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Abstract Acid rain and acidification research are indeed a

multidisciplinary field. This field evolved from the first

attempts to mitigate acid freshwater in the 1920s, then

linking acid rain to the acidification in late 1950s, to the

broad project-concepts on cause and effect from the late

1960s. Three papers from 1974, 1976 and 1988

demonstrate a broad approach and comprise scientific

areas from analytical chemistry, biochemistry, limnology,

ecology, physiology and genetics. Few, if any,

environmental problems have led to a public awareness,

political decisions and binding limitations as the story of

acid rain. Acid precipitation and acidification problems still

exist, but at a lower pressure, and liming has been reduced

accordingly. However, the biological responses in the

process of recovery are slow and delayed. The need for

basic science, multidisciplinary studies, long time series of

high-quality data, is a legacy from the acid rain era, and

must form the platform for all future environmental

projects.
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Three papers in Ambio, Almer et al. (1974), Schofield

(1976) and Henriksen et al. (1988), represent a very

important ‘‘state of the art’’ at their time, focusing on the

huge environmental effect caused by long range trans-

ported air pollutants, called ‘‘acid rain’’. In Scandinavia,

acid water had been recognised as a problem for especially

Atlantic salmon (Salmo salar) and brown trout (Salmo

trutta) since the 1920s (Dahl 1927), and hatcheries had

locally installed limestone-filters to improve hatching

success. Researchers had first speculated that reduced fish

populations were caused by fish diseases or over-fishing,

until Dannevig (1959) claimed the acid precipitation to be

a major factor in causing the problems. However, the focus

set by Professor Svante Odén in Sweden in 1968 was

unique, leading to extensive investigations, documentation

of status and onset of national projects in Sweden, and later

in Norway (Grennfelt et al. 2020). The Almer et al. (1974)

paper contained high-quality chemical data from Swedish

lakes, sampled in a systematic way and linked to biological

data from many of the same lakes, including primary

producers (algae), invertebrates and fish. Observations of

increased clarity of lakes formed the hypothesis of ‘‘olig-

otrophication’’. Increased concentrations of several trace

elements like Pb and Zn were also described. This paper

was extremely important for the onset of similar projects

and programs in many countries suffering from acid rain. It

raised the international awareness to the top political level,

leading finally to the international agreements on reduc-

tions in sulphur (S), nitrogen (N), ozone, heavy metals and

Persistent Organic Pollutants (POPs).

The study of a major fishkill of brown trout in the

Norwegian River Tovdal during snowmelt in 1975, enabled

a first understanding of the physiological responses to these

episodic events of low pH and ionic dilution (Leivestad and

Muniz 1976). This article was central in the review paper

in Ambio by Schofield (1976), where he pointed to the

common phenomenon of increasing numbers of barren

lakes in Scandinavia, as in the eastern North America. He

also concluded that the youngest life stages, egg to larvae,

were the most sensitive, leading to reproduction failure and

lacking year-classes. Species and strain differences in

sensitivity to acid water were discussed, but because of the

rapid acidification of the environment, natural selection of

more tolerant strains or populations seemed not to have

occurred. The reference list reflects a huge ongoing
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research into the field, as many papers were termed ‘‘in

press’’ or ‘‘in preparation’’.

Indeed, this was the start of an era where field data and

laboratory studies were paralleled. Until 1977, the expla-

nation for the negative biological effects of acid water was

the low pH combined with low conductivity and calcium.

A breakthrough came in 1977, when a report from Scho-

field (1977) suggested that aluminium (Al) could be THE

key factor for the toxicity in acid water. Overnight, phys-

iological groups in many countries included Al in their

experiments. Another breaking news was the discovery of

the importance of the chemical speciation of the Al, sep-

arating organic bound Al, from the non-organic, termed

labile Al (LAl) or inorganic Al (Ali), and that the fresh-

water toxicity of Al was linked to LAl (Driscoll et al.

1980). New laboratory methods were developed to identify

these species (e.g. Driscoll 1984).

Liming of acid waters started as a test program

(1976–1981) in Sweden (Henrikson and Brodin 1995).

Large lakes with a retention time of several years were

their first target. When the Norwegian liming project

started, 1978–1984, the cooperation with Sweden was

strong, and has been like that ever since. The small sized

lakes with heavy rainfall and retention times in months in

Norway, called for other criteria and methods, including

liming of large rivers (Baalsrud et al. 1985). The Swedish

and Norwegian mitigation programs have been a great

success and became the fundament for liming programs in

both the USA and Canada.

In the early 1980s, there was a mass mortality of

Atlantic salmon in River Vikedal (Norway) in their smolt-

stage, prepared to migrate into seawater. This changed the

focus from eggs and juveniles, to smolts being the most

sensitive life history stage (Rosseland and Skogheim

1984). This meant that the water quality in rivers housing

Atlantic salmon had to be protective for smolts from early

spring until June, the period where smoltification and

migration occurs. Eight years later, the phenomenon of

‘‘Mixing Zones’’ was described (Rosseland et al. 1992). A

chemical inequilibrium zone formed downstream the

mixture of an acid stream and a neutral or limed river

resulted in Al polymerization and an initially extreme

toxicity. Such zones could kill year-classes of smolts while

migrating during spring floods. Liming all side tributaries

to avoid such zones increased the cost of liming rivers.

The problems associated with acidification called for

long-term monitoring, and national programs started in the

beginning of the 1980s. Lakes and rivers, not influenced by

liming, formed the basis for annual or periodic sampling of

water and biota. ICP Waters, ‘‘the International Coopera-

tive Program for Assessment and Monitoring of the Effects

of Air Pollution on Rivers and Lakes’’, started in 1984 and

included water chemistry and biota.

The Norwegian 1000-lake study by Henriksen et al.

(1988) was launched at a time when large databases from

Norwegian lakes existed (i.e. Wright and Snekvik 1977),

and where the scientific understanding of the relations

between chemical elements and their biological effects was

greatly improved, relative to the 1970s, and where politi-

cians had agreed and started to reduce emissions. The study

of Henriksen et al. (1988) included up-to-date chemistry

data and a lake selection, similar to that in Almer et al.

(1974) paper. Unlike lakes in Sweden and northeastern

America, the Norwegian lakes had low TOC (Total

Organic Carbon) and low conductivity waters with few

species of fish, mainly brown trout and Arctic charr

(Salvelinus alpinus). The lakes selected included reference

lakes and covered the whole country. Besides water sam-

pling in autumn, great effort was put into information of

fish status from the same lakes, which resulted in a second

paper in Ambio one year later (Henriksen et al. 1989).

These two papers, where chemical data were directly

linked to fish status, gave a basis for the application of a

series of models like MAGIC (Model of Acidification of

Groundwater in Catchments, Cosby et al. 1985) for the

prediction of past and future environmental changes caused

by acid rain. The monitoring program in Norway chose 100

lakes from these studies, to be followed at regular sampling

intervals. Problems occurred, however, as some lakes

became influenced by upstream liming or other catchment

changes. True references over time are difficult to

maintain.

All three papers (Almer et al 1974; Schofield 1976;

Henriksen et al. 1988) reflect an environmental status from

a time of high S and N deposition, in catchments still in the

process of acidification. In the 1970s, before the interna-

tional acceptance and agreement on reductions in emis-

sions, we were not fully aware of the large time lag

between change in precipitation chemistry, catchment

reactions, water chemistry change and biological respon-

ses. Results from test fishing had revealed reproduction

failure nearly 20 years previously to sampling (Rosseland

et al. 1980). This illustrates that fish status cannot be reli-

ably predicted from present lake chemistry. Prognoses of

biological recovery, as depositions became reduced, had

therefore to be corrected, as the recovery followed a pattern

of hysteresis. Models for restoring a population of Atlantic

salmon, ASRAM (‘‘Atlantic Salmon Regional Acidifica-

tion Model») Korman et al. (1994) forecasted 12–15 years

of recovery, given no episodes of critical water quality for

the most sensitive life stage. One critical episode could,

however, delay Atlantic salmon recovery by another

10–15 years, a recovery delay also found for brown trout

by the FIB-model (Raddum and Rosseland 2005). Recov-

ery of fish was consistently associated with increasing pH,

reduced Al, increased TOC (Keller et al. 2019), but also a
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decreased Ca concentration (Jeziorski et al. 2008). As Ca is

a physiological important protective ion for aquatic

organisms, this could slow down the biological recovery,

partly explaining why fish and invertebrate populations

struggled, despite ‘‘good’’ and improved water quality.

Today’s practice with downscaling of liming in accordance

with the reduced emissions will therefore depend on

careful monitoring of the biological communities and their

most sensitive species and life history stages for evaluation

if end of liming was correct (Anderson et al. 2002).

More developed genetic and physiological methods and

chemical speciation tools have enabled a deeper under-

standing of species-, strain- and life history stage sensi-

tivities. The extreme sensitivity towards Al for Atlantic

Fig. 1 This figure, modified from Hesthagen et al. (2011), was used in the report by Maas and Grennfelt (2016) to illustrate recovery from

acidification at Lake Saudlandsvatn, Southern Norway. As sulphur deposition has decreased, so the acid neutralising capacity (ANC) and pH of

the lake water have increased, and the populations of the three sensitive species have begun the process of recovery. The figure looks very

promising, also for brown trout, but the increase in catch from 1994 and onwards was mainly by young fish. Lacking adult post-spawners

indicates marginal chemical conditions to a sensitive life history stage
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salmon smolts prior to sea migration (Kroglund et al. 2008)

is caused by the formation of the ‘‘supersensitive seawater

isoform’’ of Na–K–ATPase (Nilsen et al. 2010), the major

ion-regulatory enzymes in gills. Experiences from Al tox-

icity studies are now a model for testing of other metals,

radioactive substances and organic substances in fresh or

marine waters.

The scientific era of acidification, starting in the early

1970s and represented by the three papers I reflect on here,

forms the basis of many environmental programs until

today. Long time series of data (chemistry or biota) based

on international protocols, and permanent sites with mini-

mum disturbances, are mandatory for any modelling and

forecasting of environmental or climate change. Huge

international research programs and manipulation studies,

many partly financed by the EU, have studied catchment

responses to increased or decreased occurrence of, e.g. S,

N, TOC and CO2, as well as changing temperature. The

development of techniques of detoxifying acid water

through lime, silica lye, use of seawater, etc., have been an

extremely important factor for the success of Atlantic sal-

mon smolt production worldwide. In 2017, 15% of the wild

Atlantic salmon caught by anglers in Norway was in limed

rivers.

Data from one of the longest running chemical and

biological data series (Lake Saudlandsvatn, Hesthagen

et al. 2011, Fig. 1) were used to illustrate positive changes

in European environments (Maas and Grennfelt 2016) and

demonstrated a process of recovery from acidification in

biota. However, the figure does not show the lack of older

age classes in brown trout, dying after spawning, as a result

of still marginal chemical conditions for this sensitive life

history stage.

In 2019, a ‘‘new’’ 1000-lake study was performed in

Norway. The legacy from the acidification research will

forever be a ‘‘lesson to be learnt’’ for future environmental

science programs, and reference for modelling of our future

environment.
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