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Abstract
This paper presents an investigation of the ultimate behavior of steel cable-stayed bridges under construction. In general, 
cable-stayed bridges are subjected to quite large compressive forces induced by stayed cables, and may become unstable 
due to these excessive compressive forces, especially while under construction because of the characteristics of the general 
construction method. To investigate the ultimate behavior of steel cable-stayed bridges under construction, a three-step 
analysis, consisting of initial shape analysis, construction stage analysis and external load analysis, is proposed and used 
with considering various geometric and material nonlinearities of the structure, such as the cable-sag effect, beam-column 
effect of the girder and mast, large displacement effect and gradual yield effect. By performing extensive analytical study, 
the general ultimate behavior and mode are found and described in detail. Also, the effects of various geometric parameters 
on the ultimate behavior and load carrying capacity are studied, such as the cable-arrangement types, girder-mast flexural 
stiffness ratio and sectional area of stay cables.

Keywords Cable-stayed bridges · Nonlinear analysis · Initial shape analysis · Construction stage analysis · Ultimate 
analysis

1 Introduction

The cable-stayed bridge, a very popular bridge system for 
long-span bridges, consists of girder, mast and cables. The 
bridges are supported by the flexural strength and stiffness 
of the girder, compressive strength and stiffness of the mast, 
and tensile strength and stiffness of the stay cables. Because 
of their consistent combination, cable-stayed bridges show 
excellent structural efficiency while offering pleasing 
aesthetics.

While cable-stayed bridges show excellent structural 
efficiency, they do exhibit complex nonlinear characteris-
tics (Adeli and Zhang 1995; Xi and Kuang 1999; Ren 1999; 

Freire et al. 2006). The first nonlinear factor is the cable-
sag effect initiated by its own weight. The second factor is 
the beam-column effect of the girder and mast. The girder 
and mast of cable-stayed bridges are subjected to large 
compressive forces induced by the tensile forces of the stay 
cables. The applied compressive force amplifies the flexural 
behavior of girder and mast, which results in a beam-column 
effect. As the third factor, the large displacement or deforma-
tion effect produced by geometric change of the structure 
leads to geometric nonlinear behavior. Furthermore, the 
girder-mast-cable interaction affects the complex nonlin-
ear behavior. When external load is applied to the girder 
first, it is transferred to the mast by stayed cables, because 
these connect the girder and mast. Because of the connec-
tion between the main members, the local structural behav-
ior of each member affects the behavior of other members, 
which may result in global behavior and global changes of 
structural state. Finally, material nonlinearity may affect the 
structural behavior of cable-stayed bridges.

Studies to investigate the characteristics of structural sta-
bility or ultimate behavior of completed cable-stayed bridges 
have been performed. Researches have been performed to 
investigate the structural stability of completed cable-stayed 
bridges using eigenvalue analysis (Tang et al. 2001; Shu 
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and Wang 2001). In these studies, various buckling modes 
were introduced, and the effects of various geometric prop-
erties on the structural stability were described. But various 
nonlinearity factors were not considered in these studies, 
because they were conducted by conventional eigenvalue 
analyses. Furthermore, the initial condition, which can be 
considered by initial shape analysis, was not considered 
before considering the live load condition. This is very 
important, because cable-stayed bridges are designed with 
optimal initial tensile forces of cables, which make for mini-
mum deformation and internal forces under dead load condi-
tion (Chen et al. 2000; Cheng and Xiao 2004; Kim and Lee 
2001; Wang et al. 1993; Wang and Yang 1996).

It is well known that stability analysis or ultimate analysis 
of cable-stayed bridges should be conducted by nonlinear 
analysis due to various geometric and material nonlineari-
ties and design characteristics of the structures (Adeli and 
Zhang 1995; Wang and Yang 1996; Xi and Kuang 1999; 
Ren 1999; Freire et al. 2006; Kim et al. 2015; Kim et al. 
2016a, 2017). Ren (1999) studied the ultimate behavior of 
completed cable-stayed bridges considering various nonlin-
earities, boundary conditions, and loading conditions. Song 
and Kim (2007) also conducted nonlinear analysis for study-
ing the ultimate capacity of cable-stayed bridges, and sug-
gested an ultimate analysis method considering geometric 
and material nonlinearities. Kim et al. (2016a, b) conducted 
parametric study to investigate the effects of various design 
factors on the ultimate behavior of the cable-stayed bridges. 
The studies focuses on the ultimate capacity of completed 
cable-stayed bridges.

It is also well known that cable-stayed bridges under con-
struction are more structurally unstable than the completed 
structure, because of the general construction method for the 
structures. As shown in Fig. 1, cable-stayed bridges during 
the construction stage have more unstable boundary con-
ditions than the completed structure. After completing the 
construction, through the erection of the key segment of 
the girder, each part of the cable-stayed bridge is connected 
with each other part, so they are closed and they share the 
boundary conditions. But, before the closing and connection 
of two parts constructed individually, each part is supported 
by more unstable boundary conditions than the completed 
structure. Therefore, the ultimate behavior of each stage of 
construction should be analyzed and considered (Kim et al. 
2017). Several researchers have studied the rational meth-
odologies of construction stage analysis for cable-stayed 
bridges and suspension bridges (Reddy et al. 1999; Wang 
et al. 2004). The studies are limited to the general structural 
behavior of the cable-stayed bridge under construction, such 
as the characteristics of internal force distributions, struc-
tural deformations and so on. But the structural stability or 
ultimate behavioral characteristics of cable-stayed bridges 
during the construction stage has not been studied. Recently, 

Lee et al. (2015) experimentally studied the ultimate behav-
ior of cable-stayed bridges under construction, and Kim 
et al. (2017) analytically studied the structural stability 
of cable-stayed bridges under construction by performing 
construction stage analysis based on geometric nonlinear 
analysis. In summary, the ultimate behavior of cable-stayed 
bridges under construction has not been actively studied.

In this analytical study, the ultimate behavior of steel 
cable-stayed bridges under construction is investigated. To 
perform rational ultimate analysis, a nonlinear analysis pro-
gram for steel cable-stayed bridges is first developed, based 
on the theory of nonlinear finite element analysis. A three-
step analysis method is suggested, in order to consider the 
characteristics of the design and construction method of 
cable-stayed bridges. Using this program, extensive analyti-
cal study is performed to investigate the ultimate behavior 
of steel cable-stayed bridges under construction, especially 
for the construction stage before the connection of two indi-
vidual parts, because this stage might be considered as the 
most unstable state. By this analytical study, the govern-
ing factors affecting the ultimate behavior are classified. 
Furthermore, the effects of geometric properties, such as 
the cable-arrangement types, girder-mast flexural stiffness 
parameter and sectional area of stay cables, on the ultimate 
behavior and change of the ultimate mode and load carrying 
capacity are studied.

2  Theoretical Background

In this chapter, the theoretical background of ultimate 
analysis for steel cable-stayed bridges under construction 
is briefly introduced. Firstly, finite elements to model the 
main members of cable-stayed bridges are described, and the 
method to consider material nonlinearity of steel members is 
introduced. Secondly, a numerical strategy for incremental-
iterative analysis is described. Finally, the analysis scheme 
of three-step ultimate analysis for steel cable-stayed bridges 
is proposed.

2.1  Finite Elements, Material Nonlinearity 
Consideration and Incremental‑Iterative 
Analysis Strategy

2.1.1  Geometric and Material Nonlinearity Consideration

It is well known that cable-stayed bridges show various geo-
metric nonlinearities, such as the cable-sag effect, beam-col-
umn effect of the girder and mast, large-displacement effect 
and girder-mast-cable interaction. So, nonlinear finite ele-
ments should be used to model the main members, because 
of those various nonlinearities.
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To model the girder and mast, considered as the beam-
column members, a nonlinear frame element that has 2 
nodes and 6 degrees of freedoms is used. The element was 
derived based on the updated-Lagrangian formulation and 
the local stiffness matrix of this element, which consists of 
the elastic, geometric and induced matrices (Yang and Kuo 
1994; Kim 2009; Kim et al. 2015; Kim and Kang 2016; Kim 
et al. 2016a, 2017). Figure 2 shows the nodal displacements 
and forces of the nonlinear frame element used in this study, 
and the Eqs. (1)–(3) describe the stiffness matrix composed 
of elastic, geometric and induced stiffness matrix (Yang and 
Kuo 1994; Lim et al. 2008; Kim and Kang 2016; Kim et al. 
2015, 2016a, 2017).

(1)[k] = [ke] + [kg] + [ki]

where [ke] = elastic stiffness matrix; [kg] = geometric stiffness 
matrix; [ki] = induced stiffness matrix

(2)[kg] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a 0 0 0 −d −e −a 0 0 0 −n −o

b 0 d g k 0 −b 0 n −g k

c e −h g 0 0 −c o −h −g

f i l 0 −d −e −f −i −l

j 0 d −g h −i p −q

m e −k −g −l q r

a 0 0 0 n o

b 0 −n g −k

c −o h g

f i l

j 0

m

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Fig. 1  General construction 
procedure for cable-stayed 
bridges (Kim et al. 2017)
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where

a =
1Fxb

1L
, b =

61Fxb

51L
+

121FxbIz

A1L3
, c =

61Fxb

1L
+

121FxbIy

A1L3
,

d =

1Mya

1L
, e =

1Mza

1L
,

f =
1FxbJ

A1L
, g =

1Mxb

1L
, h =

1Fxb

10
+

61FxbIy

A1L2
,

i =
1Mza +

1Mzb

6
, j =

21Fxb
1L

15
+

41FxbIy

A1L
,

k =
1Fxb

10
+

61FxbIz

A1L2
, l = −

1Mya +
1Myb

6
, m =

21Fxb
1L

15
+

41FxbIz

A1L
,

n =

1Myb

1L
, o =

1Mzb

1L
,

p =
1Fxb

1L

30
+

21FxbIy

A1L
, q = −

1Mxb

2
, r = −

1Fxb
1L

30
+

21FxbIz

A1L

A = sectional area of the frame element; L = length of the 
frame element; Iy, Iz = 2nd moment of inertia with respect 
to the y and z axis, respectively; J = torsional constant

where

(3)[ki] =

⎡⎢⎢⎢⎣

[0]

[ki]a
[0]

[ki]b

⎤⎥⎥⎥⎦

�
ki
�
a
=

⎡⎢⎢⎣

0 0 0
1Mza 0 −1Mxa∕2

−1Mya∕2
1Mxa∕2 0

⎤⎥⎥⎦

Fig. 2  Nodal displacements and forces of the nonlinear frame element
Fig. 3  Two conditions for a horizontal stay cable with tensile forces 
T
1
 and T

2
 , respectively (Gimsing 1983; Kim and Kang 2016; Kim 

et al. 2015, 2016a, 2017)

In the Eqs. (1)–(3), left superscript refers to the occur-
ring configurations as below: 0 = initial undeformed 
configuration, 1 = last known deformed configuration, 
2 = current deformed configuration. The terms without 
any superscript such as elastic modulus E are those at 

�
ki
�
b
=

⎡⎢⎢⎣

0 0 0
1Mzb 0 −1Mxb∕2

−1Myb∕2
1Mxb∕2 0

⎤⎥⎥⎦
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the initial undeformed configuration. Also, every terms 
with superscript 1 are those at the current configuration, 
so they are updated at every incremental-iterative steps in 
order to obtain the physical terms at the current deformed 
configuration.

To model the cable member of cable-stayed bridges, 
a nonlinear equivalent truss element is used as shown in 
Figs. 3 and 4. This element was developed based on a non-
linear truss element with an equivalent modulus derived 
to consider the sag effect of the stay cables. The stiffness 
matrix of the element consists of the elastic stiffness and 
geometric stiffness, but the elastic modulus in the elastic 
stiffness is replaced by the equivalent modulus derived 
based on the force–elongation relationship of the elastic 
catenary (Ernst 1965; Fleming 1979; Gimsing 1983). In 
general, the conventional equivalent modulus of the com-
mon equivalent truss element was derived, with some sim-
plification, by Taylor’s series. But, in this study, the equiva-
lent modulus of the force–elongation relationship of the 
elastic catenary, derived without any simplification, was 
used (Song et al. 2006; Kim 2009; Kim and Kang 2016; 
Kim et al. 2015, 2016a, 2017).

(4)

[k] = [ke] + [kg] =

1Eeq +
1A

1Lc

⎡⎢⎢⎢⎢⎢⎢⎣

1 0 0 −1 0 0

0 0 0 0 0

0 0 0 0

1 0 0

0 0

0

⎤⎥⎥⎥⎥⎥⎥⎦

+
1�11

1A

1Lc

⎡⎢⎢⎢⎢⎢⎢⎣

1 0 0 −1 0 0

1 0 0 −1 0

1 0 0 −1

1 0 0

1 0

1

⎤⎥⎥⎥⎥⎥⎥⎦

Fig. 4  Inclined stay cable and equivalent horizontal stay cable with 
equal deformational characteristics. gcb : weight per unit length of 
a cable, T  : tensile force (Gimsing 1983; Kim and Kang 2016; Kim 
et al. 2015, 2016a, 2017)

where [k] = stiffness matrix of a nonlinear equivalent truss 
element; [ke] = elastic stiffness matrix; [kg] = geometric stiff-
ness matrix; 1Eeq = 1Etan or 1Esec ; 1Etan = tangential modulus; 
1Esec = secant modulus; 1�11 = axial stress of a cable member; 

1A = sectional area of a cable member; 1Lc = length of a cable 
members

where

(5)
Etan =

E(
1 + K1 + K2

)
∕2 cosh

(
gcbLc cos �

2Ti

)

K1 =
1

gcb ⋅ Lc cos �

[
2Ti sinh

(
gcb ⋅ Lc cos �

Ti

)
− gcb ⋅ Lc cos � ⋅ sinh

(
gcb ⋅ Lc cos �

Ti

)]

K2 =
−4EA

gcb ⋅ Lc cos �

[
sinh

(
gcb ⋅ Lc cos �

2Ti

)
−

gcb ⋅ Lc cos �

2Ti
⋅ cosh

(
gcb ⋅ Lc cos �

2Ti

)]

(6)

Esec =

(
Tf − Ti

)
�

c

=
E(

1 + K1 + K2

)
∕2 cosh

(
gcb⋅Lc cos �

2Tf

)
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where

K1 =
1

gcb ⋅ Lc cos �
(
Tf − Ti

)
[
T2

f
sinh

(
gcb ⋅ Lc cos �

Tf

)
− T2

i
sinh

(
gcb ⋅ Lc cos �

Ti

)]

K2 =
4EA

gcb ⋅ Lc cos �
(
Tf − Ti

)
[
Ti sinh

(
gcb ⋅ Lc cos �

2Ti

)
− Tf sinh

(
gcb ⋅ Lc cos �

2Tf

)]

gcb = weight per unit length of the cable; Ti = tensile force at 
condition 1; Tf  = tensile force at condition 2; Lc cos � = hori-
zontally projected length of the cable.

To consider the material nonlinearities of steel members 
modeled by line elements, several methods can be used, 
such as the plastic zone method, plastic hinge method and 
refined plastic hinge method. Among these methods, the 
plastic zone method guarantees the best numerical accu-
racy. But it requires substantial calculation efforts. So, in this 
study the refined plastic hinge method is adopted and used, 
because of its efficiency and accuracy. The refined plastic 
hinge method uses the tangential modulus Et to consider 
the effect of the gradual yield by axial force, and the scalar 
parameter � to consider the effect of the gradual yield and 
plastic hinge occurrence by applied axial force and bending 
moment (Liew et al. 1993; Song and Kim 2007; Kim 2009; 
Kim et al. 2016a, 2017). Using the tangential modulus and 
scalar parameter, the elastic stiffness matrices of the nonlin-
ear frame element and nonlinear equivalent truss element 
are modified.

2.1.2  Numerical Solution Strategy for Nonlinear Finite 
Element Analysis

As the numerical strategy of the incremental-iterative analy-
sis method for nonlinear analysis, there are several numerical 
methods, such as the Newton–Rapshon method, arc-length 
method, work control method and generalized displacement 
control method. Because cable-stayed bridges have various 
geometric and material nonlinearities, complex nonlinear 
responses may occur when the structure is subjected to 
external forces. The numerical methods can be classified 
into several categories, such as the force-control method, 
displacement-control method, and work control method. In 
general, a force-control method, such as the Newton–Rap-
shon method, is not appropriate for tracing complex non-
linear response. For the response, a displacement or work 
control method is widely used. Among these methods, the 
arc-length method (Crisfield 1983) has been widely used. 
But there is a problem in the constraint equation of the 
method, in that the units of each term are not the same, and 
this inequality of units may induce numerical instability 

when the structural response reaches towards ultimate state 
(Yang and Kuo 1994). So, the generalized displacement 
control method (Yang and Kuo 1994) is used in this study. 
Using this method, the incremental-iterative load factors are 
calculated and applied during nonlinear analysis, so that the 
complex nonlinear response of cable-stayed bridges can be 
traced with numerical stability.

where GSP =
{ΔÛ1

1}
T
{ΔÛ1

1}

{ΔÛi−1
1 }

T
{ΔÛ1}

 , generalized stiffness parameter; 

�i
j
 = ith incremental, jth iterative analysis load factor; 

�1
1
 = preset load increment factor; {ΔŪ} = incremental dis-

placement vector by unbalanced force vector; {ΔÛ} = incre-
mental displacement vector by total load vector.

2.2  Analysis Strategy of the Ultimate Analysis 
for Steel Cable‑Stayed Bridges

The ultimate behavior of steel cable-stayed bridges under 
construction is analyzed by a three-step analysis scheme, as 
shown in Fig. 5, in order to rationally consider the character-
istics of the design and construction method of cable-stayed 
bridges. Firstly, initial shape analysis (Fig. 6) is performed 
to determine optimal tensile forces of the stay cables, which 
ensure that the structure suffers minimal deformation under 
the dead load condition, and to reflect the structural state 
before live load analysis. Secondly, construction stage analy-
sis using the backward process analysis method (Fig. 7) is 
performed to research the structural state under construc-
tion. After that, external load analysis is performed to trace 
the nonlinear response, and to find the ultimate behavior 
under specific external load condition. All three analyses, 
initial shape analysis, construction stage analysis and live 
load analysis, are performed based on the theory of non-
linear finite element analysis; thus geometric and material 

(7)�1 = ±�1
1
|GSP|1∕2 (j = 1)

(8)𝜆j = −

{
ΔÛi−1

1

}T{
ΔŪj

}
{
ΔÛi−1

1

}T{
ΔÛj

} (j ≥ 2)
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Fig. 5  Analysis strategy of 
ultimate analysis for steel cable-
stayed bridges under construc-
tion

Fig. 6  Procedure of initial shape 
analysis (Kim et al. 2017)
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nonlinearities of steel cable-stayed bridges are considered 
during the structural analyses. The analysis program was 
written using Visual C++ V6.0. As well as the numerical 
modulus, a simple post processor is also made to intuitively 
observe the structural behavior.

Validation of the consideration method for the geometric 
and material nonlinearities, initial shape analysis and con-
struction stage analysis methods were performed in former 
papers and researches (Yang and Kuo 1994; Song et al. 
2006; Lim et al. 2008; Song and Kim 2007; Kim 2009; Kim 

Fig. 7  Backward process 
method for the construction 
stage analysis (Kim et al. 2017)

(a) 

(b) 

13 @ 20.0m 13 @ 20.0m

12 @ 5.5m

77.0m

C1~C13 C14~C26

13 @ 20.0m 13 @ 20.0m40.0m
40.0m

C27~C39 C40~C52

C1~C13 C14~C26 C27~C39 C40~C52

13 @ 20.0m 13 @ 20.0m 13 @ 20.0m 13 @ 20.0m40.0m

143.0m

40.0m

Fig. 8  Completed analysis model. a Fan type model. b Harp type model
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et al. 2017). So, detailed descriptions of the validations are 
omitted in this paper.

3  Ultimate Behavior of Steel Cable‑Stayed 
Bridges Under Construction

3.1  Analysis Model

Figures 8 and 9 show analysis models considered in this 
study. The models are basically divided into two different 
cable-arrangement types, the fan type model and harp type 
model. The completed structure models shown in Fig. 8 are 
firstly analyzed by initial shape analysis, and then construc-
tion stage analysis is performed to find the structural equi-
librium state of the construction stage model, as shown in 
Fig. 9. Finally, nonlinear analysis for the ultimate behavior 

(a) (b) 

P
143m

13 @ 20.0m 13 @ 20.0m

40m

12 @ 5.5m

77m

Side span Centural span

Cable

GirderMast

girderL

mastL

Fig. 9  Analytical model under construction stage. a Fan type model. b Harp type model

Fig. 10  Section of the girder

Table 1  Material and geometric properties of main members

Girder Mast Cable

E (kN/m2) 2.1 × 108 2.1 × 108 2.1 × 108

A  (m2) 0.484 0.214–1.006 0.01–0.12
I  (m4) 0.305 0.214–10.719 –
γ (kN/m3) 157.74 78.0 78.0

Table 2  Considered girder-mast flexural stiffness ratio

Em: Elastic modulus of a mast, Eg: Elastic modulus of a girder, Im: 
2nd Moment of inertia of a mast, Ig: 2nd Moment of inertia of a 
girder, Lm: Length (Height) of the mast, Lg: Length of the girder

Fan type Harp type

EmIm∕Lm

EgIg∕Lg

2.00–30.00 2.00–30.00

Fig. 11  Loading/boundary con-
dition of the examined models
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under the external load condition is performed. Figure 10 
shows the section of the girder. The section of the mast is 
considered as a box section of various sectional sizes, to 
investigate the effect of mast stiffness. It is assumed that 
there are sufficient stiffeners to prevent local buckling in 
the section of the girder and mast. Finally, a circular sec-
tion is considered as the section of the cable, and vari-
ous areas are considered in order to investigate the effect 
on structural stability. Table 1 represents the material and 
geometric properties of girder, mast, and cables. In this 
study, girder-mast flexural stiffness ratio is considered as 
the main parameter, which mainly affects the characteris-
tics of the ultimate behavior of the structure. Table 2 shows 
the range of girder-mast stiffness ratios considered in this 
study. Also, the sectional area of stay cables is considered 
as a variable, to investigate the effect on the ultimate behav-
ior. After extensive parametric study, considering different 
cable-arrangement types, various girder-mast flexural stiff-
ness ratios and sectional areas of stay cables, the governing 

factors that mainly affect the ultimate behavior are classified 
into two types. Also, the effects of girder-mast stiffness ratio 
and cable area on the change of ultimate behavior and ulti-
mate load carrying capacity are investigated.

Figure 11 presents the loading and boundary condition. 
As shown in this figure, the analytical model that performed 
the construction stage analysis (using the backward process 
analysis method) is subjected to a concentrated load, that 
reflects the weight of a derrick crane and a key segment of 
the girder. Thus, the ultimate analysis for steel cable-stayed 
bridges under construction is performed by three-step analy-
sis, namely initial shape analysis, backward process analysis, 
and external load analysis.

3.2  Ultimate Mode 1: Girder‑Mast Interactive 
Buckling

As the first ultimate mode, girder-mast interactive buckling 
is introduced in this chapter. It can be supposed that if the 

Fig. 12  Deformed shapes of 
analysis models which have a 
2.0 girder-mast stiffness ratio. 
a Fan type model. b Harp type 
model

- geometric nonlinear analysis - - ultimate analysis –

(a) 

- geometric nonlinear analysis - - ultimate analysis –

(b) 

Fig. 13  Deformation sequence 
of the girder-mast interactive 
buckling. (Fan type model, 
girder-stiffness ratio = 2.0, 
 Ac = 0.02 m2, scale factor = 2.0)
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main members, girder and mast, don’t have sufficient flexural 
stiffness, buckling may occur due to applied compressive 
force induced by stay cables. Figure 12 shows the girder-
mast interaction buckling mode of steel cable-stayed bridges 
under construction.

In other words, when the girder-mast stiffness ratio is 
quite small, the mast can’t resist the mast buckling, and 
girder and mast suffer significant flexural deformation 
when the external force applied to the tip of the center span 
increases. The flexural deformation is definitely induced by 
the beam-column effect of the girder and mast subjected to 
increasing compressive forces by stay cables. The structural 
behavior can be classified as buckling. Also, the deforma-
tions obtained by geometric nonlinear analysis and ultimate 
analysis (which means nonlinear analysis with consider-
ing both nonlinearities) are almost the same. So, it can be 

concluded that girder-mast interactive buckling governs the 
ultimate behavior of a structure that has relatively low flex-
ural stiffness of the mast.

Figure 13 shows the sequence of structural deformation 
when girder-mast buckling governs the ultimate behavior. As 
shown in the figure, the flexural deformation of the girder 
and mast is amplified, because of the beam-column effect. 
When vertical force is applied to the tip of the center span, 
the center span deflects, and the deflection leads to horizon-
tal movement of the mast. As the external force increases 
more and more, the deformation of the girder and mast 
increases, and the tensile forces of stay cables also continu-
ously increase to resist the deformation. So, the compres-
sive forces applied to the girder and mast increase, due to 
increase of the tensile forces of the stay cables. Finally, the 
beam-column effect is amplified because of the increasing 

(a) (b) 

(c) 

-2 0 2 4 6 8 10 12 14
0.0

0.5

1.0

1.5

2.0

2.5

L
oa

d 
fa

ct
or

 (f
or

 c
on

ce
nt

ra
te

d 
fo

rc
e)

Vertical displacement (m, downward: +)

N1 N2
N3 N4

-20 -10 0 10 20 30
0.0

0.5

1.0

1.5

2.0

2.5

L
oa

d 
fa

ct
or

 (f
or

 c
on

ce
nt

ra
te

d 
fo

rc
e)

Vertical displacement (m, downward: +)

N5 N6
N7 N8

-10 -5 0 5 10 15
0.0

0.5

1.0

1.5

2.0

2.5

L
oa

d 
fa

ct
or

 (f
or

 c
on

ce
nt

ra
te

d 
fo

rc
e)

Horizontal displacement (m, left: +)

N9 N10
N11

Fig. 14  Load-displacement curves of fan type model, girder-mast stiffness ratio: 2.0. a Points at the left side span girder. b Points at the center 
span girder. c Point at the mast



943International Journal of Steel Structures (2019) 19(3):932–951 

1 3

(a) (b) 

(c) 

-5 0 5 10 15 20
0.0

0.5

1.0

1.5

L
oa

d 
fa

ct
or

 (f
or

 c
on

ce
nt

ra
te

d 
fo

rc
e)

Vertical displacement (m, downward: +)

N1 N2
N3 N4

-20 -15 -10 -5 0 5 10 15 20 25 30
0.0

0.5

1.0

1.5

L
oa

d 
fa

ct
or

 (f
or

 c
on

ce
nt

ra
te

d 
fo

rc
e)

Vertical displacement (m, downward: +)

N5 N6
N7 N8

-10 -8 -6 -4 -2 0 2 4 6
0.0

0.5

1.0

1.5

L
oa

d 
fa

ct
or

 (f
or

 c
on

ce
nt

ra
te

d 
fo

rc
e)

Horizontal displacement (m, left: +)

N9 N10
N11

Fig. 15  Load-displacement curves of harp type model, girder-mast stiffness ratio: 2.0. a Points at the left side span girder. b Points at the center 
span girder. c Point at the mast

Fig. 16  Deformed shapes of 
analysis models which have a 
30.0 girder-mast stiffness ratio. 
a Fan type model. b Harp type 
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compressive forces, and the effect leads to buckling of the 
main members.

In Figs. 14 and 15, the load–displacement curves of the 
models show the girder-mast interactive buckling, obtained 
by ultimate analysis. As shown in the figures, there are sig-
nificant ultimate load factors. Every point in the structure 
shows continuous deformation, although the external force 
decreases after the ultimate point. In other words, the struc-
tural deformation continuously grows while the external 
force decreases, because of the amplification of the defor-
mation induced by the buckling.

3.3  Ultimate Mode 2: Material Yield of the Girder 
at the Center Span

According to the analysis result in this study, there is no 
significant flexural deformation of the mast in the mod-
els that have relatively high flexural stiffness of the mast. 
Instead, the center span shows the deformation. As shown 
in Fig. 16, it can be expected that the center span suffers 
negative flexural deformation, when the external force 
applied to the tip of the girder increases. The deformation 
is quite interesting, because the force is applied down-
ward. If the center span behaves as a cantilever beam, the 
structure may show negative flexural deformation down-
ward at all points. But, there is upward deformation while 
the external force is applied downward. This is basically 
caused by the beam-column effect. When the external 
force increases, the tensile forces of the cables that sup-
port the center span also increases, to resist the deflec-
tion of the span. So, the compressive forces applied to the 
girder increase, and produce the beam-column effect of 
the girder. Because of the effect, the center span suffers 
the deformation shown in Fig. 16. Incidentally, there are 
some different shapes between the deformations obtained 
by the two analysis methods. According to the result of 

ultimate analysis, plastic hinges occur near the tip of the 
center span, because of excessive bending moment with 
compressive force. Based on this fact with the difference 
of the deformations shown in the figure, it can be con-
cluded that the material yield that occurs at the center 
span may govern the ultimate behavior of the models that 
are designed with sufficient flexural stiffness of the mast. 
As the external force increases, the flexural deformation 
of the center span grows, until some section reaches the 
material limitation, and the structure finally becomes the 
ultimate state.

Figure 17 shows the sequence of structural deformation 
when the material yield of the center span governs the ulti-
mate behavior. When external force is applied to the tip of 
the center span, the tip of the center span starts to move 
downward, and the mast also moves horizontally, because of 
the downward movement of the span. Further, the horizontal 
movement of the mast makes for upward lifting of the side 
span. As the structural deformation grows and is amplified 
by the beam-column effect, a specific section in the center 
span finally reaches its material limitation, because of exces-
sive internal forces. So the structure reaches the ultimate 
state, and the external force starts to decrease. As the exter-
nal force decreases, the deformations of the mast and side 
span are recovered, and both main members move back to 
their original position.

Figures 18 and 19 indicate the load–displacement curves 
at the girder and mast. The curves show well the structural 
behavior of these models. As mentioned previously, the mast 
and side span move back to their original positions as the 
live load factor decreases. But the region near the plastic 
hinge at the center span suffers continuous deformation, 
whereas the live load decreases. Thus, it can concluded that 
material yield near the tip of the center span governs the 
ultimate behavior of the structure, when the flexural stiffness 
of the mast is sufficient to resist mast buckling.

Fig. 17  Deformation sequence 
of material yield. (Fan type 
model, girder-stiffness 
ratio = 30.0,  Ac = 0.02 m2, scale 
factor = 2.0)
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3.4  Effect of the Girder‑Mast Stiffness Ratio 
on the Change of Ultimate Mode

As described previously, the ultimate mode varies with 
respect to the girder-mast stiffness ratio. If the ratio is quite 
small, girder-mast interactive buckling might govern the ulti-
mate behavior. Also, if the ratio is large, material yield of 
the girder at the center span governs the ultimate behavior. 
In this chapter, the effect of the girder-mast stiffness ratio on 
the change of ultimate mode and load carrying capacity of 
the structure is described.

Figures 20 and 21 show the change of the ultimate mode 
shapes by the change of girder-mast stiffness ratio. As shown 
in those figures, the governing factor changes from girder-
mast interactive buckling, to plastic hinge occurrence at the 
center span, as the ratio increases.

Figure 22 shows the change of the critical/ultimate live 
load factor with respect to the girder-mast stiffness ratio. To 
study the governing factors of the ultimate behavior more 
clearly, the ultimate live load factor is compared with the 
critical live load factor, which is obtained by geometric non-
linear analysis.

As shown in the figure, the governing mode for ultimate 
behavior can be classified into two modes, which are the 
girder-mast interactive buckling mode and the girder yield 
mode. In the girder-mast interactive buckling mode, both 
analysis results are almost the same, because the buck-
ling is absolutely affected by the geometric nonlinearities. 
Whereas, there are significant differences between the load 
carrying capacities obtained by both analysis methods in the 
center span yield mode, because of the material limitation. 
As the stiffness of the mast increases, the governing mode 
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changes from buckling to material yield. For efficient use of 
material, buckling should be prevented. Also, the live load 
factors of both models converge to the specific load factor 
as the girder-mast stiffness ratio increases. After the gov-
erning factor changes from buckling to material yield, con-
tinuous increase of load carrying capacity does not occur, 
despite the stiffness of the mast increasing more and more. 
Consequently, these results indicate that there is a minimum 
required flexural stiffness of the mast to prevent girder-mast 
interactive buckling, and the stiffness can be a sufficient stiff-
ness ratio for the structure before complete construction.

Figure 23 shows a comparison of the ultimate/criti-
cal load factors of the fan type and harp type models. In 
general, it can be supposed that the structure that has a 
higher cable arrangement angle will show a better struc-
tural efficiency under the vertical load condition. Based on 

force-equilibrium, more tensile forces are required at the 
lower stay cables, when the same vertical force compo-
nents are required to resist the vertical deformation of the 
girder. Also, it produces larger compressive forces applied 
to the girder. As shown in the figure, the fan type model 
shows a higher ultimate/critical load factor than the harp 
type, because of that reason. Incidentally, the load carry-
ing capacities of both models converge as the girder-mast 
stiffness ratio increases. In particular, if the girder-mast 
stiffness ratio is larger than 15.0, the load carrying capaci-
ties of each model become almost the same. This can be 
also explained with the load-cable force curve shown in 
the next figures.

As shown in Figs. 24 and 25, most cables lose their ten-
sile forces as the external load increases. The loss of tensile 
forces of the stay cables is induced by the shortening of 
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the relative distance between the center span and mast. The 
upward deformation of the center span induced by the beam-
column effect produces the shortening. The loss of tensile 
force indicates the decrease of compressive force applied to 
the girder and mast. As most of the cables (except the exte-
rior cables) of the center span lose their tensile force, only 
exterior cables, such as cables 25 and 26, apply compressive 
force to the girder and mast. Incidentally, the stay angles of 
exterior cables of the fan type model and harp type model 
are almost the same. This eventually means that the com-
pressive forces applied to the center spans of both models 
converge. Thus, the ultimate load capacities also become 
almost the same under the same force condition.

3.5  Effect of the Sectional Area of Stay Cables

It can be simply supposed that the increase of sectional area 
of the stay cables induces an increase of the stiffness and 
strength of cable-stayed bridges. It is quite true that the 
increase of the sectional area induces elastic stiffness and 
strength of the axial member. Based on this simple theory, 
the assumption may be reasonable. To study the effect of 
the sectional area of stay cables, a parametric study was 

performed by considering various sectional areas of cables. 
Figure 26 shows the change of the ultimate load factor with 
respect to the sectional area of the stay cables.

In the girder-mast interactive buckling mode, an increase 
of sectional area of the stay cables produces a decrease of 
the ultimate load carrying capacity. There are positive and 
negative effects of the increase of sectional area of the stay 
cables. Firstly, the increase of sectional area makes for an 
increase of elastic stiffness of the axial members, which 
is a positive effect. But, the increase of the sectional area 
also makes for an increase of the sag effect, because of 
the increase of the own weight of the cables, which is an 
absolutely negative effect. Moreover, the compressive force 
applied to the mast also increases, because of the increase 
of the own weight of the cables, which is a second negative 
effect. Because the compressive force applied to the mast 
is very important in this ultimate mode, the ultimate load 
factor decreases as the sectional area increases, although a 
positive effect also exists.

In the girder yield mode, the curves show a peak point, 
which indicates the maximum ultimate load carrying capac-
ity. The graph can be divided into two parts. The first part 
shows the increase of critical load factor as the cable area 
increases; it can be said that the increase of elastic stiffness 

Fig. 20  Ultimate mode shape of 
fan type models. a Girder-mast 
flexural stiffness ratio: 2.0. b 
The stiffness ratio: 3.0. c The 
stiffness ratio: 5.0. d The stiff-
ness ratio: 7.0. e The stiffness 
ratio: 9.0. f The stiffness ratio: 
15.0. g The stiffness ratio: 20.0. 
h The stiffness ratio: 30.0
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Fig. 21  Ultimate mode shape of 
harp type models. a The stiff-
ness ratio: 2.0. b The stiffness 
ratio: 3.0. c The stiffness ratio: 
5.0. d The stiffness ratio: 7.0. 
e The stiffness ratio: 9.0. f The 
stiffness ratio: 15.0. g The stiff-
ness ratio: 20.0. h The stiffness 
ratio: 30.0

(a) (b)

(c) (d)

(e) (f)

(g) (h) 

Fig. 22  Critical/ultimate load factor versus girder-mast flexural stiffness ratio. a Fan type model. b Harp type model
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affects the ultimate capacity more than the increase of the 
weight and sag effect of the cable. The second part shows the 
decrease of critical load factor as the cable area increases; 
the contrary can then be said. In this mode, it is concluded 
that there is optimum cable area that may lead to extreme 
ultimate capacity under the vertically applied load condition.

In summary, for steel cable-stayed bridges under con-
struction there is a minimum required mast stiffness and 
optimum cable area that may lead to extreme ultimate load 
carrying capacity. As mentioned before, when the mast has 
sufficient flexural stiffness, the girder yield mode becomes 

the governing buckling mode of steel cable-stayed bridges 
under construction. In this ultimate mode, the ultimate load 
factor converges to a specific value, as the flexural stiffness 
of the mast increases. Moreover, there is an optimum cable 
area that gives the ultimate load factor a maximum value in 
this ultimate mode. Therefore, when cable-stayed bridges 
are designed, their ultimate ability under construction, as 
well as the completed structure, should be considered and 
thoroughly studied. This can be achieved by rational stabil-
ity analysis, like the analysis method proposed in this study.

Fig. 23  Fan type versus harp type. a Geometric nonlinear analysis. b Ultimate analysis
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4  Conclusion

In this study, the characteristics of the ultimate behavior of 
steel cable-stayed bridges under construction are investi-
gated, especially for the construction stage before the con-
nection of two individual parts. A rational ultimate analysis 
method for steel cable-stayed bridges under construction is 
suggested, based on the theory of nonlinear finite element 
analysis. Performing the proposed analysis using the pro-
gram developed in this study, typical buckling modes are 
classified into two categories, as follows:

1. Girder-mast interactive buckling mode.
2. Girder yield mode.

In fact, the division of inelastic buckling mode wasn’t 
studied in detail. Inelastic buckling might be included in 
both ultimate modes. The region where both analysis results 
obtained by geometric nonlinear analysis and ultimate 
analysis are almost the same can be considered as the elas-
tic buckling region. So, the starting point of the inelastic 
buckling region can be indicated in the ultimate capacity vs 
girder-mast stiffness ratio curves. But it is not easy to divide 
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inelastic buckling from material yield. To determine this, 
more intensive study is needed.

The effects of girder-mast stiffness ratio, cable arrange-
ment type, and cable area on the ultimate behavior of steel 
cable-stayed bridges under construction have been inves-
tigated by intensive analytical study. Governing ultimate 
modes are classified for the first time by these analytical 
studies, and it was found that there are minimum required 
girder-mast stiffness ratios and optimum cable areas for 
securing ultimate load carrying capacity under construction.
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