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Abstract

An efficient formulation is developed for the elastic analysis of thin-walled beams curved in plan. Using a second-order
rotation tensor, the strain values of the deformed configuration are calculated in terms of the displacement values and the initial
curvature by adopting the right extensional strain measure. The principle of virtual work is then used to obtain the nonlinear
equilibrium equations, based on which a finite element beam formulation is developed. The accuracy of the method is
confirmed through comparison with test results, shell finite element formulations and other curved beam formulations from the
literature. It is also shown that the results of the developed formulation are very accurate for the cases where initial curvature
is large.
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1. Introduction

Curved members are extensively used in engineering

structures such as highway interchanges and railway

bridges. A horizontally curved member subjected to a

vertical out-of-plane loading undergoes torsion, compression,

and biaxial moments as primary actions. Apart from that,

second order bending moments and torsional moments

are generated by coupling between the angle of twist and

the bending moment and between the vertical displacement

and the torsional moment, respectively. Traditionally,

horizontally-curved beams were numerically analysed by

a sequence of short straight beam elements. However, it

was shown (Sawko, 1967) that the straight idealisation

error may be significant even for small included angle (in

the order of 1o). Consequently, several researchers proposed

curved beam finite elements, starting from the late 1960s.

Sawko (1967), Brookhart (1967) and Young (1969) proposed

finite element models for beams curved in plan. El-Amin

& Brotton (1976) included the warping restraint in the

formulation of a displacement-based finite element. Later,

El-Amin & Kasem (1978) improved the efficiency of the

model by assigning higher order polynomials for the

angle of twist.

Akhtar (1987) obtained the stiffness matrix of a circular

member using a flexibility matrix. Krenk (1994) derived

the stiffness matrix for beam element by using the static

equilibrium state along with the principle of stationary

complementary energy. However, neither of the two finite

elements discussed herein is applicable to a horizontally

curved beam because the torsional actions are not considered

in formulating the stiffness matrices. Therefore, these two

methods can be used when the curvature of the beam is

in the vertical plane as in arches.

All the aforementioned numerical models were based

on the linear analysis of curved beams. However, the

effect of geometric nonlinearity may be significant for

curved members even under serviceability stage and

therefore, several finite element formulations have been

developed to capture the geometrically nonlinear behaviour.

These works include those of Fukumoto & Nishida

(1981) and Yoshida & Maegawa (1983) for the analysis

of horizontally curved I-beams. Iura & Atluri (1988)

developed a three dimensional beam element for elements

curved in space. Richard Liew et al. (1995) used triangular

and quadrilateral shell elements in the finite element

program ABAQUS to study the second-order behaviour

of horizontally curved I-beams by focusing on the effect

of radius of curvature to span length and the residual

stresses on the ultimate load capacity of the member.

Based on the study, they proposed a design formula for

predicting the ultimate load-carrying capacity of horizontally

curved I-beams.

All the nonlinear studies discussed so far (Fukumoto &

Nishida, 1981; Richard Liew et al., 1995; Yoshida &
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Maegawa, 1983) are limited to beams with very small

horizontal curvature. Yoo et al. (1996) presented a finite

element formulation by the principle of minimum

potential energy. They included the effect of curvature in

derivation of elastic and geometric stiffness matrices;

therefore, the model was capable of analysing beams with

higher initial curvature.

Several researchers have worked on developing finite

elements based on the “geometrically exact beam theory”.

The motivation is that in developing the finite elements

based on energy equations, strain-displacement relations

are used to specify the strain based on the kinematic

assumptions that relate the displacement at an arbitrary

point on the cross-section to the displacement and

rotations of the centre line. In order to separate the linear

relations from the nonlinear part, approximations are

normally made. However, it has been reported (Crisfield,

1990; Simo & Vu-Quoc, 1987) that this sort of approximation

may result in the loss of some important terms in the

strain-displacement relations, resulting in overly stiff

nonlinear response. To solve the problem, the geometrically

exact formulations have been proposed that are based on

the resultants of the equilibrium equations. Simo (1985)

developed the first finite element formulations based on

the geometrically exact descriptions, without considering

warping effects. Simo & Vu-Quoc (1991) added the

torsional warping effect and the warping due to combined

bending and torsion to the theory. Sandhu et al. (1990)

and Crisfield (1990) developed a co-rotational formulation

for curved beams undergoing large deformations. Pi &

Trahair (1997) studied the behaviour of horizontally

curved beams under vertical loading and developed a

curved finite element. They concluded that when the

included curvature in the beam is small, the nonlinear

behaviour of the beam becomes similar to straight beams

(i.e. lateral-torsional buckling becomes the dominant

mode of failure). However, when the included angle is

relatively large, the coupling between the bending moment

and the twisting moment becomes significant, and the

nonlinear behaviour starts far before the lateral-torsional

buckling load. Pi et al. (2005) stated that inclusion of

Wagner moments and Wagner terms considerably increases

the accuracy of the models dealing with cases with large

torsional actions. Erkmen & Bradford (2009) extended

the work of Pi & Trahair (1997) the by developing a finite

element formulation for the elastic dynamic analysis of

horizontally curved I-beams. It was observed by the

authors that the response of curved beams is considerably

different when the initial curvature is medium to large.

However, the formulation based on Pi & Trahair (1997)

is accurate when the initial curvature per the beam

element is relatively small.

In this study, the right extensional strain definition is

adopted to develop a curved beam formulation. Using a

second-order rotation tensor, the curvature values of the

deformed configuration are calculated in terms of the

displacement values and the initial curvature. The principle

of virtual work is then used to obtain the nonlinear

equilibrium equations, based on which, a finite element

beam formulation is developed.

The outline of this paper can be summarised as follows.

In Section 2, the kinematics of the curved beam and the

adopted rotation matrix are presented, followed by the

calculation of the curvature values of the deformed

configuration. The Stresses and cross-sectional stress

resultants are defined in Section 3 followed by the loading

conditions in Section 4. Principal of virtual work is used

in Section 5 to obtain the nonlinear equilibrium equations,

which are linearized to obtain the corresponding finite

element formulation. In Section 6, numerical examples

are performed. The accuracy of the proposed model is

verified through comparisons with test results from

literature and numerical results obtained from a full shell-

type finite element modelling of the curved beam. Section

7 provides a summary and conclusions for this study.

Further details of the derivation of the formulation are

presented in Appendices A to E.

2. Kinematics of the Problem

2.1. Basic assumptions

A schematic of a curved beam can be seen in Fig. 1,

where the undeformed and deformed configurations of

the curved beam are shown by dashed and solid lines,

respectively.

Formulation of the beam element is based on the

following assumptions:

• The current formulation is limited to beams that are

initially curved in a single plane.

• Since a beam formulation is developed, the cross-

section is assumed to remain rigid throughout the

deformation.

• The shear strains are considered to be negligible on

the mid-surface in line with Vlasov kinematics.

• Strains are assumed small and under the elastic

range, however the rotations and deflections are kept

up to the second order, and thus assumed moderate.

There are alternative strain and conjugate stress measures

in finite elasticity. In order to accurately relate the stresses

and strains, constitutive relations based on hyper-elasticity

have to be adopted. However, in case of small strains that

we assume, these relations can reduce to Hook’s law. On

the other hand, under this assumption, keeping the second

order terms according to different strain measures makes

difference in the results. In this paper, in line with de

Veubeke (1972), Pai & Palazotto (1995) and Pai et al.

(1998), we adopt Hook’s constitutive relation along with

the right extensional strain up to the second-order terms.

The comparison of the developed curved beam formulation

based on right extensional strain of the polar decomposition

with finite element shell solutions and test results verifies

the accuracy.
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2.2. Displacements

In order to incorporate large deformations of the curved

beam, we assign a fixed space and two sets of coordinate

systems for undeformed and deformed configurations of

the body. The fixed space axes OXYZ are formed by the

orthogonal basis provided by the triad P(PX, PY, PZ). In

order to demonstrate the undeformed configuration of the

curved beam, a body-attached oxys coordinate system is

adopted, the origin of which is placed at the centroid of

the cross-section. The axis os is tangent to the axis of the

beam, while the axes ox and oy lie in the plane of the

cross-section and pass through the principal axes. The

three components of the triad p(px, py, pz) form an

orthogonal basis of the system oxys in the direction of the

tangent of the axes ox, oy and os respectively as depicted

in Fig. 1. The deformed configuration of the curved beam

is shown by another set of axes o1x1y1s1, which form a

(Lagrangian) curvilinear coordinate system that changes

with the deformation of the member and coincides with

oxys in the undeformed state. Similar to the undeformed

coordinate system, the axis o1s1 lies in the direction

tangent to the axis of the deformed beam and the axes

o1x1 and o1y1 lie in the cross-sectional plane of the

deformed configuration. A triad q(qx, qy, qz) forms the

orthogonal basis for the latter system, the components of

which are in the tangent direction of o1x1, o1y1 and o1s1
respectively.

Based on the above definition, the position vectors of a

point P on the cross-section before and after the deformation

can be stated as

(1)

where r0 and r are the position vectors of the centroid o

before and after the deformation respectively in the fixed

axes OXYZ, ω(x, y) is the normalized section warping

displacement function and p(s) is the warping amplitude.

The position vector of the deformed centroid can be

obtained from the undeformed centroid and the displacement

components as (Fig. 1)

(2)

The orientation of the triad q is determined by the use

of a rotation tensor R multiplied by the triad p as

(3)

According to the orthogonality condition of the rotation

tensor, i.e. RTR=I, only six out of the nine components of

the rotation tensor are linearly independent. According to

the Euler-Rodriguez formula (Koiter 1984), the rotation

tensor can be calculated in terms of the rotation components

φ1, φ2 and φ3 around the axes OX, OY and OZ,

respectively, as

(4)

where δij is the Kronecker delta, εikj is the permutation

symbol and o(|φ |3) refers to terms higher than second

order. The indices 1, 2 and 3 indicate the x, y and s axes,

0 0

( , ) ( )

x y

x y x y p sω

= + +

= + + −

x y

x y s

a r p p

a r q q q

0 x y s
u v w= + + +r r p p p

=q Rp

( ) ( )31 1

2 2
1ij ij k k ikj k i jR oδ φ φ ε φ φ φ φ= − + + +

Figure 1. Schematic of the curved beam: Coordinate systems and displacements.
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respectively. According to the right hand rule sign

convention, the rotation components φi are related to the

derivatives of the displacement of the beam centroid as

(5)

For a beam curved in plan, =u '+κ0w where u, v and

w are displacement components along x, y and s

directions respectively, and κ0 is the initial curvature of

the curved beam’s centroidal locus about the Y axis . By

neglecting rotation terms higher that the second order, the

rotation matrix can be written as

(6)

in which f is the twist rotation of the cross-section, and

the symbol ( )' denotes the derivative with respect to the

S coordinate.

2.3. Curvature values at deformed configuration

In the deformed configuration, the curvatures in x and

y directions, i.e. kx and ky, and the twist can be obtained

by Frenet-Serret formulae (Love, 1944) using the afore-

mentioned rotation matrix (Appendix A) to be

(7)

(8)

(9)

where κ0 is the initial curvature of the curved beam’s

centroidal locus about the Y axis,  and ε

can be written as

(10)

2.4. Strains

Using the right extensional strain definition we have

(11)

where D is the deformation gradient tensor, R is the

rotation tensor, I is the identity matrix and U is the right

stretch tensor, i.e. U=I+ε. Pre-multiplying Eq. (11) by RT

we have

(12)

The strain can be obtained from Eq. (12) as

(13)

Matrix D is found by taking the gradient of the

deformation vector with respect to x, y and s coordinates.

The deformation can be defined as the difference between

the initial and final position vectors a0 and a.

(14)

Using the definitions of the position vector in Eq. (1),

the deformation gradient tensor in calculated in terms of

curvature components of the deformed configuration as

(15)

By performing the calculations (Appendix B), the normal strain can be written as

(16)

The shear strain is calculated to be
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(17)

(18)

On the other hand, from the assumption of negligible shear strain on the mid-surface, the only non-zero shear strain

is through the thickness t of the plate stiffness and can be approximated as

(19)

where r is the normal distance from the mid-surface of the thin-walled element. It can be seen that Eq. (19 is compatible

with Eqs. (17) and (18). Replacing  the shear strain will be equal to

(20)

It should be noted that 

and  were used, and in Eq. (16) ω is

approximated as the Vlasov warping function ω (Vlasov

1961), i.e. ω≈ω.

2.5. Variations of strains

The first variation of the normal and shear strain can be

written as

(21)

The matrix S in Eq. (21) contains geometrical

characteristics of the point and can be shown explicitly as

(22)

The non-zero elements of matrix B are presented in

Appendix C, and vector θ contains displacement

components of a point in the body as

(23)

N includes shape functions that are polynomial

functions of S and u is the nodal displacement vector

(Appendix E).

3. Stresses and Stress Resultants

In this study, linear-elastic material behaviour is

assumed. Correspondingly, the constitutive relations can

be of the form

(24)

where E and G are the Young’s modulus and the shear

modulus of the material, respectively. The stress

resultants vector can be written as

(25)

where N, Mx, B and T are the axial normal force, bending

moments about x and y axes, bimoment and the torque,

respectively, which are shown explicitly as

  

(26) (a-e)

 

The cross-sectional properties associated with the

above stress resultants are

  

(27) (a-d)

while the torsional constant associated with the torque

can be written as

(28)

where n is the number of plate sections in the cross-

section and bi and ti are the width and thickness of the i
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segment, respectively.
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The vector of the external loading is defined as
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in which Qx, Qy and Qs are the concentrated forces in the

X, Y and S directions, respectively, Mex and Mey are the

bending moments around X and Y axes, Mes is the

external torque and Be is the externally applied bimoment.

The distributed external load vector can be written in the

same fashion as

(30)

The components of q are the counterparts of concentrated

external loads of Eq. (29) distributed along the s-direction

throughout the member. The concentrated and distributed

loads are all applied at the centroid of the cross-section.

5. Principle of Virtual Work

5.1. Nonlinear equilibrium equations

According to the principle of virtual work, if a

kinematically admissible virtual strain is applied to a

structure in equilibrium, the sum of the work done by the

external forces due to the virtual strain is equal to the

work done internally by the stresses

(31)

where δU and δV are the variation of internal work and

the variation of work done by external forces, respectively.

The variation of the internal work can be written as

(32)

The virtual work done by the external loads can be

written as

(33)

By the virtue of Eq. (31) we have
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As the virtual displacement vector δu is arbitrary, the

equilibrium equation can be written as
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can be approximated with the second variation of the

potential as
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in Appendix D. The second terms of Eq. (36) can be

written as

(44)

and from the last term of Eq. (36),

(45)

By the virtue of Eqs. (36), (43), (44) and (45), the

incremental equilibrium equation can be expressed as

(46)

where δu is the incremental displacement vector and δF

is the incremental load, which is shown explicitly in Eq.

(47).

(47)

5.3. Finite element formulation

The nodal displacement vector used in the development

of finite element formulation can be written as

(48)

The displacement field functions are obtained using

cubic polynomials for u, v and φ, and a linear interpolation

function for w:

(49)

N1, N2, N3, and N4 in Eq. (49) are the Hermitian

polynomials

 

 (50)

M1 and M2 are linear interpolations

 (51)

where ξ =s/S and S is the span of the member.

The nonlinear set of equilibrium equations is solved

using a load-controlled Newton-Raphson incremental-

iterative scheme in a step-by-step manner based on the

derivations in Section 5.2. For this purpose, a residual

term is introduced as

(52)

The equilibrium conditions is deemed to be satisfied at

each incremental step n at the end of kth iteration if the

residual is smaller than a predefined value, i.e. 

< . In this study  is taken as 0.001% of the load

increment. 

It should be noted that by using a load-controlled

algorithm solution, the finite element model is not capable

of capturing a snap-through buckling behaviour. However,

such behaviour is unlikely for horizontally-curved beams

as the coupling between the bending and torsional

displacement components prevents a bifurcation type of

buckling (Pi & Trahair, 1997).

6. Verifications

The accuracy of the proposed model is verified in the

following numerical examples by providing comparisons

with results from the literature and a shell-type finite

element formulation.

The plate-bending component of the shell element is

developed by using Discrete Kirchhoff Quadrilateral

(Batoz & Tahar, 1982) that omits the shear deformation

effects to avoid shear locking in the analysis of thin

plates. The finite element developed by Ibrahimbegovic

et al. (1990) employing the drilling degree of freedom is

used for the membrane component of the shell element.

Using the Isoparametric formulation, a four-noded

quadrilateral is developed with 6 degrees of freedom per

node. The finite element is developed by adopting

standard linear interpolation function for the out-of-plane

displacement and Allman-type interpolation functions for

the in-plane deflections. The drilling degree of freedom is

interpolated using the standard bilinear functions

6.1. Simply-supported horizontally-curved beam

In the first example, simply-supported curved beams

tested by Shanmugam et al. (1995) are analysed using the

proposed beam element for verification purposes. The

beams were made of hot-rolled I-section and were

simply-supported spanning 5 meters, as shown in Fig. 2.

The loading consisted of a vertical load applied at a

distance of L1=3.8 m from the end of the beam, and cross-

sectional dimensions are depicted in Fig. 2(b).

The lateral, vertical and twist displacement were restrained

at both ends (i.e. uA=uB=vA=vB=φA=φB=0) while two

cases were introduced for lateral behaviour of the beam,

namely “F” and “SS”. The former indicates that the beam

is laterally fixed (i.e. u'=φ'=0) while the latter denotes that

only the above simply-supported boundary conditions are

applied. The beams were also laterally fixed at load

application point (i.e. uC=0). The dimensions, material

properties and boundary conditions of the analysed beams

are shown in Table 1.

Shanmugam et al. (1995) also performed a finite

0

,

S

T T

i qT
ds

δ
δ δ δ

⎛ ⎞∂ Π
= −⎜ ⎟

∂⎝ ⎠
∫q u N A q

q

1

.

n

T

i iT

i

δ
δ δ δ

=

∂ Π⎛ ⎞
= −⎜ ⎟∂⎝ ⎠
∑Q u Q

Q

0
t
δ δ− =K u F

0

.

S

T T

q
dsδ δ δ= + ∫F Q N A q

14 1 1 2 1 1 2 2 1 1 2 2 1 1 2 2

T

w w u u u u v v v v φ φ φ φ
×

′ ′ ′ ′ ′ ′=u

1 1 2 1 3 2 4 2
( ) ,u s N u N u N u N u′ ′= + + +

1 1 2 1 3 2 4 2
( ) ,v s N v N v N v N v′ ′= + + +

1 1 2 1 3 2 4 2
( ) ,s N N N Nφ φ φ φ φ′ ′= + + +

1 1 2 2
( ) ,w s M w M w= +

2 3

1
1 3 2 ,N ξ ξ= − + ( )2 3

2
2 ,N S ξ ξ ξ= − +

2 3

3
3 2 ,N ξ ξ= − ( )2 3

4
N S ξ ξ= − +

1
1 ,M ξ= −

2
,M ξ=
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δ δΔ = −R K u F
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element modelling of the tested beam using ABAQUS

(1985) curved shell elements, results of which are

presented in the following figures as well. The proposed

curved-beam element is used to model the behaviour of

the tested curved beams using 10 beams elements. The

results are then compared with the aforementioned

experimental and ABAQUS results.

The vertical-displacement profile along the length of

CB1 can be observed in Fig. 3 for three load levels.

It can be observed that the results of the proposed beam

element formulation are in good agreement with the

experimental and ABAQUS results. It should be noted

that the ABAQUS results were obtained by using

approximately 650 shell elements while in the current

study only 10 beam elements are used. In other words, the

number of degrees-of-freedom is reduced from around

4500 in the ABAQUS model to only 77 in the developed

beam formulation.

The load-displacement curves for the mid-span of five

CB beams can be seen in Fig. 4. Very close agreement

between the rest results and the results of the proposed

beam element can be confirmed. It should be noted that

since the material behaviour in the developed beam

element is assumed to be elastic, the elastic portion of the

test results is presented herein in order to make a comparison

possible.

The load-displacement at the location of the point load

P is drawn in Fig. 5 for CB5. Comparing the results with

the test data and ABAQUS results, the accuracy of the

proposed model can be confirmed.

6.2. Cantilever curved beam

A cantilever curved beam with I-shaped cross-section

is analysed in this section. The material is construction

steel, which has properties of E=200 GPa, ν =0.3, and is

assumed to behave elastically. The beam is subjected to

vertical point load of P=1000 N applied at the tip of the

Figure 2. Cross-section, loading and boundary conditions
of beams analysed in Example 1.

Figure 3. Displacement profile for CB1.

Table 1. Properties of the beams analysed in Example 1

Beam E (GPa) h (mm) b f (mm) tf (mm) tw (mm) R (m) θ
o Boundary

CB1 205.1

306.6 124.3 12.1 8.0

20 14.32 F/F

CB2 210.0 30 9.55 F/F

CB3 216.2 50 5.73 SS/F

CB4 206.7 75 3.82 SS/F

CB5 206.7 150 1.91 SS/F
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cantilever, perpendicular to the plane of curvature. A

schematic of the beam loading and boundary conditions

and cross-sectional properties can be seen in Figs. 6(a)

and 6(b), respectively. Cross-sectional dimensions are

b f =200 mm, h=400 mm and tf = tw =16 mm. The length

of the beam is chosen as L=5000 mm.

In order to demonstrate the accuracy of the present

model in the analysis of highly-curved beams, the load

factor versus vertical and lateral displacements are plotted

for beams with different curvature values (i.e. various

included angles) using the current curved-beam formulation,

results obtained from the formulation of Pi et al. (2005)

and the shell finite element. The beam model is formed

by using 10 elements of equal size while the shell model

is constructed by using two shell elements for the web

and one element for each half flange, and dividing the

axis of the beam into 25 pieces, which results in shell

elements of 200 mm×200 mm and 100 mm×200 mm along

Figure 4. Load versus vertical displacement of mid-span.

Figure 5. Load versus vertical displacement of load location for CB5.

Figure 6. Schematic of cross-section, loading and boundary
conditions for example 2.
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the web and flanges, respectively. All the nodes on the

fixed end of the shell element are fixed in three translational

directions, and the load is applied at the middle of the

web of the free end of the beam (Fig. 7).

Analysis is performed for beams with 3 values of

curvature, which are presented in Table 2 along with the

corresponding radii and included angle values, and the

displacements are plotted for point A (Fig. 6(a)) located

at 3/5th of the beam span from the support in order to

exclude the local effects of point-load application in the

shell analysis.

Load versus vertical displacement curves obtained

from the shell finite element, curved-beam finite element

of Pi et al. (2005) and the proposed curved-beam element

are compared in Fig. 8 for 3 values of curvature and

included angle. It can be observed that for small values of

included angle, all the figures match. However, the results

of the previous study diverges from shell results for larger

values of included angle per element while the curved

beam element developed herein is capable of capturing

the behaviour of the beam accurately.

The lateral displacement of Point A (Fig. 6(a)) for

highly curved beams B1 and B2 (Table 2) are shown in

Figs. 9 and 10.

It can be observed that the current formulation is

successful in capturing the nonlinear lateral displacement

of the curved beam as the results are matching well with

the result of the nonlinear shell finite element. It should

be noted that the developed finite element formulation is

shown to be capable of accurately capturing the nonlinear

behaviour of highly curved beam by utilising relatively

small number of element (e.g. for beam B3, the included

angle per element is 8.995 degrees). It can be observed

that the beam element has been able to capture the nonlinear

behaviour of the beam with a significantly smaller number

of degrees-of-freedom (77 instead of 1092). The total

Figure 7. Shell Finite element mesh, loading and boundary conditions.

Figure 8. Load vs. vertical displacement curves for beams B1, B2 and B3.

Table 2. Properties of the beams analysed in Example 2

Beam Curvature (1/mm) R (mm) θ
o

B1 1.00E-05 100000 2.86

B2 1.00E-04 10000 28.65

B3 3.14E-04 3184.7 89.95
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analysis CPU time for the beam and shell analyses are

2.283 seconds and 67.864 seconds, respectively, which is

equivalent to 3.393 seconds per load increment for the

shell model and 0.114 seconds per load increment for the

developed element. The abovementioned CPU time

values are calculated from Fortran compiler (Microsoft

Visual Studio 2008) on Intel® Core i5-2400 CPU@ 3.10

GHz.

It is illustrated in Figs. 9 and 10 that the results from

the curved beam formulation of Pi et al. (2005) converge

to the result of our beam formulation when the number of

elements along the beam are increased to 100.

7. Conclusions

An elastic curved-beam element is developed in this

study for nonlinear analysis of thin-walled curved-in-plan

members. The deformed configuration is obtained from

the initial state using the Frenet-Serret formulae and a

second-order rotation tensor. Right extensional strain

Figure 9. Load vs. lateral displacement curves for beam B2.

Figure 10. Load vs. lateral displacement curves for beam B3.
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definition is adopted to calculate the strain terms based on

the translations and rotations of the cross-section. The

principle of virtual work is then used to obtain a finite

element with seven degrees of freedom per node. It is

assumed that the beam is curved in only one plane, and

that the primary loading consists of out-of-plane loads.

The results based on the developed beam formulation

have been compared with experimental data and finite

element results from the literature. In all cases, the

accuracy of the proposed element is confirmed without

necessitating the use of a large number of finite elements.

It was also shown that the results of the developed

formulation are very accurate for the cases where initial

curvature is large.
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Appendix A

Eq. (3) can be used to obtain the deformed curvatures in terms of the initial curvature and displacement term.

Differentiating Eq. (3) with respect to s yields

(A.1)

where  and . We have (Pi et al., 2003)

 (A.2)

where K0 and K are curvature matrices in the undeformed and deformed configurations, respectively, which are defined

as

 (A.3)

where κ0 is the initial curvature of the beam and κx, κy and κs are the curvature values after the deformations around

x, y and s axes, respectively. It should be noted that it is assumed in the formulation that the initial curvature lies in one

plane only resulting in the other terms of the initial curvature matrix vanishing. ds* in Eq. (A.2) refers to the deformed

length of the beam segment, for which the relation ds*=(1+ε)ds holds, where ε is the normal strain at the centroid of

the beam along the beam axis and ds is the undeformed length of the beam segment. Using the above definitions, the

curvature matrix in the deformed configuration can be obtained as

(A.4)

If the elements of the rotation matrix R are nominated as the following

(A.5)

the deformed curvature values can be obtained from the elements of the rotation matrix as

(A.6)

(A.7)

(A.8)

where ( )' denotes derivative with respect to s. After performing the calculations and ignoring third and higher order

terms we obtain Eqs. (7)-(9) in terms of displacement components.
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Appendix B

The normal strain εp, which is the last diagonal term in strain matrix ε, is obtained as

 (B.1)

p(s) is the warping amplitude function. For warping torsion it is approximated to be equal to the twist rate (Basler &

Kollbrunner, 1969; Pi et al., 2005; Vlasov, 1961), which is the difference between the initial and final twist as

(B.2)

and since the initial twist is assumed to be zero in this study, the warping amplitude is assumed to be equal to the final

twist of the member (i.e. p(s)=κs). Consequently, the first term in Eq. (B.1) is calculated as

(B.3)

Similarly, the second term of Eq. (B.1) is equal to

(B.4)

The third term of Eq. (B.1) is re-written as

(B.5)

which is separated as

(B.6)

The elements of the first term of Eq.  are written explicitly as the following:

(B.7)

(B.8)

(B.9)

(B.10)

The second term of Eq. (B.6) is calculated to be

(B.11)

It should be noted that the third and higher order terms are neglected in the above calculations. Using Eqs. (B.3) to

(B.11), the normal strain can be written as

(B.12)
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Appendix C

Appendix D

where

(D.2)

(C.1)

(D.1)

2

11 0 0 0
,B w uκ κ κ′= − − + 1,10 0

1 ,B w uκ′= + −
23

1,B = −

3

26 02
3 ,B vφ κ′ ′= +

1

27 2
,B φ= − 2 ,10 0

,B κ= −

1
2 ,12 02

,B v κ φ′′= − + 3

2 ,13 2
,B v ′=

3 3

32 02 2
,B vφ κ′ ′= − −

1

33 2
,B φ=

23 3

36 0 02 2
,B u wκ κ′= − −

37
1,B = −

23 3

39 0 02 2
,B vκ φ κ′ ′= − − 1

3,10 02
,B κ φ=

1 1
3,12 0 02 2

,B u wκ κ′′ ′= + +

3 3

3,13 02 2
,B u wκ′= − − 1 1

42 02 2
,B v κ φ′′′ ′= −

1

43 02
,B κ φ= −

1

44 2
,B v′= −

1 1

46 02 2
,B u wκ′′′ ′′= − −

47 0
,B κ= −

1 1

48 02 2
,B u wκ′= +

21 1

49 0 02 2
,B vκ κ φ′′′ ′= −

21
4 ,10 02

,B κ φ= −

1
4 ,11 02

,B vκ ′= −
21 1

4,12 0 02 2
,B u wκ κ′′ ′= − −

21 1
4,13 0 02 2

,B u wκ κ′= − −

4 ,14
1,B = − 1 1

52 02 2
,B v κ φ′′= −

1

53 2
,B v′= −

1 1

56 0 02 2
,B u wκ κ′′ ′= − − −

1 1

57 02 2
,B u wκ′= +

21 1

59 0 02 2
,B vκ κ φ′′= − −

1
5,10 02

,B vκ ′= −
21 1

5 ,12 0 02 2
,B u wκ κ′= − − 5,13

1.B = −

2

11 0 1
,M Rκ= 1,10 0 1

,M Rκ=

3

26 0 32
,M Rκ= −

1

27 52
,M R=

1

28 42
,M R=

1
2 ,12 0 52

,M Rκ= −

3 1
2 ,13 3 0 42 2

,M R Rκ= − −

1

36 52
,M R= −

1 1
3,12 3 0 42 2

,M R Rκ= −

1

46 42
,M R= −

3

62 0 32
,M Rκ= −

1

63 52
,M R= −

1

64 42
,M R= −

66 0 2
3 ,M Rκ=

23

69 0 32
,M Rκ= −

1
6 ,10 0 52

,M Rκ= −
1

6 ,11 0 42
,M Rκ= −

3

6 ,13 22
,M R=

1

72 52
,M R=

1

79 0 52
,M Rκ=

1

7 ,12 22
,M R= −

1

82 42
,M R=

1

89 0 42
,M Rκ=

23

96 0 32
,M Rκ= −

1

97 0 52
,M Rκ=

1

98 0 42
,M Rκ=

21

9,12 0 52
,M Rκ= −

23 1

9,13 0 3 0 42 2
,M R Rκ κ= − −

10,1 0 1
,M Rκ= −

1

10 ,6 0 52
,M Rκ= −

10 ,10 1
,M R=

21 1

10 ,12 0 3 0 42 2
,M R Rκ κ= −

1

11,6 0 42
,M Rκ= −

1

12 ,2 0 52
,M Rκ= −

1 1

12 ,3 3 0 42 2
,M R Rκ= −

1

12 ,7 22
,M R= −

21
12,9 0 52

,M Rκ= −

21 1

12 ,10 0 3 0 42 2
,M R Rκ κ= −

12 ,12 0 2
,M Rκ=

3 1

13,2 3 0 42 2
,M R Rκ= − −

3

13,6 22
,M R=

23 1

13,9 0 3 0 42 2
,M R Rκ κ= − −

1 2 3 4 5

T

R R R R R=R
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