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Abstract
The implementation of a new linear method to optimum weight design of trussed structures subjected to external and self-
weight loads is proposed. Design variables are the cross-section areas of the members. Inequality constraints are written 
based on the force-method for isostatic structures considering maximum and minimum axial stress criteria. The novelty 
of the proposed approach is the benefit created from the combination of a linear inequality-constrained formulation with 
interior-point methods to tunnel the solution rapidly and monotonically towards the minimum value through feasible space, 
also eliminating the need to directly explore the finite-element model. To evaluate the performance of the algorithm, trusses 
are subject to optimization processes based on different techniques: (i) the proposed method, called by “indirect-method”; 
(ii) a design problem with constraint evaluated directly from the finite-element model; (iii) optimization based on Genetic 
Algorithms. The three methods are compared using trusses with 10, 37 and 1240 bar-elements. The results showed that the 
indirect-method was able to provide great performance for complex topologies, returning weight designs up to 70 times 
lighter in 1% of the time required by a Genetic Algorithm.

Keywords  Sizing optimization · Truss optimization · Linear programming · Optimization with MATLAB

1  Introduction

Optimization of trussed structures is considered a state-of-
art area of study and many authors have made great efforts to 
overcome the barriers of this field. Mostly, design problems 
are characterized by large numbers of variables and con-
straints, which usually insert as many local minima points 
and non-linearities in the solution (Asl et al. 2013) and, in 
most cases, the optimum design must be assumed in order 
to avoid confronting these. The optimal design methodol-
ogy of structures is generally categorised by: sizing, shape 
and topology optimization. The former consists on find-
ing the optimal set of structural parameter such as length, 
area or thickness. Shape optimization is intended to find an 
optimal shape by changing the geometrical configuration. 
Topology optimisation searches for a shape that satisfies the 
design criteria, but without a predefined configuration (Gan 
et al. 2017). This study implements sizing optimization for 

optimum weight design of trussed structures. Design vari-
ables are the cross-section areas of the elements. Space of 
solution is restricted by maximum and minimum axial stress 
criteria, while the slenderness of bar-elements is controlled 
by inequality constraints.

When it comes to optimizing structures, most of produced 
research have the goal of minimizing weight (Mohr et al. 
2011). Also, most algorithms are initially developed for 
trusses before their use are extended to higher order struc-
tures. Well-known examples of such progression include the 
technique described by Rabadi and Hanna Al Rabadi (2014), 
a harmony-search method, which has been progressively 
implemented in higher order systems (see de Almeida 2016). 
Other pioneering studies, such as those of Rajan (1995), 
Wang et al. (2004), Stolpe (2016), Doan and Lee (2018) 
and Banh and Lee (2018), have also created new paradigms 
for future studies. The overall premise of these methods is 
to find a structure that saves as much material as possible 
while preserving its reliability. Many methodologies have 
been created to achieve this goal, although the state-of-art 
of recent works is directed towards improving the efficiency 
of algorithms, rather than exploring powerful yet high-costly 
techniques. Nevertheless, the objective function in structural 
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optimization problems is usually defined in the design space, 
while the responses of the constraints are designed in the 
behaviour response space, using the structural analysis for 
relating both. This aspect generally leads structural optimi-
zation problems to non-linear relations.

So far, it is believed that Evolutionary Algorithms (EA) 
are particularly suited to handle very complex structures, 
since they search for the solution mimicking the biologi-
cal evolution, adapting and selecting discrete variables that 
produced the best solutions in previous steps (Dominguez 
et al. 2006). These models became further improved when 
Holland (1973) introduced what he called by Genetic Algo-
rithm (GA), inserting mutation and recombination (crosso-
ver) between the “specimens” along the solution. However, 
his model had some down-points, such as the fact that its 
computational cost was very high, while it was still vul-
nerable to local minima (Sivanandam and Deepa 2008). In 
addition, the main reason for GA to be widely implemented 
is due to the lack of necessity for gradient evaluation and 
sensitive analysis (Bölte and Thonemann 1996), making it 
a zero-order optimization type. Interesting aspects of GA 
programming are discussed by Assimi et al. (2017). Oher 
similar approaches are investigated by Kripka (2004) and 
Farshi and Alinia-Ziazi (2010).

In this work, we present a linear-formulated method, 
which benefits by being more efficient than non-linear for-
mulations (Ferrier and Lovell 1990). However, linear sys-
tems require the removal of classic non-linear constraints 
and objective functions, such as those on the first natural 
frequency (Mortazavi and Toğan 2017; Gomes 2011), maxi-
mum displacement (Camp and Farshchin 2014) and com-
pliance (Bendsøe et al. 1994), leaving only the admissible 
stress criterion to constrict the problem. Nevertheless, struc-
tures must also be isostatic, since the linearity of the prob-
lem is lost in hyperstatic models (Koski 1981). Although this 
may be true, the decrease in computational time and cost in 
linear formulations are outstanding considering the average 
performance of non-linear approaches, outweighing these in 
most design problems where both formulations are feasible.

Some recent research on optimization of isostatic structures 
have shown good results in terms of computational efficiency, 
such as those of Wang et al. (2002) and Hultman (2010), in 
which elements and nodes that have minor contribution to 
the stiffness of the structure are removed until it reaches a 
given objective or become statically indeterminate. In addi-
tion, Lamberti and Pappalettere (2003) have described an 
efficient move limit definitions incorporating a trust region 
method. Recently, Farshi and Alinia-Ziazi (2010) proposed 
a method that implements a constraint function based on the 
force-method to tunnel the solution. They have also intro-
duced stress and displacement constraints into the inscribed 
hyper-spheres method, performing a fair design-problem. On 
the other hand, one of the main down-points of such methods 

is fact that the self-weight is not considered in the optimiza-
tion process. In addition, the efficiency of these approaches 
is relatively low, requiring a few minutes to process design 
problems with hundreds of variables. In the present method, 
contrarily, self-weight loads are considered and the algorithm 
is able to optimize complex structures in seconds using ordi-
nary desktop PCs.

In this study, the use of the force-method to optimize the 
cross-section areas of trussed structures is investigated. It is 
proposed a linear inequality-constraint formulation that rep-
resents the response of the structure in a similar fashion to 
that of a finite-element model, removing the need to embed it 
into the algorithm. This strategy leads to a variety of advan-
tages: (i) the Hessian matrix requires less processing power 
to be generated (Lyamin and Sloan 2002); (ii) combined with 
interior-point methods, this approach allows the solution to be 
tunnelled through feasible solution space in a monotonic, fast 
drop trend; (iii) the present procedure relies only on linear-
programming, making it more efficient in terms of compu-
tational cost; (iv) the analysis step is embedded within the 
optimization stage, avoiding tedious separate analyses; (v) it 
allows the use of multi-criteria optimization techniques based 
on inequality-constraint functions, such as slenderness control 
(see Sect. 2.2); (vi) the solution is non-dependent on the initial 
value, providing an advantage in design problems of complex 
structures. Our method, on the other hand, is only feasible in 
linear and statically determinate structures, subjected to small 
displacements.

The optimization of three isostatic structures subject to their 
own weight and external loads is carried out. Each system 
has 10, 37 and 1240 bar-elements with three fixed degrees-of-
freedom. The first two models have been widely implemented 
in algorithms and benchmark tests (see Asl et al. 2013; Kripka 
2004; Assimi et al. 2017; Camp and Farshchin 2014; Gomes 
2011; Mortazavi and Toğan 2017; Kaveh and Khayatazad 
2013; Miguel and Miguel 2012; Tejani et al. 2017; Frans and 
Arfiadi 2014; Farshchin et al. 2016; Cazacu and Grama 2014; 
Ringertz 1985), while the latter is a complex model developed 
for this work. The efficiency test will be performed by verify-
ing the results of three approaches for the same initial condi-
tions and boundaries. The three implemented methods are: 
(i) a GA code written by Farshchin et al. (2016); Camp and 
Farshchin (2014) (referred to as B&A (2014) in this paper). (ii) 
optimization based on the direct exploitation of the FE model, 
called by “direct-method” (DM) and, the approach developed 
for this work, (iii) the “indirect-method” (IM), which is a first-
order optimization type, requiring gradient evaluations.
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2 � Methodology

2.1 � Statement of the optimization problem

The optimization problem aims to minimize the cross-sec-
tion areas of the bar-elements. For a truss with n elements, 
the problem statement is given by:

where Li , xi , �i are the length, area and stress associated with 
the i-th element, respectively. The vector of design variables 
is given by � = {x1, x2,… , xn}

T . Further, �adm is the admis-
sible stress, while the slenderness of an element is limited 
by lower and upper admissible cross-section areas, Lb and 
Up . For the GA, the fitness function is the structural mass 
and the constraint is the admissible stress. The maximum 
number of generations has been set to 10 and the number of 

(1)

Find:

minf (�) = m(�) = �
∑n

j=1
LjAj = �

∑n

j=1
Ljxj

Subjected to:

��i� ≤ �adm for all i ∈ [1, 2,… , n]

For xi in:

{Lb} ≤ {xi} ≤ {Ub}

admissible stalled generations, to 5. Also, the initial popula-
tion is selected based on the number of bar-elements, Nele , 
using:

as proposed by Chambers (1995). All variables and param-
eters are listed in Table 1. For the three simulated structures, 
the mechanical characteristics were based on a generic alu-
minium alloy, while the minimum and maximum values of 
areas were defined as Ub = 1 and Lb = 5 × 10−6m2 , respec-
tively. The solution is constricted by the maximum axial 
stress on each member, such as |�i| ≤ �adm . All mechani-
cal characteristics and imposed constraints are also listed 
in Table 1. The stress values that feed the Genetic Algo-
rithm, which has been developed by B&A (2014), are com-
puted using the FE code written in MATLAB by Kaveh and 
Rahami (2006). The FE code that feeds the IM and DM was 
written by the authors.

2.2 � Formulation of the IM and DM approaches

Equations were developed based on the force-method: the 
stress on the i-th member is a linear combination of stresses 
generated by all load sources, including the weight of a j-th 
element and external forces composition, F1 + F2 +⋯ + Fk , 
generating a single �i value. Hence, for the i-th element:

(2)Psize = min
(
max

(
10Nele, 40)

)
, 100

)

(3)�i = �i,1 + �i,2 +⋯ + �i,n + �F,i,

Table 1   Parameters implemented in the simulations

Mechanical characteristics and Boundaries are common for the GA, IM and DM

Characteristics of the GA Values

Maximum number of generations 10
Maximum stalled generations 5
Initial population size 10-Elements: 100 individuals

37-Elements: 100 individuals
1240-Elements: 
[30, 60,… , 180] individuals

Characteristics of the IM and DM

Function variation tolerance �f (x)min = 1 × 10−8

Maximum number of function evaluations Nf ,max = 1 × 106

Mechanical characteristics

� 2800 kg/m3

E 80 × 109 Pa

�adm 50 × 106 Pa

Boundaries

xi,0 1m2 for all i ∈ [1,… , n]

Lb 5 × 10−6 m2

Ub 1 × 100 m2
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in which, �i,j is the stress over the i-th element due to the 
weight of the j-th, and �F,i , due to the composition of exter-
nal forces. Considering a system with all cross-section areas 
equal to Ai = 1m2 , these values will act as coefficients of the 
influence of the j-th load source on the stress on the i-th ele-
ment, given by Ci,j ≡ �i,j|Aj=1

 and CF,i ≡ �F,i|t=0 , leading to:

In Eq. 4, xi,0 and xi are the cross-section areas of the i-th ele-
ment before the optimization process and in current state, 
respectively. Lj,0 and Lj represent the original and current 
length of the j-th member. Defining xi,0 ≡ 1 and consider-
ing small displacements, Lj ≈ Lj,0 , Eq. 4 may be re-written 
such as:

From the proposed restriction, |�i| ≤ �adm , there are two pos-
sible sets of criteria: one for 𝜎i, 𝜎adm > 0 and another for 
𝜎i, 𝜎adm < 0 . Therefore, Eq. 1 becomes:

The constraints as defined in Eq. 6 can be re-written such 
that [A]{x} ≤ {b} , with [A] and {b} given by:

For the IM, the coefficients Ci,j are obtained individually 
from the FE model before starting the optimization process, 
simulating the structure Nele + 1 times, each containing 

(4)�i =

n∑
j=1

Ci,j

�Ljxj

�Lj,0xj,0

xi,0

xi
+ CF,i

xi,0

xi

(5)�i =

n∑
j=1

Ci,j

xj

xi
+

CF,i

xi

(6)

Find:

minf (�) = m(�) = 𝜌
∑n

j=1
LjAj = 𝜌

∑n

j=1
Ljxj

Subjected to:

(if 𝜎i ≥ 0)
∑n

j
Ci,jxj − 𝜎admxi ≤ −CF,i

(if 𝜎i < 0)
∑n

j
−Ci,jxj + 𝜎admxi ≤ CF,i

For xi in:

{Lb} ≤ {xi} ≤ {Ub} ≡ {xi,0}

(7)

⎡⎢⎢⎢⎢⎢⎢⎢⎣

(C1,1 − �adm) … C1,n

C2,1 … C2,n

⋮

Cn,1 … (Cn,n − �adm)

(−C1,1 + �adm) … − C1,n

⋮

−Cn,1 … (−Cn,n + �adm)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎨⎪⎩

x1
x2
⋮

xn

⎫⎪⎬⎪⎭
≤

⎧
⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

−CF,1

−CF,2

⋮

−CF,n

CF,1

CF,2

⋮

CF,n

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

only the j-th load source, including one time to compute 
the stresses due to the external forces, CF,i . After this step 
is completed, the algorithm builds Eq. 7 automatically and 
the FE code will not be necessary to perform any further 
evaluations during the optimization process. The algorithms 
for the DM and IM are similar, although the former does not 
make use of Eq. 7, evaluating the constraint function based 
on the direct exploitation of the FE model, in all loops of the 
optimization process.

The flow chart for the DM is shown in Fig.  1. The 
convergence criterion for the objective function is 
�f (x)min = 1 × 10−8 , with a maximum number of function 
evaluations of Nf ,max = 1 × 106 . The flow chart for the IM 
is shown in Fig. 2. Simulation characteristics are listed in 
Table 1. For the IM, the work-flow is given by: an inter-
mediate matrix [C] = [Ci×j] , which definition is shown in 
Fig. 2, must be fed n = Nele times, allocating the stress on 
the i-th element in the i-th row and j-th column. The pro-
cess follows to the creation of the matrix [A2n×n] and the 
vector {b2n×1} , defined in Eq. 7, which feeds the optimiza-
tion process with the necessary linear constraints. Since 
the objective function is the structural mass, with cross-
section areas as variables, the design space includes only 
size quantities.

The linear approach presented in this work takes great 
advantage of interior-points (IP) methods, since only ine-
quality constraints are applied with a linear formulation, 
tunnelling the solution through feasible space. Given that 
IP algorithms benefit from fast gradient evaluations, full 
linear methods such as the IM provide great advantages to 
the solver, since the necessary quantities to evaluate the 
gradients are given in the form of constants, Ci,j , directly 
from the objective function, m(�) , without the need to 
perform any further calculations, resulting in a fast drop 
tendency of the solution (Lustig et al. 1994).

Fig. 1   Flow chart for the DM
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3 � Results

3.1 � 10‑Elements truss

For the first optimization problem, a 10-elements truss 
with six nodes is implemented. The system is isostatic and 
it is illustrated in Fig. 3. All nodal forces have magnitude 
of F = 1000N . The length of the vertical and horizontal 
elements are given by L = 1m . Results are summarized in 
Table 2.

Results for the current benchmark are shown in Fig. 4. 
For the 10-elements truss, the best result has been obtained 
with the DM, having a final mass 16.6% lower than that of 
the second best, with IM, and 84.3%, compared with the GA. 
The performance of the proposed model, IM, is better than 
those of the two others, obtaining its final results within 27 
and 5% the time required by DM and GA, respectively. By 
comparing Figs. 4a–c, it is clear that the DM was able to 

perform a near perfect optimization process, since most vari-
ables are relatively close to reach the lower boundary, while 
the constraints are also approximately reached. Despite this, 
this method has required far more function evaluations than 
has the IM. The GA algorithm, as predicted (see Farshchin 
et al. 2016; Rajan 1995), proved to be less interesting when it 
comes to computational performance. The number of func-
tion evaluations of the GA has exceeded the hundreds.

In Fig.  5 the results of the three approaches are 
shown. The elements in red have |�| ≥ 0.9�adm , in black, 
0.5𝜎adm < |𝜎| < 0.9𝜎adm and in gray, |�| ≤ 0.5�adm . The 
best results have been obtained with the DM, followed by 
IM and GA, respectively. The illustrations make it clear 
that the Genetic Algorithm has not been able to impose an 
appreciable approximation to the boundaries under the given 
conditions.  

3.2 � 37‑Elements truss

The second benchmark has been performed with a 37-ele-
ments truss with 20 nodes. As for the previous model, it is 
an isostatic structure, as it is shown in Fig. 6. The model is 
subjected to 9 vertical external forces applied on the upper 
nodes. Results are summarized in Table 3.

Outputs from the IM and DM are quite similar in terms 
of final weight, being the final structure obtained with 
the latter only 0.9% lighter than with the former, with 
m(xmin)IM = 13.35 kg . Regardless of this, the IM was able to 
perform it in only 20% the time the “brute” method required. 

Fig. 2   Flow chart for the IM

Fig. 3   10-elements truss subjected to the optimization process

Table 2   Results for the 10-elements truss case

Approach Results

IM Nf = 4, T = 1.966 s, mmin = 0.8333 kg

DM Nf = 76, T = 7.210 s, mmin = 0.7147 kg

GA Nf = 5319, T = 37.896 s, mmin = 1.317 kg
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In comparison to the GA, IM presented better results, opti-
mizing the structure twice as much in less than 2.3% the 
time required by it, as shown in Table 3. The IM has been 
able to maximize the stresses on all elements to values close 

to the admissible, while the minimum area found is only 3 
times higher than the minimum allowed. In addition, it is 
noticed that the final areas distribution for the DM and IM 
are quite similar.

Fig. 4   Results for the a IM, b DM, c GA for the sizing optimization of a 10-elements truss. The lines in red indicate the boundary conditions. 
The numbering of the elements follows the order shown in Fig. 3. (Color figure online)

Fig. 5   Results for the a IM, b DM, c GA for the sizing optimization of a 10-elements truss. The elements in red have |�| ≥ 0.9�adm , in black, 
0.5𝜎adm < |𝜎| < 0.9𝜎adm and in gray, |�| ≤ 0.5�adm . (Color figure online)
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When compared with the optimization of the 10-elements 
structure, the number of function evaluations performed 
by IM and DM remained the same, while the GA has per-
formed 10 times more function evaluations than in the pre-
vious model. The fact that, for the IM, this number has not 
increased by the problem size is considered an advantage of 
the proposed method. From the analysis of the results of the 
IM and DM, in Fig. 7a, b, it is noticed that the former has 
left four elements less in the interval of |𝜎| > 0.9𝜎adm when 
compared to the latter, giving some advantage to the DM. 
Figure 8 shows the distribution of stress intervals of the pre-
sent benchmark. Another feature observed in our results is 
the fact that the GA has not been able to obtain a symmetri-
cal solution from the optimization process, which is shown 
in Fig. 7c, stalling before the expected final configuration 
was obtained, even though large margins had been imposed 
for the solution break.

3.3 � 1240‑Elements truss

The last benchmark conducted in this study has a 1240-ele-
ments truss with 420 nodes, a far greater number than most 
studies usually implement. The topology of the system is 
quite complex and may require a few hours to be optimized 
by less efficient methods. The vector of external forces is 
shown in Fig. 9.

The numbering of elements has been omitted to make 
the illustration clearer, although the order follows as: the 
horizontal members are numbered first, line by line, starting 

from the bottom left to the upper right. Sequentially, the 
vertical members are numbered line by line, from the bot-
tom left to the upper right. Then, the inclined elements are 
numbered, beginning with the ones at 45◦ and, finally, the 
elements inclined in 135◦ to the horizontal axis. The com-
plete structure is 1 × 1m2 and the magnitude of the external 
forces is equal to F = 1000N.

Results of the three algorithms are listed in Table 4. 
Great differences in performance are observed in the dif-
ferent approaches. The time required by GA and DM are 10 
and 100 times greater than the value of 92.14 s from the IM, 
respectively. Nevertheless, IM presented remarkably better 
results in terms of weight, given that the objective function 
converged to m = 1.032 kg , which is 5 and 67 times smaller 
than that of the two others, as shown in Table 4. In addition, 
there was no appreciable approximation to the boundaries. 
The population size which achieved the lowest mass for the 
GA is Psize = 120 individuals.

Figure 10 shows the performance comparison of the three 
approaches. Excellent results have been obtained from the 
IM: although only a small portion of the design variables 
have approached the stress constraint, the minimum cross-
section area value, Lb , has been reached by most of them, 
indicating that the method could further improve its results. 
The DM presented poor performance when compared with 
IM. Starting from the premise that IM is just a conversion 
of the DM that avoids the use of the FE model through-
out the optimization process, similar results were expected 
from them, indicating that the DM was not able to perform 
well with so many variables. The stress distributions are 
shown in Fig. 11. DM and GA presented poor performance, 
as almost no element could be optimized to |�i| ≥ 0.5�adm , 
even though both methods have performed the optimization 
process for greater computational times. Another remarkable 
feature of the IM is the fact that only 12 function evaluations 
have been performed, while the DM and GA demanded 99 
and 9900 function evaluations, respectively.

Table 3   Results for the 37-elements structure

Approach Results

IM Nf = 4, T = 2.210 s, mmin = 13.35 kg

DM Nf = 76, T = 10.776 s, mmin = 13.23 kg

GA Nf = 53211, T = 97.058 s, mmin = 28.47 kg

Fig. 6   37-elements truss subjected to the optimization process
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4 � Discussion

As discussed in the previous sections, the formulation of 
the sizing optimization problem based on linear inequal-
ity-constraint equations provided greater performance than 
those of the two other approaches. By comparing the DM 
with the IM, it is concluded that by eliminating the need to 
exploit the FE model throughout the optimization process, 
great decreases in the computational time are observed, 
specially for complex topologies. This technique, on the 
other hand, presents advantages in conditions such that the 
number of function evaluations is greater than the size of 
the design variables vector, since the IM will necessarily 
exploit the FE model n = Nele + 1 times. This aspect is 
noticed from the comparison of the computational times, 
T, presented by the IM and DM for the 10-elements truss 

case, shown in Table 2, in which the gain in performance 
from the DM to the IM is quite small, but an outstanding 
gain in performance between the two methods is observed 
for the 1240-elements case, which is shown in Table 4.

Even though the GA is a well-known and vastly imple-
mented technique, it demands way more sub-steps and 
function evaluations in order to optimize a given system. 
These characteristics become crucial in design problem 
of structures based on the finite-element method, given 
that directly exploiting the numerical model is intensive 
computationally, increasing even more the computational 
time, which is avoided in the IM. It should also be men-
tioned that the theory predicts a polynomial time to solve 
the design problem using IM, based on the overall perfor-
mance of linear methods (Potra and Wright 2000).

Fig. 7   Results for the a IM, b DM, c GA for the sizing optimization of a 37-elements truss. The lines in red indicate the boundary conditions. 
The numbering of elements follows the order shown in Fig. 6. (Color figure online)
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As previously mentioned, this type of linear system has 
two particular advantages over other classic methods of siz-
ing optimization: the monotonic and fast decrease trend of 
the objective function and the non-dependence on the initial 
value. In order to investigate the former, Fig. 12a, showing 
the convergence trend of the three benchmarks performed 
with the IM, has been plotted. For the structures with 10 
and 37-elements, 8 iterations were necessary to optimize 
the systems. For the 1240-elements truss, only 12 iterations 
have been performed. These results show that our method 
is able to scale the design problem with outstandingly small 
increases in the number of processing steps.

The second feature of this approach, the non-dependence 
on the initial conditions, is investigated. For all the results 
shown in Fig. 12b, with xi,0 = 1.00 , 0.50, 0.25 and 0.01m2 , 
the 1240-elements structure converges to mmin = 1.036 kg , 

Fig. 8   Results for the a IM, b DM, c GA for the sizing optimization of a 37-elements truss. The elements in red have |�| ≥ 0.9�adm , in black, 
0.5𝜎adm < |𝜎| < 0.9𝜎adm and in gray, |�| ≤ 0.5�adm . (Color figure online)

Fig. 9   1240-elements truss subjected to the optimization process. For 
the proposed case: F = 1000N and L = 1m

Table 4   Results of the 1240-elements structure optimization

Approach Results

IM Nf = 12, T = 92.14 s, mmin = 1.032 kg

DM Nf = 99, T = 10709.96 s, mmin = 5.373 kg

GA Nf = 9900, T = 1173.51 s, mmin = 66.608 kg
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Fig. 10   Results for the a IM, b DM, c GA for the sizing optimization of a 1240-elements truss. The lines in red indicate the boundary condi-
tions. (Color figure online)

Fig. 11   Results for the a IM, b DM, c GA for the sizing optimization of a 1240-elements truss. The elements in red have |�| ≥ 0.9�adm , in black, 
0.5𝜎adm < |𝜎| < 0.9𝜎adm and in gray, |�| ≤ 0.5�adm . (Color figure online)
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after 12 or 13 iterations. This behaviour indicates that, for an 
arbitrary initial solution, the space of solutions tends towards 
a single point of convergence. Further, combined with the 
monotonic decrease trend for the solution, which is also evi-
dent in Fig. 12b, the polynomial time and low-computational 
cost, it is believed that the IM is a fair alternative to struc-
tural optimization of linear models, being a valid substitute 
for optimum weight designs of isostatic trussed structures.

5 � Conclusions

In this study, we propose an original linear formulation to 
perform sizing optimization of isostatic trusses that provides 
great computational performance. As noticed in the previous 
analyses, the method is able to optimize structures by up to 
1% the time required by a GA. In addition, the increase in 
computational time by the number of variables is up to 1 
and 2 orders smaller than those presented by the DM and 
the GA, due to the polynomial time of solution, making 
this approach particularly interesting for complex isostatic 
topologies. The greatest features of the method are:

	 i.	 the non-dependence of the solution on the initial con-
dition.

	 ii.	 characteristic monotonically rapid drop tendency.
	 iii.	 analysis step is embedded within the optimization 

stage, avoiding tedious separate analyses.
	 iv.	 the number of optimization iterations in the proposed 

procedure does not increase appreciably by the prob-
lem size.

Motivating the use of the present approach in linear and 
statically determinate structures, subjected to small 
displacements.
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