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Abstract
To achieve the optimal feasible force density vector of a given geometry configuration tensegrity grid structure, an efficient 
procedure is presented for optimal initial self-stress design of tensegrity grid structures by consecutively solving two linear 
homogeneous systems in conjunction with a minimization problem. The nonlinear constrained optimization algorithm, 
known as the Interior-Point Method (I-PM), is utilized to obtain the minimal solution, leading to a set of force densities which 
guarantee the non-degeneracy condition of the force density matrix. The evaluation of the eigenvalues of tangent stiffness 
matrix is also introduced to check the geometric stability of the tensegrity grid structures. Finally, three numerical examples 
have been investigated comprehensively to prove the capability of the proposed method in optimal initial self-stress design of 
tensegrities. Furthermore, division of number of member group has been discussed in detail for the purpose of demonstrating 
the efficiency of the proposed method in seeking initial force densities of tensegrity grid structures.

Keywords  Tensegrity grid structure · Self-stress design · Linear homogeneous systems · Interior-Point Method

1  Introduction

Tensegrities are self-stressed pin-jointed flexible structures 
which are composing of continuous tensile cables and inter-
val compressive struts. The tensioned cables of the struc-
ture are self-stressed such that the entire system could be 
provided stable equilibrium in absence of external forces, 
including gravitational. Because prestress stiffens the system 
and all members are axially loaded, tensegrity is character-
ized by its tunable stiffness and light weight (Skelton et al. 
2014; Fraternali et al. 2015; Carpentieri et al. 2017). The 
concept of “tensegrity” has attracted considerable attention 
in a wide diversity of fields since it appeared in early 1950s, 
e.g. mathematics (Connelly and Back 1998), architecture 
(Fu 2005), aerospace (Tibert and Pellgrino 2002), civil 
engineering (Kebiche and Kazi 1999; Rhode 2009; Rhode-
Barbarigos et al. 2010; Feng and Guo 2017; Cai et al. 2017; 
Montuori and Skelton 2017), robotics (Paul et al. 2006; 
Rovira and Tur 2009; Caluwaerts et al. 2014) to biology 

(Ingber 2003; Lazopoulos and Lazopoulou 2006; Simmel 
et al. 2014).

The tensegrity system would not maintain a certain shape 
before appropriate initial prestress are assigned since the 
structural rigidity is the result of a self-stressed equilibrium 
between cables and struts (Shekastehband 2017). The diffi-
culties in initial self-stress design of tensegrities are to find 
the self-equilibrated configuration that satisfies specific 
properties required by designers. Therefore, to rationally and 
effectively determine the relationship of initial shape and the 
feasible prestress distribution is the key issues in designing 
of a tensegrity structure. Typically, after the initial configu-
ration is determined, the morphological analysis of a tenseg-
rity structure is to find a feasible initial prestress distribution, 
which is known as force-finding (form-finding). Over the 
past few decades, large amounts of approaches have been 
developed to design and optimize the initial configurations 
of tensegrities with various topology and geometry (Motro 
et al. 1987; Zhang et al. 2006; Estrada et al. 2006; Zhang and 
Ohsaki 2006; Tran and Lee 2010a; Koohestani and Guest 
2013; Lee and Lee 2014; Zhang et al. 2014). Most recently, 
Feng and Guo (2015) proposed a numerical method to deter-
mine the sole configuration of tensegrities with specified 
nodes. Cai and Feng (2015) achieved the feasible force den-
sities of tensegrity structures using an optimization method. 
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Yuan et al. (2017) developed a versatile form-finding method 
for large-scale regular and irregular tensegrites which is on 
the base of solving nonlinear equilibrium equations. Lee 
et al. (2017) generalized form-finding procedure for trun-
cated polyhedral tensegrities by using force density method 
combined with a genetic algorithm.

Although there have been plenty of methods developed 
for form-finding of tensegrity structures, most of the existing 
methods may not be efficient enough in analyzing compli-
cated structures, particularly in the field of designing tenseg-
rity grid structures. Normally, tensegrity grids are structures 
with multiple states of self-stress, i.e., they usually have sev-
eral independent self-stress modes. The force densities of all 
members can then be defined as the linear combination of 
these self-stress modes. Nevertheless, it is difficult to exploit 
the results produced from the computation of the vectorial 
bases associated with these self-stress modes. As a conse-
quence, the determination of feasible initial stresses distribu-
tion and intensity is a key point in designing a tensegrity grid 
structure. Once the distribution and intensity of the initial 
stresses have been chosen, the mechanical behavior of the 
structure is investigated as the next step (Cai et al. 2016).

So far only few researches have been carried out in deter-
mining the stress distribution to appropriately stabilize the 
structure with specified shape considering stress unilateral 
propertity, i.e., cables and struts must be in tension and com-
pression, respectively. Yuan and Dong (2003) achieved the 
integral feasible prestress state of cable domes based on a 
specific equilibrium state. Quirant (2007) introduced a lin-
ear programmation to find the feasible self-stress modes of 
tensegrity grids which constitute a convex polyhedral cone 
without considering the structural stability. Following this 
track, Sánchez et al. (2007) proposed a more pertinent strat-
egy to identify and localize initial set of force densities in a 
modular tensegrity grid. Xu and Luo (2010) performed force 
finding procedure of a multi-modular tensegrity using simu-
lated annealing algorithm. Tran and Lee (2010b, c, 2011a, 
b) introduced a series of numerical methods for form-find-
ing of tensegrities, including but not limited to tensegrity 
grids. Cai et al. (2018) developed a form-finding method 
for multi-mode tensegrity structures using extended force 
density method by grouping elements. It is worth noting that, 
although initial self-stress design of typical tensegrity grids 
can be performed by part of the aforementioned methods, 
some intractable questions need to be further investigated, 
particularly in designing of optimal initial prestress accord-
ing to the specified functions or performances of an actual 
project.

In this paper, an efficient process is presented for optimal 
initial self-stress design of tensegrity grid structures by consec-
utively solving two linear homogeneous systems in conjunc-
tion with a minimization problem. To achieve the feasible force 
density vector of a given geometry configuration tensegrity 

grid structure, the form-finding procedure is firstly performed 
by consecutively solving two linear homogeneous systems. 
The first one is about the nominal self-equilibrium system, and 
the other one is the combination of the nominal independent 
self-stress modes and constraints on force densities deriving 
from symmetric property of tensegrity grids. In order to make 
the structural components withstand the pre-stress as uniform 
as possible, the form-finding problem is then formulated as 
a minimization problem by directly controlling the smallest 
standard deviation of h independent member groups. The 
nonlinear constrained optimization algorithm, known as the 
Interior-Point Method (I-PM), is utilized to achieve the mini-
mal solution, leading to a set of force densities which guaran-
tee the non-degeneracy condition of the force density matrix. 
Finally, three numerical examples, including planar and spatial 
tensegrity grid structures, are investigated comprehensively to 
demonstrate the capability of the proposed method in optimal 
initial self-stress design of tensegrities. Furthermore, division 
of number of member group has been discussed in detail for 
the purpose of demonstrating the efficiency of the proposed 
method in seeking optimal initial force densities of tensegrity 
grid structures.

2 � Formulation of Equilibrium Equations

2.1 � Basic Assumptions

•	 Members are connected by pin joints.
•	 No external load is applied and the self-weight of the struc-

ture is neglected.
•	 Buckling of the strut is not considered during the form-

finding procedure.
•	 The structure is free-standing without any support; i.e., 

there are no dissipative forces acting on the system.

2.2 � Force Density Method

For a d-dimensional (d = 2 or 3) tensegrity structure with b 
members, n free nodes and nf fixed nodes, its topology can be 
described by a connectivity matrix �S ∈ Rb×(n+nf ) as defined 
in Motro (2003). If member k connects nodes i and j ( i < j ), 
then the ith and jth elements of the kth row of CS are set to 1 
and −1 , respectively,

The fixed nodes are preceded by the free nodes in the 
numbering sequence, then CS can be divided into two parts as

(1)�S(k,p) =

⎧⎪⎨⎪⎩

1 for p = i

−1 for p = j

0 otherwise

.

(2)�S =
[
� �f

]
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where � ∈ Rb×n and �f ∈ Rb×nf  describe the connectivities 
of the members to the free and fixed nodes, respectively.

Let x, y, z ( ∈ Rn ) and xf, yf, zf ( ∈ Rnf  ) denote the nodal 
coordinate vectors of the free and fixed nodes in x-, y- and 
z-directions, respectively. The force density coefficients vector 
is denoted by � =

{
q1, q2,… , qb

}T
∈ Rb , in which each com-

ponent of this vector is the force fk to length lk ratio qk =  fk /lk 
(k = 1, 2,…, b) known as the force density or self-stressed coef-
ficient (Vassart and Motro 1999). The force density matrix 
� ∈ Rb×b is given as

The equilibrium equations of the free nodes in each direc-
tion of a general pin-jointed structure can be written as

where px, py, pz ( ∈ Rn ) are the vectors of external loads 
applied at the free nodes in x-, y- and z- directions, 
respectively.

For simplicity, matrices � ∈ Rn×n and �f ∈ Rn×nf  are 
defined as

where E is known as the force density matrix, note that E 
and Ef are constant when the force density matrix Q is given.

2.3 � Non‑degeneracy Condition

From Eq. (5), E is always square, symmetric and singular with 
a nullity of at least one since the sum of all its components in 
any row or column is zero for any tensegrity structure (Motro 
2003). Without external loading, Eq. (4) can be rewritten as

When external load and self-weight are ignored, the tenseg-
rity systems does not require any fixed nodes. Its geometry 
can be defined by the relative positions of the nodes. Thus, 
the system can be considered as a free-standing rigid-body in 
space. Eqs. (4–6) becomes

(3)� = diag(�)

(4)

�T��� + �T��f �f = �x

�T��� + �T��f �f = �y

�T��� + �T��f �f = �z

(5)� = �T��

(6)�f = �T��f

(7)

�� = −�f �f

�� = −�f �f

�� = −�f �f .

(8)
�� = �

�� = �

�� = �.

For simplicity, Eq. (8) can be reorganized as

where 
[
� � �

]
(∈ Rn×d ) is a matrix of nodal coordinates for 

a d-dimensional (d = 2 or 3) tensegrity structure.
As can be seen, Eq. (9) presents the relation between 

the force densities and the nodal coordinates.
For simplicity, matrices �x , �y , �z ( ∈ Rb×b ) are defined 

as

Thus, by substituting Eqs. (5) into (8), the self-equilib-
rium equations of the tensegrity structures can be reorgan-
ized as

where A ( ∈ Rdn×b ) is known as the self-equilibrium matrix.
Both Eqs. (9) and (11) are linear homogeneous systems 

of the self-equilibrium equations with respect to the nodal 
coordinates and the force densities, respectively.

Define rank deficiency nE of E as

Equation (9) indicates that the solution space of the self-
equilibrium equation in each direction is spanned by nE 
independent vectors. If a structure lies in a space with fewer 
dimension than d, then the structure is said to be degener-
ated in the d-dimensional space. If a tensegrity structure is 
non-degenerate in d-dimensional space, two necessary but 
not sufficient rank deficiency conditions need to be satisfied.

The first-rank deficiency condition related to the semi-
definite matrix E of Eq. (9) is defined by

The second one related to matrix A of Eq. (11) is

which is necessary for a non-trivial solution of Eq. (9). This 
rank deficiency condition provides the number of independ-
ent state of self-stress s = b − r� ≥ 1.

It should be noticed that, tensegrities are free-standing sys-
tems, the number of inextensional mechanisms m = dn − r� , 
as is discussed in (Pellegrino and Calladine 1986), is com-
posed of two types of mechanisms: rigid-body mechanisms 
and infinitesimal mechanisms. The number of infinitesi-
mal mechanisms mim is determined by excluding rb in m 

(9)�
[
� � �

]
= �T��

[
� � �

]
=
[
� � �

]

(10)

�x = diag(��)

�y = diag(��)

�z = diag(��)

(11)�� =

⎛⎜⎜⎝

�T�x

�T�y

�T�z

⎞⎟⎟⎠
� = �

(12)n� = n − r� = n − rank(�).

(13)n� ≥ d + 1.

(14)r� = rank(�) < b
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inextensional mechanisms above, where rb represents the 
number of independent rigid-body mechanisms defined by

3 � Form‑Finding Process

3.1 � Singular Value Decomposition of the Nominal 
Self‑Equilibrium Matrix �̃

Define sign vector �0 ∈ Rb as

Then the diagonal version of the sign vector �0 can be given 
as

Thus, the force density coefficients vector � can be rewrit-
ten as

where �̃ =
{||q1||, ||q2||,… , ||qb||

}T
∈ Rb is defined as the nom-

inal force density coefficients vector, in which the value of 
each component is the absolute value corresponding to that 
of force density coefficients vector � , and therefore is larger 
than zero. Equation (18) is also known as the unilateral 
behavior of the elements, i.e., cables in tension and struts 
in compression.

Substituting Eqs. (18) into (11) gives

where �̃ is defined as the nominal equilibrium matrix. Note 
that rank deficiencies of matrices A and �̃ are equal, i.e., 
r� = r�̃.

To solve Eq. (19), the singular value decomposition is car-
ried out on the nominal self-equilibrium matrix �̃

where � ∈ Rdn×dn and � ∈ Rb×b are the orthogonal matrices, 
that can be written as the following form

and,

� ∈ Rdn×dn is a diagonal matrix with non-negative singular 
values of �̃ . The singular values are in decreasing order as

(15)rb =
d(d + 1)

2
.

(16)�0 =

⎧
⎪⎨⎪⎩

+1 +1 ⋯ +1
⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

cables in tension

−1 −1 ⋯ −1
⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

struts in compression

⎫
⎪⎬⎪⎭

T

.

(17)�0 = diag(�0)
(
∈ Rb×b

)
.

(18)� = �0�̃

(19)𝐀𝐪 = 𝐀
(
𝐄0𝐪̃

)
=
(
𝐀𝐄0

)
𝐪̃ = 𝐀̃𝐪̃ = 𝟎

(20)�̃ = ���T

(21)� =
[
�1 �2 ⋯ �dn

]

(22)� =
[
�1 �2 ⋯ �b

]

((23))�1 ≥ �2 ≥ ⋯ ≥ �b ≥ 0.

According to the value of s, there are two cases during the 
form-finding procedure.

Case 1 s = 1  It is known that the bases of vector spaces of 
force densities and mechanism of any tensegrities are com-
puted from the null space of the self-equilibrium matrix A 
(Pellegrino 1993). That is to say, the bases of vector spaces 
of nominal force densities and mechanism of tensegrities 
can be obtained from the null space of the nominal self-
equilibrium matrix �̃ . In this case, the matrices U and W 
have the following null spaces

and,

where the vector m ∈ Rdn denotes the m (= dn − r�̃) infini-
tesimal mechanisms.

Define � ∈ Rdn×(dn−r�̃) as the matrix of mechanisms by the 
following form

note that s = b − r�̃ = 1 , Eq. (25) can be changed into the 
form as

and vector �1 ∈ Rb which automatically satisfies the linear 
homogeneous Eq. (19) is indeed the single nominal force 
density coefficients vector. Hence, the single integral fea-
sible self-stress mode, which satisfies not only the linear 
homogeneous Eq. (11) but also the condition that matching 
in signs with e0, can be calculated from Eq. (18).

Case 2 s ≥ 2  Tensegrities falling into this case are known 
as multiple states of self-stress, for a given tensegrity grid 
structure assembled from elementary module, s is usually 
larger than one, and the nominal integral feasible self-stress 
mode �̃ can then be described from Eq. (25) as a linear 
combination of s(= b − r�̃) independent nominal self-stress 
modes

Let � =
[
𝛼1 𝛼2 ⋯ 𝛼b−r�̃

]T
∈ Rb−r�̃ represents the coef-

ficient vector of s(= b − r�̃) independent nominal self-stress 
modes. Thus, Eq. (28) can be rewritten as

where � ∈ Rb×(b−r�̃) is the matrix of nominal self-stress basis 
modes given as

(24)� =
[
�1 �2 ⋯ �r�̃ |�1 ⋯ �dn−r�̃

]

(25)� =
[
�1 �2 ⋯ �r�̃

|�1 ⋯ �b−r�̃

]

(26)� =
[
�1 �2 ⋯ �dn−r�̃

]

(27)� =
[
�1 �2 ⋯ �b−1 |�1

]

(28)�̃ = 𝛼1�1 + 𝛼2�2 +⋯ + 𝛼b−r�̃�b−r�̃ .

(29)�̃ = ��
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As the nominal self-equilibrium matrix �̃ does not take 
into account structural member characteristics, the nominal 
self-stress basis modes N computing form the null space of 
the nominal self-equilibrium matrix �̃ cannot be employed 
directly since every independent mode itself does not satisfy 
the sign condition, i.e., not all the values of the components 
of any independent mode are large than zero. To solve this 
problem, the geometric symmetry of a tensegrity grid needs 
to be considered, members at similar positions are consid-
ered to belong to the same group and thus have the same 
force density. The nominal self-stress basis modes N can 
then be obtained according to this supplemental condition.

Let h denotes the group number of members in tensegrity 
grid structure, the nominal force density coefficient vector �̃ 
can then be re-described as

where qi is the force density of members in the ith group; {
q1 ⋯ qi ⋯ qj ⋯ qh

}T(
∈ Rh

)
 is the force density vector 

of h groups.
Equation (31) can be rewritten as the following form

where ei ∈ Rb is the basis vector composed of a unit in the 
ith and zero in the other (h − 1) groups.

Substituting Eqs. (32) into (28) gives

Define matrix �̄ ∈ Rb×(s+h) as

Let � be the vector of the coefficients of s independent 
nominal self-stress modes and the nominal force density 
coefficients of h groups, denoting as

(30)� =
[
�1 �2 ⋯ �b−r�̃

]
.

(31)�̃ =

⎧⎪⎪⎨⎪⎪⎩

��q1����q1����q1�� ⋯ ��qi����qi����qi��
�������������������������������������

cables

⋯
���qj

���
���qj

���
���qj

���⋯ ��qh����qh����qh��
�����������������������������������

struts

⎫⎪⎪⎬⎪⎪⎭

T

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0

⋮ 1 0 0 0 0 0

0 ⋮ 1 0 0 0 0

0 0 ⋮ 1 0 0 0

0 0 0 ⋮ −1 0 0

0 0 0 0 ⋮ −1 ⋮

0 0 0 0 0 ⋮ −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
(b×h)

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

q1
⋮

qi
⋮

qj
⋮

qh

⎫
⎪⎪⎪⎬⎪⎪⎪⎭
(h×1)

(32)

�̃ =

⎡
⎢⎢⎢⎣
e1 ⋯ ei
�����

cables

⋯ −ej ⋯ − eh
�����������

struts

⎤
⎥⎥⎥⎦

⎧
⎪⎨⎪⎩
q1 ⋯ qi
�����

cables

⋯ qj ⋯ qh
���

struts

⎫
⎪⎬⎪⎭

T

(33)𝛼1�1 + 𝛼2�2 +⋯ + 𝛼b−r�̃�b−r�̃ + (−e1q1) +⋯ + (−eiqi) +⋯ + (−ej
|||qj

|||) +⋯ + (−eh
||qh||) = 0.

(34)�̄ =
[
�1 �2 ⋯ �b−r�̃ − e1 ⋯ − ei ⋯ − ej ⋯ − eh

]
.

Hence, Eq. (33) can be simplified as a matrix form by 
integrating Eqs. (33–35)

The set of all solutions to the linear homogeneous sys-
tem of Eq. (36) depends on the null space of the matrix �̄ . 
The dimension of null space of matrix �̄ can be calculated 
by

where r�̄ = rank(�̄).
To solve Eq.  (36), the singular value decomposition 

(SVD) technic is secondly employed on matrix �̄:

(35)� =
{
𝛼1, 𝛼2,⋯ 𝛼b−r�̃ , q1,⋯ qi,⋯

|||qj
|||,⋯ ||qh||

}T

.

(36)𝐍̄𝛇 = 𝟎.

(37)n�̄ = (s + h) − r�̄

(38)𝐍̄ = 𝐔̄𝐕̄𝐖̄
T

where matrices �̄ , �̄ and �̄ are similarly defined with the 
matrices �,� and � described in Eq. (20). Thus, matrix �̄ 
from Eq. (38) can be expressed as

In other words, if the null space of matrix �̄ exists, i.e., 
n�̄ ≥ 1 , the following equation is valid

Equation (40) also implies �i(i = r�̄+1,⋯ , s + h) are the 
solution of � . It should be noted that the number of inte-
gral self-stress modes of the tensegrity grid structure which 

(39)�̄ =
[
�̄1 �̄2 ⋯ �̄r�̄

|�r�̄+1 ⋯ �s+h
]
.

(40)𝐍̄𝛇i = 0, (i = r𝐍̄ + 1,⋯ , s + h).

satisfies the condition of geometric symmetric is s̄ = n�̄ , 
and the (s + 1)th to (s + h)th component of � are the nomi-
nal force densities of h groups which satisfy the condition 
(i.e., the members in the same group have the same nominal 
force densities). Once � is determined, the integral feasible 
nominal self-stress force density vector �̃ can be obtained 
from the last h variables of � or from Eq. (28), and finally 
the feasible self-stress force density vector � is calculated 
by Eq. (18).
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3.2 � Form‑Finding of Tensegrity Grid Structures 
with Different Cases

For a given nodal coordinates tensegrity grid structure, gen-
erally, the group number h is dependent on symmetric prop-
erties. To the author’s knowledge, this symmetric property is 
the characteristic of the structure itself. However, it can be 
divided by designers to meet the needs of an actual project 
under certain conditions. Similarly, depending on the value 
of n�̄ , there are three cases as follows:

Case 2‑A n�̄ = 0  For n�̄ = 0 , Eq. (36) has no non-trivial 
solution, which indicates that group division for members 
does not consists with the configuration of the structure. 
That is to say, the tensegrity grid is not in self-equilibrium 
with such geometric symmetry condition. In order to get a 
feasible solution, one needs to correctly increase the number 
groups until Case 2-B or Case 2-C occurs.

Case 2‑B n�̄ = 1  For n�̄ = 1 , Eq. (36) for linear homoge-
neous system has the single solution. It implies tensegrity 
grid possesses a single nominal self-stress mode, which not 
only satisfies the self-equilibrium condition [Eq. (19)] but 
also the condition of geometric symmetry [Eq. (31)]. Hence, 
the obtained single feasible self-stress mode resulting from 
Eq. (18) automatically satisfies the condition of cables under 
tension and struts under compression. For this case, readers 
can refer to literature (Tran and Lee 2010c).

Case 2‑C n�̄ ≥ 2  For n�̄ ≥ 2 , Eq. (36) for linear homogeneous 
system has more than one nontrivial solution, i.e., there are 
multiple integral self-stress modes for tensegrity grid structure. 
When a tensegrity grid structure falls into this case, Tran and 
Lee (2010c) suggested the designer to divide the structure into 
Case 2-B. However, it should be pointed out that, such opera-
tion will cost large amount of time and thus reduce the work 
efficiency. More importantly, for Case 2-C, the structure can 
be divided (according to geometric symmetry) in order to meet 
engineering requirements and help guide construction. Hence, 
in this paper, Case 2-C is mainly discussed.

Let � =
[
x1 x2 ⋯ xh

]T
∈ Rh represents the coefficient 

vector of h groups independent nominal self-stress modes, 
the nominal h groups integral feasible self-stress mode �̃h 
can then be described from Eq. (39) as a linear combination 
of nominal force densities of h groups

(41)

�̃h =

⎧⎪⎪⎨⎪⎪⎩

q1,⋯ qi
���
cables

,⋯ ,
���qj

���,⋯ , ��qh��
�����������

struts

⎫⎪⎪⎬⎪⎪⎭

T

= x1�̄1 + x2�̄2 +⋯ + xh�̄h

where �̄i(i = 1,⋯ , h) refer to the (s + 1)th to (s + h)th com-
ponent of �i(i = r�̄+1,⋯ , s + h) obtained from Eq. (39).

In order to make the structural components withstand 
the pre-stress as uniform as possible, standard deviation 
is herein set as the objective function to assess the degree 
of dispersion between the independent nominal self-stress 
modes of h groups, and thus, a generalized form of the con-
strained nonlinear programming is employed as follows:

where pi (i = 1,⋯ , h) are all random numbers distributed 
in the interval (0, 1).

The formulated Eq. (41) is further solved using the Inte-
rior-Point Method (I-PM) with a computer program made in 
the Matlab (R2017a, version 9.2.0) environment. The capa-
bility of I-PM to solve the nonlinear optimization problem 
with inequality constraints has been explored earlier (Albu-
querque et al. 1997). The goal is to approximate Eq. (42) as 
an unconstrained optimization problem and apply Newton’s 
method for the search direction.

The Lagrangian function of the barrier problem can be 
written as

where 𝜇 > 0 is called the barrier parameter.
Thus, the perturbed Karush–Kuhn–Tucker (KKT) condi-

tions can be formulated as follows:

In this way the optimization problem was transformed 
to a system of nonlinear equations. The main idea behind 
the barrier methods is that Eq. (44) is solved iteratively by 
the Newton method, while � is decreased simultaneously 
to zero. In this section, we present the essential aspects of 
the I-PM for the purposes of this paper and omit details 
that can be found in the literature, see for instance (Lukšan 
et al. 2005; Mészáros 2012; Wächter and Biegler 2006). It 
should be pointed out that the I-PM employed in the illustra-
tive examples produces good quality solutions in reasonable 
time.

3.3 � Evaluation of the Design Error

As is known that the tensegrity structure should satisfy the 
self-equilibrium conditions, the vector of unbalanced forces 

(42)
Minimize f (x) =

√√√√√1

h

h∑
i=1

(
||qi|| − 1

h

h∑
i=1

||qi||
)2

Subject to g(x) = ||qi|| − pi ≥ 0 (i = 1,⋯ , h)

(43)L(x, �) = f (x) − �

h∑
i=1

ln g
(
xi
)

(44)
∇xf (x) + ∇xg(x)� = 0

g(x)� = 0.
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�f ∈ Rdn defined as follows can be employed for evaluating 
the accuracy of the results

The vectors of unbalanced internal forces �x,�y,�z ∈ Rn 
in x-, y-, and z-directions, respectively, defined as follows 
can also be utilized for checking the accuracy of the results

Here, the Euclidean norm is used to defined the design 
error � as

The design error � must be smaller than the preset toler-
ance Tol which is set as 10−10 in the present study.

3.4 � Evaluation of the Geometric Stability

The presented form-finding procedure will estimate the 
tangent stiffness matrix �T of a tensegrity grid structure 
for evaluation of geometric stable or super-stable as follows 
(Guest 2006; Murakami 2001; Ohsaki and Zhang 2006)

Here �E represents the linear stiffness matrix, �G is the 
geometrical stiffness matrix induced by self-stress state. e, 
a and lk ∈ Rb denote the vectors of Young’s moduli, cross-
sectional areas and pre-stressed lengths of b members of the 
structure, respectively; � ∈ R3×3 and ⊗ are the identity matrix 
and the tensor product, respectively.

It can be observed that the linear stiffness matrix �E is 
independent of the initial lengths l0 of the members but 
dependent on the current lengths lk after deformation by 
prestress. In the case that the structure has no prestress, 
the geometrical stiffness matrix will vanish, and we will 
have �0 = �k since no prestress is introduced so that there 
is no extension in any member. That is to say, if one apply 
the infinitesimal and inextensional mechanism � ∈ � , as 
described in Eq. (31), to the tangent stiffness matrix �T , the 
linear stiffness matrix �E vanishes (i.e., �T� = � ). Hence, 
the stability of this initial state, or initial stiffness of a struc-
ture only involves the geometric stiffness �G . Accordingly, 
one can access the stability of a pin-jointed structure in 
d-dimensions, with the quadratic form of �G with respect 
to any non-trivial motion M

(45)�f = ��.

(46)

�x = ��

�y = ��

�z = ��.

(47)
� =

√
(�f )

T�f =

√(
�x

)T
�x +

(
�y

)T
�y +

(
�z

)T
�z ≤ Tol = 10−12.

(48)�T = �E +�G = �diag
(
��

�k

)
�T + �⊗ �.

(49)� = �T (�G)� = �T (�⊗ �)�

or

where rb is the number of independent rigid-body mecha-
nisms calculated from Eq. (12).

Note that � is positive semi-definite if and only if E is 
positive semi-definite, for all � ∈ Rdn . By using this crite-
rion, the geometric stability of any pre-stressed or tensegrity 
structure can be controlled by checking eigenvalues of tan-
gent stiffness matrix of the structure.

4 � Numerical Examples

In this section, three numerical examples are presented for 
optimal form-finding of tensegrity grid structures using 
Matlab (R2017a, version 9.2.0) platform. Both planar and 
spatial tensegrity grid structures are considered. The illustra-
tive examples indicate that the proposed form-finding pro-
cess works remarkably well for tensegrity grid structures. 
Additionally, the efficiency of the form-finding procedure is 
also demonstrated in seeking optimal initial force densities 
according to the requirements of an actual project.

4.1 � A Planar Tensegrity Grid Beam

A planar three module tensegrity grid beam assembled from 
basic Snelson’s X unit which consists of 8 nodes, 6 struts 
and 10 cables (Fig. 1) which was investigated by Tran and 
Lee (2010c) is herein used for expansion research. There 
exist 3 independent nominal self-stress modes ( �1 ∼ �3 ) 
from the SVD of the nominal self-equilibrium matrix �̃ . 
However, they do not satisfy the characteristic of the nomi-
nal self-stress modes as defined in Eq. (18).

Table 1 generally displays a relationship between the 
value of n�̄(the dimension of null space of matrix �̄ ) and 
the group number (h) which is determined by designers 
according to the geometric symmetry of this tensegrity 
grid beam. For h = 2 , i.e., all struts and cables belong to 
their own group, respectively. For h = 16 , geometric sym-
metry is not considered in this case, and thus each mem-
ber is regarded as an independent group. For 2 < h < 6 , 
the members are grouped via the symmetric property of 
the given beam. Table 1 indicates that the single feasi-
ble nominal self-stress mode exists only if the structure is 
divided into 3, 4 or 5 groups. That is to say, if the number 
of member groups is between 3 and 5, the correspondingly 
obtained force density coefficients vector satisfies not only 

(50)

eig(�T ) = eig(�G)

=

⎡
⎢⎢⎣

�1 = �2 = ⋯ = �rb = 0
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

rigid - body motions

�1 ≤ �2 ≤ ⋯ ≤ �dn−rb
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

positive stiffness

⎤
⎥⎥⎦
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the self-equilibrium condition but also the characteristic of 
the nominal self-stress mode. For 6 ≤ h < 16 , i.e., in most 
cases, the structure probably needs to be divided into more 
groups to match the actual level of demand.

According to geometric symmetry of this tensegrity 
grid beam, the members can be appropriately divided into 
5 groups as presented in Fig. 2a, members shown in the 
same color are assumed to have equivalent force densities. 
The obtained single feasible nominal self-stress mode with 
design error � = 1.9527 × 10−14 , listed in Table 2, agrees 
well with the result from Tran and Lee (2010c), which 
demonstrates the validity and accuracy of the proposed 
method.

If the members are divided into 6 groups as depicted in 
Fig. 2b, the structure will be falling into Case 2-C (n�̄ ≥ 2) , 
where the method proposed by Tran and Lee (2010c) is 
invalid. Thus, such case is mainly investigated in this paper. 
Accordingly, the vector of the coefficients of three inde-
pendent self-stress modes and nominal force densities of 
six groups � can be determined from Eq. (36) by utilizing 
SVD of matrix �̄[Eq. (38)] as follows:

2m

Fig. 1   A planar three module tensegrity grid beam

Table 1   A relationship between the value of n�̄ and the group number (h) in the 2-D three module Snelson’s X tensegrity grid beam

Group No. h 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

n�̄ 0 1 1 1 2 2 2 2 2 2 2 3 3 3 3

(a) (b)

Fig. 2   Member group of force density assumptions. a h = 5 , b h = 6

Table 2   Results of the planar three module tensegrity grid beam 
( h = 5)

Member group Force density Tran and Lee 
(2010c)

Present

(1) q
1
− q

6
1.0000 1.0000

(2) q
7
− q

8
1.0000 1.0000

(3) q
9
− q

10
2.0000 2.0000

(4) q
11
− q

14
− 1.0000 − 1.0000

(5) q
15
− q

16
− 1.0000 − 1.0000
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objective function value equals to 0.2802, which not only 
satisfies the necessary convergence condition but also con-
firms the efficiency of the proposed method. Additionally, 
the eigenvalues of the force density matrix E are [0.0000, 
0.0000, 0.0000, 0.0000, 0.0000, 0.7816, 3.3629, 4.8232]T. 
This satisfies the non-degeneracy condition. Moreover, the 
set of eigenvalues clearly verifies the force density matrix E 
is positive semi-definite, indicating the structure is certainly 
geometric super stable regardless of materials and pre-stress 
levels. The structure has no infinitesimal mechanism after 
constraining its three rigid-body motions indicating it is 
statically indeterminate and kinematically determinate (Pel-
legrino and Calladine 1986).

The optimization method given in Sect. 3.2 is employed 
to achieve the feasible nominal force densities of six groups, 
and the feasible force density vector � is finally calculated 
by Eq. (18). The obtained force density of each member 
group is listed in Table 3. It is the integral feasible self-stress 
mode of the tensegrity grid beam structure since it satisfies 
the condition of unilateral behavior of the elements. For the 
given example above, the design error � = 2.5360 × 10−14 
obtained by Eq. (47) is within 10−12 and 10−15, which con-
firms the accuracy of the proposed method.

The convergence process of the target function is shown 
in Fig. 3. It can be found that the value of the first order opti-
mality is close to zero after 15 iterations with the obtained 

(51)𝐍̄𝛇 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.3859 −0.1155 0.0965 −1 0 0 0 0 0

0.3859 −0.1155 0.0965 −1 0 0 0 0 0

0.0686 0.3553 0.2016 −1 0 0 0 0 0

0.0686 0.3553 0.2016 −1 0 0 0 0 0

−0.2128 −0.2094 0.2956 0 −1 0 0 0 0

−0.2128 −0.2094 0.2956 0 −1 0 0 0 0

0.3859 −0.1155 0.0965 0 0 −1 0 0 0

0.0686 0.3553 0.2016 0 0 −1 0 0 0

0.1731 −0.3248 0.3921 0 0 0 −1 0 0

−0.1442 0.1459 0.4971 0 0 0 −1 0 0

−0.3859 0.1155 −0.0965 0 0 0 0 −1 0

−0.3859 0.1155 −0.0965 0 0 0 0 −1 0

−0.0686 −0.3553 −0.2016 0 0 0 0 −1 0

−0.0686 −0.3553 −0.2016 0 0 0 0 −1 0

0.2128 0.2094 −0.2956 0 0 0 0 0 −1

0.2128 0.2094 −0.2956 0 0 0 0 0 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

×

⎧
⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

�1
�2
�3
q1
q2
q3
q4��q5����q6��

⎫
⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

= 𝟎.

Table 3   Results of the planar 
three module tensegrity grid 
beam ( h = 6)

Member group (1) (2) (3) (4) (5) (6)

Force density 0.8407 0.5605 0.8407 1.4012 − 0.8407 − 0.5605
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Fig. 3   Convergence curve for the planar tensegrity grid beam ( h = 6 ). a Convergence condition, b objective function
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m

1 
m

(b)(a)

Fig. 4   A spatial double layer quadruplex tensegrity grid structure. a Top view, b perspective view

(a) (b)

(c) (d)

Fig. 5   Member division of the double layer tensegrity grid structure. a Lower cables, b upper cables, c bracing cables, d struts
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4.2 � Double Layer Tensegrity Grid

A spatial double layer tensegrity grid structure compris-
ing of 21 nodes, 16 struts and 44 cables (Fig. 4) is herein 
utilized for verification purpose. To intuitively observe 
the geometric symmetry of this structure, the grid is 
divided into four parts (Fig.  5). As can be seen from 
Fig. 5a–d, division of elements, including lower cables, 
upper cables, bracing cables and struts are the same with 
Xu and Luo (2010). Similarly, for each part depicted in 
Fig. 5, members in the same group are shown in the same 

color, therefore they are assumed to have equivalent force 
densities.

For this case, members are divided into twenty groups, 
i.e., h = 20 (n�̄ = 4) . Accordingly, the vector of the coef-
ficients of four independent self-stress modes and nominal 
force densities of four groups � can be determined from 
Eq.  (36) by using SVD of matrix �̄ . The optimization 
method given in Sect. 3.2 is employed to obtain the feasi-
ble nominal force densities of 20 groups, and the optimal 
self-stress force density vector q is finally calculated by 
Eq. (18). For the given example above, the design error 
� = 4.2880 × 10−14 obtained by Eq. (47) is within 10−12 
and 10−15, which confirms the accuracy of the proposed 
method. The convergence process of the target function is 
shown in Fig. 6. It can be found that the value of the first 
order optimality is close to zero after 44 iterations with the 
obtained objective function value equals to 0.1810. The 
obtained optimized force density of each member group 
is shown in Table 4. It is the integral feasible self-stress 
mode of the double layer tensegrity grid structure since 
it satisfies the condition of unilateral behavior of the ele-
ments. As can been seen, the standard deviation achieved 
from the proposed approach and the simulated annealing 
algorithm developed by Xu and Luo (2010) is 0.1810 and 
0.2040, respectively. It indicates that the uniformity of 
the force densities obtained in this paper is better than 
that of Xu and Luo (2010), which is what expected in 
an actual engineering. Apart from that, the computational 
time listed in Table 4 also confirms the efficiency of the 
presented method.

4.3 � A Spatial Three Way Tensegrity Grid Structure

Consider a spatial three way tensegrity grid structure 
composed of 38 nodes, 40 struts and 93 cables (Fig. 7). 
To intuitively observe the geometric symmetry of this 
structure, the grid is divided into four components 
(Fig. 8): upper cables, bracing cables (including vertical 
and oblique cables), lower cables and struts. Nineteen 
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Fig. 6   Convergence curve for the double layer tensegrity grid structure. a Convergence condition, b objective function

Table 4   The optimized prestress of each member group for the dou-
ble layer tensegrity grid structure

Member group prestress Present Xu and Luo (2010)

(1) 0.4083 0.395
(2) 0.8296 0.798
(3) 0.8939 0.803
(4) 0.4185 0.403
(5) 0.8417 0.799
(6) 0.4588 0.408
(7) 0.9087 0.804
(8) 0.4232 0.396
(9) 0.8167 0.558
(10) 0.8371 0.570
(11) 0.9711 0.577
(12) 0.8464 0.560
(13) 0.8167 0.558
(14) 0.8371 0.570
(15) 0.9711 0.577
(16) 0.8464 0.560
(17) − 0.8167 − 0.967
(18) − 0.8371 − 0.987
(19) − 0.9711 − 1.000
(20) − 0.8464 − 0.970
Standard deviation 0.1810 0.2040
Computational time 1.784 s 3.539 s
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independent nominal self-stress modes ( �1 ∼ �19 ) are 
available from the SVD of the nominal self-equilib-
rium matrix �̃ . According to the structural geometric 

symmetry, two different divisions of the grid structure 
are displayed in Fig. 8. As can be seen from Fig. 8a–c, 
division of cables, including upper cables, bracing cables 

1m

(a) (b)

Fig. 7   A spatial three way tensegrity grid structure. a Top view, b perspective view

divisions A&B

division Bdivision A

(a)

(b)

(c)

(d) (e)

Fig. 8   Two different divisions of the spatial three way tensegrity grid structure. a Upper cables, b bracing cables, c lower cables, d division A of 
struts, e division B of struts
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and lower cables, are the same for both divisions A & B. 
The difference between these two division occur in struts: 
for division A, struts are divided into 7 groups (Fig. 8d), 

which are numbered by (19–25); while for division B, 
struts are only divided into 4 groups (Fig. 8e), which are 
numbered by (19–22). Similarly, for each component 

Table 5   Results of division A ( h = 25 ) for the spatial three way tensegrity grid structure

Member group (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)
0.9995 0.8030 1.2143 0.6334 1.0127 0.6023 0.8030 0.9995 1.2143 6.0745 5.6815 4.9410 0.8030

Force density (14) (15) (16) (17) (18) (19) (20) (21) (22) (23) (24) (25)
1.2143 0.9995 0.8841 0.5481 0.3690 − 1.6470 − 2.0172 − 1.6470 − 2.2137 − 2.0378 − 1.6059 − 1.9990
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Fig. 9   Convergence curve for the spatial three way tensegrity grid structure (division A). a Convergence condition, b objective function

Table 6   Eigenvalues of the tangent stiffness matrix of the spatial three way tensegrity grid structure (division A)

Axial stiffness �
1

�
2

�
3

�
4

�
5

�
6

⋯ �
108

ec
i
ac
i
= 125kN ; es

i
as
i
= 1200kN 105.7874 105.7874 217.8664 241.9762 376.2295 376.2295 ⋯ 18054.1033
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Fig. 10   Convergence curve for the spatial three way tensegrity grid structure (division B). a Convergence condition, b objective function

Table 7   Results of division B ( h = 20 ) for the spatial three way tensegrity grid structure

Member group (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)
0.5132 0.5132 0.6639 0.3790 0.6323 0.8903 0.5132 0.5132 0.6639 3.7742 3.7742

Force density (12) (13) (14) (15) (16) (17) (18) (19) (20) (21) (22)
4.2598 0.5132 0.6639 0.5132 0.9001 0.3692 0.1112 1.4199 1.3739 1.1771 1.0265
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depicted in Fig. 8, members in the same group are plot-
ted in the same color, therefore they are thought to have 
equivalent force densities.

For division A, members are divided into twenty-five 
groups, i.e., h = 25 (n�̄ = 6) . Accordingly, the vector of the 
coefficients of nineteen independent self-stress modes and 
nominal force densities of six groups � can be determined 
from Eq. (36) by utilizing SVD of matrix �̄ . The optimiza-
tion method given in Sect. 3.2 is employed to achieve the 
feasible nominal force densities of 25 groups, and the opti-
mal self-stress force density vector q is finally computed 
by Eq. (18). The obtained optimized force density of each 
member group is listed in Table 5. It is the integral feasible 
self-stress mode of the four way tensegrity grid structure 
since it satisfies the condition of unilateral behavior of the 
elements. For the given example above, the design error 
� = 1.4021 × 10−12 obtained by Eq.  (47) is within 10−12 
and 10−15, which demonstrates the accuracy of the proposed 
method. The convergence process of the target function is 
shown in Fig. 9. It can be found that the value of the first 
order optimality is close to zero after 42 iterations with the 
obtained objective function value equals to 1.5131. It should 
be pointed out that, however, the proposed optimal form-
finding method does not require the force density matrix E 
positive semi-definite. Particularly in this problem, the force 
density matrix, which possesses seven negative eigenvalues, 
is negative semi-definite. It implies that the structure is not 
super stable. Thus, one needs to check if the state of self-
stress stiffens all the infinitesimal mechanisms. Accordingly, 
tangent stiffness of the structure has been investigated uti-
lizing Eq. (48). The force density of each member group is 
particularly set 50 times each value as presented in Table 5, 
and all cables and struts are assumed to have the same axial 
stiffness ec

i
ac
i
= 125kN and es

i
as
i
= 1200kN , respectively. The 

nonzero eigenvalues of the tangent stiffness matrix �T after 
neglecting first six zero ones corresponding to six rigid-body 
motions are listed in Table 6. It can be observed that the 
smallest one is 105.7874, which indicating this grid structure 
is definitely geometric stable.

For division B, members are divided into twenty groups, 
i.e.,h = 22 (n�̄ = 5) . Figure 10 plots the convergence pro-
cess of the target function during iterations. As can be 
seen that the first order optimality is close to zero after 
40 iterations, and the resulting objective function value is 
1.1561. The achieved force density of each member group 
is listed in Table 7. The design error calculated by Eq. (44) 
is � = 3.9460 × 10−13 , which confirms the accuracy of 

the proposed method. The force density of each member 
group is particularly set 50 times each value as presented 
in Table 7, and all cables and struts are assumed to have 
the same axial stiffness ec

i
ac
i
= 125kN and es

i
as
i
= 1200kN , 

respectively. The nonzero eigenvalues of the tangent stiffness 
matrix �T after neglecting first six zero ones corresponding 
to six rigid-body motions are listed in Table 8. It can be 
observed that the smallest one is 97.1079, which indicating 
the grid structure is definitely stable.

For both divisions A & B, the structure achieved has no 
infinitesimal mechanism when its six rigid-body motions 
are neglected indicating it is statically indeterminate and 
kinematically determinate (Pellegrino and Calladine 1986). 
It is worth noting that, although divisions of cable members 
(Fig. 8a–c) are the same for both divisions A & B, the cor-
respondingly obtained initial force density coefficients of 
groups (1–13), which are listed in Tables 5 and 7, are not 
the same. More importantly, as is presented in this example, 
different optimal self-stress modes of the tensegrity grid can 
be achieved conveniently concerning two different divisions. 
It indicates that the proposed form-finding method is effi-
cient in seeking optimal initial force densities which meet 
the requirements of an actual engineering.

5 � Conclusions

An efficient procedure is presented for optimal form-finding 
of tensegrity grid structures by consecutively solving two 
linear homogeneous systems in conjunction with a mini-
mization problem. To achieve the optimal self-stress mode 
of a given geometry configuration tensegrity grid structure, 
the form-finding procedure is firstly performed by consecu-
tively solving two linear homogeneous systems. The first 
one is about the nominal self-equilibrium system, and the 
other one is the combination of the nominal independent 
self-stress modes and constraints on force densities deriv-
ing from symmetric property of tensegrity grids. In order to 
make the structural components withstand the pre-stress as 
uniform as possible, the form-finding problem is then formu-
lated as a minimization problem by directly controlling the 
smallest standard deviation of h independent member groups 
under the constraint conditions: each nominal force density 
coefficient is assumed to be larger than a random number 
distributed in the interval (0, 1). The Interior-Point Method 
is utilized to solve the minimum of the problem, leading to 
a set of force densities which guarantee the non-degeneracy 

Table 8   Eigenvalues of the tangent stiffness matrix of the spatial three way tensegrity grid structure (division B)

Axial stiffness �
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�
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�
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�
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�
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�
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⋯ �
108
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i
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i
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i
= 1200kN 97.1079 97.1079 196.7427 245.9306 356.7462 356.7462 ⋯ 18085.2704
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condition for the force density matrix. The evaluation of 
the eigenvalues of tangent stiffness matrix is also taken into 
account to check the geometric stability of tensegrity grid 
structures. Both planar and spatial tensegrity grid structures 
are investigated comprehensively in this paper to demon-
strate the capability of the proposed method in optimal initial 
self-stress design of tensegrities satisfying either stability or 
super stability. Moreover, in order to meet the requirements 
of an actual project, division of number of member group 
has been discussed in detail for the purpose of demonstrat-
ing the efficiency of the proposed method in seeking optimal 
initial force densities of tensegrity grid structures.

It is worth noting that, although the I-PM utilized in the 
illustrative examples produces good quality solutions in rea-
sonable time, the optimum initial self-stress modes achieved 
are local optimum not global optimum, and are valid only 
in presence of suitable symmetry conditions. In order to 
overcome these discrepancies, some advanced optimiza-
tion methods that have advantages in global search, e.g. ant 
colony algorithm, genetic algorithm and the Monte Carlo 
optimization, will be probably employed to seek the global 
optimal initial self-stress modes of more complicated asym-
metric tensegrity grid structures. Apart from that, for an 
actual engineering, a tensegrity grid structure is often sub-
jected to boundary constraints. The concept of dummy mem-
ber, which was proposed by Tran and Lee (2010b) might be 
employed to overcome this technical difficulty. These are 
some directions for future work.
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