}( x

L

)i

(23){f } = grad(�(U −W), {�d}) = {0}

(24)�d =
{{

�vi
}
,
{
�wi

}
,
{
��i

}
,
{
��i

}
,
{
��yi

}
,
{
��zi

}}T

Fig. 3   Cantilever box beam 
element under axial and lateral 
concentrated loads at the free 
end r,
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state). It is reasonable to assume that the fundamental state 
may be obtained by requiring the condition of singularity of 
the tangent stiffness matrix (det Kt= 0).

4 � Comparison Study

The analytical model presented in this work was imple-
mented using Matlab code (MATLAB 2006). To verify the 
accuracy of the present analytical model, the critical buck-
ling loads Qcr of cantilever box columns under compres-
sive loads obtained by the present approach were compared 
with those from the 3D FEM commercial package ABAQUS 
(2003). In the 3D FE simulation employed in this investiga-
tion, each box column is modelled with appropriate sizes 
meshes by thin shell elementsS8R, including five integration 
points through the thickness (Fig. 4). This element accounts 
for transverse shear deformations and can automatically gen-
erate the mesh. This permits also to make easy the introduc-
tion of the applied lateral load, either at the top or bottom 
flanges or at the shear center of the beam section.

It is worth noting that, the concentrated load is applied 
through the mid-line of the S8R elements and was distrib-
uted along the cross section width to reflect the elastic lateral 
torsional nuckling behaviour of the members in real FEM 
simulation.

In the attempt to satisfy rigid section assumption for the 
cantilever beam near the clamped region and therefore, to 
prevent local deformations involved by shell element mode-
ling, stiffeners elements are used for this goal. The stiffeners 
are modeled by using beam element B32 placed along the 
sectional contour using stringer Abaqus option. The stiffener 
section is chosen to satisfy a rigid profile condition without 
any additional stiffnesses.

In order to find the critical loads, for the all studied speci-
men box columns, the Lanczos eigensolver of ABAQUS 
(2003) was used to conduct elastic buckling analysis.

However, it can be useful to verify the results of the pre-
sent model with those given by the classical method when 
the distortional deformation is neglected. The relative errors 
were calculated according to:

4.1 � Example 1

In this example, the lateral buckling stability of rectangular 
cantilever box columns under top flange uniformly distrib-
uted loads and compressive concentrated forces applied at 
the free edgesare investigated. Two cross sections with wall 
thickness of 3 and 4 mm respectively are considered for the 
analysis. The columns slenderness has been varied from 1.5 
to 2.5 m. In addition, we use the standard rectangular box 
beam dimensions h = 100 mm and b = 50 mm. In this exam-
ple, the modulus of elasticity of the material and Poisson’s 
ratio are assumed to 210GPa and 0.3 respectively.

Table 1 gives lateral buckling loads obtained by increas-
ing the number N of the power series terms, in the case of 
axially unloaded cantilever beams. One remarks, that the 

(25-a)Δ1 =

||Qcr
(Present) − Q

cr
(Abaqus)||

Q
cr
(Abaqus)

(25-b)Δ2 =

||Qcr
(Classic) − Q

cr
(Abaqus)||

Q
cr
(Abaqus)

Fig. 4   View of uniform shell mesh adopted for the cantilever box 
beam with distortional deformation along the beam contour

Table 1   Cantilever box beam load on upper flange (ez  =  50  mm), Buckling loads comparisons without applied axial forces (h = 100  mm, 
b  = 50 mm)

L (m) T (mm) Qcr (Present) with 
N = 2 (KN)

Qcr (Present) with 
N = 3 (KN)

Qcr (Present) with 
N = 4 (KN)

Qcr (Present) with 
N = 5 (KN)

Qcr (Present) with 
N = 6 (KN)

Qcr (FEM) (KN)

1.5 3 229.51 226.36 223.80 223.45 223.45 199.96
4 306.127 329.21 325.13 324.66 324.66 306.45

2 3 98.17 97.13 96.13 96.03 96.03 96.67
4 130.94 141.47 139.86 139.71 139.71 143.94

2.5 3 50.665 50.24 54.28 54.23 54.23 49.90
4 67.58 73.20 72.40 72.33 72.33 72.64
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buckling loads converge when the number N is increased 
( N ≥ 3).

As part of the validation, the buckling loads of the box 
columns subjected to compressive loads are calculated and 
listed in Table 2, and well compared to FEM results. These 
outcomes provide that acceptable convergence is obtained 
for N ≥ 3 . Furthermore, an important error Δ1 = 12% is 
observed in the case of short box beam with L = 1.5 m and 
t = 3 mm and without compressive load.

4.2 � Example 2

This example consists of a cantilever steel box beam loaded 
by concentrated loads at the free edge as shown in Fig. 5. 
The cross section dimensions are h = 600 mm, b = 200 mm. 
In the present study, both the cross section thickness t and 

length L have been varied. For this example the modulus of 
elasticity and Poisson’s ratio are assumed to E = 210GPa 
and ν = 0.3.

Tables 3, 4 and 5 shows the lateral buckling loads given 
by different methods. These loads are evaluated with dif-
ferent load height positions (ez= 300, 0.0 and − 300 mm), 
these ones correspond to top flange; shear centre and bot-
tom flange locations respectively. These outcomes lead to 
the following remarks:

1.	 There is excellent agreement between the elastic buck-
ling loads provided by the FEM simulation and the pre-
sent study with a relative error Δ1 ≤ 7%.

2.	 Important error Δ2 more than 50%, is observed espe-
cially in the case of short beam (L =6 m). It is evident 
that, classical solution such as adopted in EC3is not 

Table 2   Cantilever box beam load on upper flange (ez = 50 mm), Buckling loads comparisons with applied compressive force P(h  = 100 mm, 
b  = 50 mm)

L (m) T (mm) P (KN) Qcr (Present) 
with N = 2 (KN)

Qcr (Present) 
with N = 3 (KN)

Qcr (Present) 
with N = 4 (KN)

Qcr (Present) 
with N = 6 (KN)

Qcr (Present) 
with N = 6 (KN)

Qcr (FEM) (KN)

1.5 3 80 70.46 74.68 74.63 74.63 74.63 74.65
4 147.47 157.68 157.45 157.45 157.45 153.49

2 3 40 37.77 40.25 40.22 40.22 40.22 39.62
4 70.24 75.34 75.21 75.21 75.21 77.6

2.5 3 30 13.92 14.70 14.69 14.69 14.69 15.84
4 30.90 33.07 33.03 33.03 33.03 36.54

Fig. 5   Cantilever box beam ele-
ment considered in the study

ez

L 

z 
Qz

P 

Qz

y 
x 

r r' 

Table 3   Cantilever box 
beam load on upper 
flange (ez=300 mm) under 
compressive force, Buckling 
loads comparisons and relative 
errors

L (m) T (mm) P (KN) Qcr (Present) 
with N = 3 
(KN)

Qcr (Classic) (KN) Qcr (FEM) (KN) ∆1% 
(Present/
FEM)

∆2% 
(Classic/
FEM)

6 20 2000 KN 3141.12 5730.34 3164.0 0.72 81.11
25 4750.21 7864.22 4728.6 0.46 66.31
20 1000 KN 2068.50 3473.96 2065.0 0.17 68.23

8 25 2841.77 4695.97 2976.0 4.5 57.80
10 20 500 KN 1480.26 2452.35 1535.9 3.62 59.70

25 1975.20 3236.52 2124.5 7.02 52.43
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appropriate. Therefore, the EC3 solution must be then 
questioned in the case of box beam elements.

3.	 It can be remarked from this example that no significant 
effect has been reported for the load height location ez 
on the critical loads.

5 � Parametric Study Based on the EC3

5.1 � Design Approach Accordance with EN 15512 
(EC3) (Kim and Kim 1999)

According to the EN 15512 (Eurocode 3) (Benyamina et al. 
2013) rack provisions, that is guidance based on the princi-
ple for racks monotonic design but it represents, at the same 
time, the reference for verification of members subjected 
to seismic loading. The resistance of laterally unrestrained 
column elements under axial load P and bending moment 
about the principal cross section axis MEd should be verified 
according to the following condition

where � is the reduction factor due to the LTB, Wpl is the 
plastic section modulus and fy is the material yielding 
strength.

The evaluation of the relative slenderness 𝜆̄ for axial load 
is at first required, which is defined as:

(26)
P

�min A fy
+

KLT MEd

�LT Wpl fy
≤ 1

where NRD is the characteristic resistance for compression:

The term �min is the reduction factor due to flexural buck-
ling, it depends strictly on the maximum value of the relative 
slenderness 𝜆̄ , being defined as:

and � is given by:

As to the contribution due to the bending moment about 
the principal major axis, the LTB reduction factor �LT can be 
determined via expression (27) by substituting the relative 
slenderness for axial load 𝜆̄ to that of LTB 𝜆̄LT defined as:

Mcr is the elastic critical moment for LTB. This one (Mcr) 
may be carrying out by the present model, ABAQUS and 
the classical model when the distortional deformation is 
disregarded.

(27)𝜆̄ =

√
NRD

Pcr

(28)NRD = Afy

(29)𝜒min =
1

𝜙 +
√
𝜙2 − 𝜆̄2

≤ 1

(30)𝜙 = 0.5
[
1 + 0.34(𝜆̄ − 0.2) + 𝜆̄2

]

(31)𝜆̄LT =

√
Mpl,RD

Mcr

Table 4   Cantilever box 
beam load on shear centre 
(ez=0.00 mm) under 
compressive force, Buckling 
loads comparisons and relative 
errors

L (m) T (mm) P (KN) Qcr (Present) 
with N = 3 
(KN)

Qcr (Classic) (KN) Qcr (FEM) (KN) ∆1% 
(Present/
FEM)

∆2% 
(Classic/
FEM)

6 20 2000 KN 3252.84 6019.02 3225.4 0.85 86.61
25 4969.94 8311.48 4875.4 1.94 70.50
20 1000 KN 2135.92 3612.23 2105.5 1.44 71.56

8 25 2944.91 4902.09 3051.0 3.48 60.67
10 20 500 KN 1523.41 2538.06 1566.4 2.74 62.03

25 2037.18 3357.43 2175.0 6.33 54.36

Table 5   Cantilever box 
beam load on bottom flange 
(ez=− 300 mm) under 
compressive force, Buckling 
loads comparisons and relative 
errors

L (m) t (mm) P (KN) Qcr (Present) 
with N = 3 
(KN)

Qcr (Classic) (KN) Qcr (FEM) (KN) ∆1% 
(Present/
FEM)

∆2% 
(Classic/
FEM)

6 20 2000 KN 3362.75 6273.81 3244.9 3.63 93.34
25 5188.03 8702.09 4908.1 5.70 77.30
20 1000 KN 2202.95 3737.501 2123.3 3.75 76.02

8 25 3047.52 5087.55 3088.4 1.32 64.73
10 20 500 KN 1566.40 2616.76 1582.2 1 65.39

25 2098.95 6273.81 2203.5 4.74 57.38
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Mpl,RD is the plastic resistance moment given by:

The term KLT is defined as:

with �LT is given by:

where 𝜆̄z is the slenderness ratio for flexural buckling and 
�M,LT is an equivalent uniform moment factor for lateral–tor-
sional buckling. This one is taken equal 1.8 for cantilever 
beams.

According to Eq (26), to check the moment carrying 
capacity of laterally unrestrained box beam under axial load 
and bending moment, the following expression has to be 
fulfilled

The purpose of this study is to illustrate the impact of the 
current elastic critical moment (Mcr) on the bending moment 
carrying capacity ratio MSD/Mpl,RD. One reminds, for com-
parison, that the critical moment is determined by the pro-
posed method, ABAQUS and the classical method.

In this study the cross section dimensions of the example 
3 with t = 20 mm is retained in the parametric investigation.

5.2 � Compressive Load Effect on the Moment 
Carrying Capacity Ratio MSD/Mpl,RD

The variations of the moment carrying capacity ratio 
MSD/Mpl,RD computed from the different approaches of Mcr 
(i.e. proposed model, ABAQUS and classical method) in 
function of axial load ratio P/Pcr are drawn in Fig. 6a–c. The 
steel yielding strength fyis equal to 345 MPa. As expected, 
the ratio MSD/Mpl,RD is larger for lower compressive loads. 
These interaction curves state, that MSD resulting from the 
proposed model agree very well with the FEM solution, 
while the classical method tends to overestimate tremen-
dously the real values of MSD.

In the case of cantilever beams under compressive loads, 
the interaction curves decrease nonlinearly from the pure 
design moment MSD(0) when P is null to the vanished value 
when P reaches its critical value Pcr.

In the case of a short cantilever box beam with L = 6 m 
(Fig. 6a), the relative error related to the proposed model 
is varied from 0.5% for P/Pcr= 0 to 00% for P/Pcr= 0.8, 
whereas the error provided by classical method varies con-
tinuously from 10% for P/Pcr= 0 to 29% for P/Pcr= 0.8. 
For the box beam with L = 8 m (Fig. 6b), the relative error 

(32)Mpl,RD = Wpl fy

(33)KLT = 1 −
�LT P

�z Afy
≤ 1

(34)𝜇LT = 0.15
(
𝜆̄z 𝛽M,LT − 1

) ≤ 0.9

(35)
MEd

Mpl,Rd

≤ MSD

Mpl,Rd

=
�LT

KLT

(
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P
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Fig. 6   Interaction of maximal design moment with axial load ration 
for cantilever box beam under free edge load located at centroid. a 
Box beam with L = 6 m, b Box beam with L = 8 m and c Box beam 
with L = 10 m
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corresponding to the proposed model is stable without major 
change (between 0.7% to 2%). Whereas, according to the 
classical method, the error changes dramatically from 11 
to 29%.

In the slender cantilever box beam with L = 10 m, the results 
depicted in Fig. 6c show, that the relative error given by the 
proposed model vary from 1.3 to 9%. This one becomes very 
pronounced when the classical method is employed. The rel-
evant relative error is between 13 to 43%.

From this study, it was clearly demonstrated that the critical 
LTB moment Mcr given by the proposed model leads to a sat-
isfactory approximation of the moment carrying capacity MSD.

Investigation into the effect of yielding strength fy on the 
moment carrying capacity ratio MSD/Mpl,RD is carried out for 
a cantilever beam with L  = 10 m. This beam is tested by vary-
ing the applied axial load ratio P/Pcr from 0 to 0.9. Three steel 
nuances are considered in this study. The two first ones corre-
spond to the structural grade steel S275 and S355 with fy = 265 
and 345 MPa respectively, whereas, the last onecorresponds to 
the high yield steel S700MC with fy = 700 MPa.

Figure 7a–c show the differences that refer to the FEM 
results. The difference δ1is related to the present model and 
δ2 is of the classical method.

These outcomes reveal that, the present method achieves 
a very good agreement compared to FEM. The classical the-
ory tends to overestimate the real resistance of the structure. 
Figure 7a represents the evolution of the differences δ1 and 
δ2as function of the ratio P/Pcr for the structural steel S275. 
Again, it is confirmed that the proposed method provides in 
general similar results compared to FEM. In this way δ1 is 
lower than 8%. One observes from Fig. 7a that, omitting the 
distortional deformation can lead to rigid beam behavior. 
Thus the differences in δ2 are important.

The differences δ1 and δ2 for the structural steel S355 
are illustrated in Fig. 7b. These curves demonstratethe abil-
ity of the present model to predict correctly the resistance 
of the cantilever box beams under axial loads. One gets a 
differenceδ1 smaller than 9%, while the classical method 
leads to δ2 reaching the value of 43%.

In order to appreciate better the effect of the yielding 
strength on the moment carrying capacity ratio MSD/Mpl,RD, 
cantilever box beam structures made of high yield steel 
S700MC are studied. The observation of the results reported 
in Fig. 7c prompts the following comments:

1.	 The proposed model furnishes a satisfactory approxima-
tion to prevent the structural integrity, under combined 
axial and lateral loads. The difference δ1varies from 2 
to 11% for P/Pcr= 0.9.

2.	 The classical method is inappropriate for the struc-
tural design of box beam elements. The results involve 
a difference δ2larger than 27% and close to57% for  
P/Pcr= 0.9.
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beam made with steel S355, c Box beam made with steel S700MC
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6 � Conclusion

In this work the LTB behavior of steel box beams was 
investigated. An improved kinematic model that takes 
account both distortional and shear deformations of the 
beam cross section was presented. Based on the polyno-
mial shape functions, Ritz’s method was applied to provide 
the tangential matrix of cantilever box beams. This permits 
the determination of the critical load from the fundamental 
state.

It has been confirmed that the present model is close to 
FEM. The buckling loads are similar. However, the classical 
method leads to significant discrepancies in comparison with 
FEM. The critical loads are very high than FEM.

According to EC3 guidelines, a parametric study was per-
formed to investigate the influences of several parameters 
related to Mcr evaluation, on the moment carrying capacity 
of cantilever box beam, namely, the compressive load ratio P/
Pcr, beam length and steel grade.

The obtained results reveal that the proposed method is 
more rational than the classical one, with an error averag-
ing 4%. Comparisons also show that, using classical method 
yields unreliable moment carrying capacity, especially for the 
box beams made with high yield steel such as S700MC. The 
relevant error reached 57%. Thus, this method must be con-
sidered cautiously.

It was found, from the outcomes of this conceptual study, 
that the proposed method is simple and accurate enough to be 
used both at preliminary design stage and at final verification 
of the box beam elements.

Appendix: Box Cross Section Constants
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The Bj (j = 1,…,22) coefficients are computed in the same 
fashion as Aj by replacing reciprocally b by h. As an example 
according to the constant A1 defined previously, the similar 
constant B1 is:
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