
TERRESTRIAL BIODIVERSITY IN A RAPIDLY CHANGING ARCTIC

Status and trends in Arctic vegetation: Evidence
from experimental warming and long-term monitoring

Anne D. Bjorkman , Mariana Garcı́a Criado, Isla H. Myers-Smith,
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Abstract Changes in Arctic vegetation can have important

implications for trophic interactions and ecosystem

functioning leading to climate feedbacks. Plot-based

vegetation surveys provide detailed insight into

vegetation changes at sites around the Arctic and

improve our ability to predict the impacts of

environmental change on tundra ecosystems. Here, we

review studies of changes in plant community composition

and phenology from both long-term monitoring and

warming experiments in Arctic environments. We find

that Arctic plant communities and species are generally

sensitive to warming, but trends over a period of time are

heterogeneous and complex and do not always mirror

expectations based on responses to experimental

manipulations. Our findings highlight the need for more

geographically widespread, integrated, and comprehensive

monitoring efforts that can better resolve the interacting

effects of warming and other local and regional ecological

factors.
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INTRODUCTION

A major goal of global change ecology is to document and

predict the impacts of environmental change on species,

communities, and ecosystems worldwide. In the Arctic,

exceptionally rapid warming (IPCC 2013) has the potential

to lead to dramatic changes in vegetation through longer

growing seasons, increased thaw depth, and altered snow

regimes. High latitudes contain up to 50% of the world’s

soil carbon stored in permafrost soils; this carbon is vul-

nerable to loss with warming (Schuur et al. 2015; Crowther

et al. 2016; van Gestel et al. 2018). Thus, changes in

vegetation carbon and nutrient inputs to tundra soils could

have potentially global impacts. For example, shifts in

species composition could lead to changes in aboveground

carbon storage, nutrient cycling, decomposition rates, and

albedo (Callaghan et al. 2004), potentially leading to global

climate-based feedbacks (Chapin et al. 2005; Pearson et al.

2013). Changing vegetation could also alter trophic inter-

actions (Post et al. 2009; Gauthier et al. 2013) and thus

influence Arctic wildlife populations and the human com-

munities that rely on them for resource provision or cul-

tural purposes (Weller et al. 2004; Henry et al. 2012; Stern

and Gaden 2015).

A key source of information about the consequences of

climate warming for Arctic vegetation comes from plot-

based research at sites across the Arctic (Henry and Molau

1997). This includes both long-term monitoring of species

composition, diversity, and phenology over time (up to

four decades), as well as experimental manipulation of key

abiotic and biotic drivers (e.g., temperature, snow, nutri-

ents, grazing). Community composition, diversity, and

phenology have all been identified as ‘‘Focal Ecosystem

Components’’ (FECs) by the international Circumpolar

Biodiversity Monitoring Programme (Christensen et al.

2013), as monitoring of these attributes facilitates a more

rapid detection, communication, and response to significant

biodiversity-related trends and pressures affecting the cir-

cumpolar world. In addition, comparing the results of

observed trends over time with experimental studies can

help to elucidate the drivers of observed trends and inform

predictions of future change (Elmendorf et al. 2015).
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Here, we synthesize what is currently known about plot-

based changes in vegetation composition (abundance),

phenology, diversity, and functional traits. We compiled

information from single-site studies of compositional and

phenological changes to document (1) the direction and

significance of change over time, and (2) the direction and

significance of responses to experimental warming. We

compare these results to published syntheses of long-term

monitoring and experimental warming. We additionally

review studies of plot-based changes in plant functional

traits and diversity, for which published observations are

relatively scarce. Finally, we discuss the broader implica-

tions of observed and predicted Arctic vegetation changes

and recommend priorities for future monitoring efforts.

MATERIALS AND METHODS

Literature review of vegetation trends

We conducted a literature review to identify single-site

studies of changes in plant community composition

(abundance) and phenology both over time and in response

to experimental warming. Our search included combina-

tions of the terms ‘‘tundra,’’ ‘‘arctic,’’ ‘‘vegetation,’’ ‘‘plot,’’

‘‘change,’’ ‘‘ITEX,’’ ‘‘cover,’’ ‘‘abundance,’’ ‘‘phenology,’’

‘‘diversity,’’ ‘‘functional trait,’’ ‘‘warming,’’ and ‘‘experi-

ment’’. These terms encompass two FECs included in the

Circumpolar Biodiversity Monitoring Program terrestrial

monitoring plan: (i) diversity, composition, and abundance

and (ii) phenology. We do not include the attributes ‘‘di-

versity and spatial structure,’’ ‘‘productivity,’’ ‘‘Rare spe-

cies, species of concern,’’ or ‘‘food species’’ in this review

due to a paucity of published plot-based monitoring and/or

experimental studies on these topics.

We included only studies at sites above 63�N and

identified as ‘‘Arctic’’ or ‘‘tundra’’ by the authors. This

latitudinal cutoff includes some sub-Arctic sites but is

roughly comparable to areas included in the Arctic Biodi-

versity Assessment (CAFF 2013). For community com-

position/abundance, we included measured responses in

any variables called abundance, biomass, or percent cover.

We included studies that analyzed changes in abundance at

both the species and functional group levels. For studies

where abundance trends were identified at the species level,

we included all species but grouped them by functional

group for visualization purposes. All phenological

responses were provided at the species level.

For phenological studies, we recorded all phenostages

provided by the authors, but here we report only the most

commonly observed phenostages: leaf emergence, flower-

ing, and leaf senescence. Leaf emergence is the day at

which leaf bud-break first occurs or the first day on which

overwintered leaves re-green. Flowering encompasses

several phases related to the timing of flowering, including

inflorescence elongation, first open flower, onset of pollen

release, and peak flowering. Leaf senescence is the date on

which leaves change color or die, indicating the end of the

growing season for most plants. Studies reporting respon-

ses of diversity and/or functional traits were scarce; thus,

we review the available information but do not attempt to

categorize and quantitate these responses.

For all studies, we recorded the direction (increase/

stable/decrease for abundance change, or earlier/stable/

later for phenological change) and significance (yes/no) of

responses for all species and functional groups identified. A

response could be recorded as directional (increase/de-

crease or earlier/later) and nonsignificant if the authors

identified it as such, or if the p value provided was between

0.05 and 0.1. We adopted this approach in order to stan-

dardize a levels across all studies (e.g., if some studies used

an a level cutoff of 0.05 to assess significance, while others

used an a level of 0.1). If a response was identified by the

authors as directional but no indication of significance was

given (either in the text or in a figure/table), the response

was categorized as nonsignificant. The difference between

significant and nonsignificant directional changes is shown

in the figures and provided in the supplementary data table.

We used this ‘‘vote-counting’’ approach, rather than a

traditional meta-analysis, in order to include the many

studies that do not provide response effect sizes or esti-

mates of error. In addition, this approach allows us to

visualize the full distribution of vegetation responses to

ambient and experimental warming, as a meta-analysis

finding of ‘‘no change’’ could in fact be made up of mul-

tiple significant changes in different directions (e.g., con-

text dependency).

Experimental warming was generally conducted through

the use of clear-sided, open-top chambers that passively

warm air temperatures by * 1.5–3 �C, with most of the

studies following International Tundra Experiment (ITEX)

protocols (Molau and Mølgaard 1996; Marion et al. 1997),

though some experiments used greenhouses or other

warming methods (Chapin and Shaver 1996; Wang et al.

2017). The seasonal duration of warming also varies by

study; some warming chambers were in place only during

the summer, while others were present year-round. Both

warming chambers and greenhouses can influence envi-

ronmental factors other than temperature (e.g., soil mois-

ture, wind, snow accumulation), though the magnitude and

significance of these effects are variable among sites

(Marion et al. 1997).
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Comparison to tundra-wide syntheses

In order to evaluate the consistency of patterns revealed by

the literature review, we compared the results of our review

with tundra-wide syntheses of compositional and pheno-

logical changes (Arft et al. 1999; Walker et al. 2006;

Elmendorf et al. 2012a, b; Oberbauer et al. 2013), both

over time and in response to experimental warming. These

syntheses used primary data and were not based on pub-

lished studies, though some data included in the syntheses

may be from the same sites as the single-site studies

included in our literature review. However, the synthesis

and single-site studies likely include different combina-

tions of sites and years, and use different statistical meth-

ods to analyze responses. In addition, many of the synthesis

studies included both Arctic and alpine tundra sites, while

Fig. 1 Map of plot-based vegetation change studies identified in a review of the literature. Blue points designate studies of community

composition (abundance) change, while orange points designate studies of phenological change. Filled circles denote long-term monitoring

studies (change over time) while open circles indicate experimental studies (responses to experimental warming)
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ó
tt
ir
et

al
.
(2
0
0
5
)

T
h
in
g
v
el
li
r,
Ic
el
an
d

6
4
.2
8

-
2
1
.0
8

5
x

Jo
rg
en
so
n
et

al
.
(2
0
1
5
)

A
rc
ti
c
N
at
io
n
al

W
il
d
li
fe

R
ef
u
g
e,

A
la
sk
a

6
9
.8

-
1
4
4
.2
5

2
6

x

M
ar
ch
an
d
et

al
.
(2
0
0
4
)

Z
ac
k
en
b
er
g
,
G
re
en
la
n
d

7
4
.2
8

-
2
0
.3
4

1
x

M
o
la
u
(2
0
1
0
)

L
at
n
ja
ja
u
re
,
L
ap
la
n
d
,
S
w
ed
en

6
8
.3
5

1
8
.5

1
2

x

M
y
er
s-
S
m
it
h
et

al
.
(2
0
1
1
b
)

Q
ik
iq
ta
ru
k
-H

er
sc
h
el

Is
la
n
d
,
Y
u
k
o
n

6
9
.5
7

-
1
3
8
.9
1

1
1

x

M
y
er
s-
S
m
it
h
et

al
.
(2
0
1
9
)

Q
ik
iq
ta
ru
k
-H

er
sh
el

Is
la
n
d
,
Y
u
k
o
n
,
C
an
ad
a

6
9
.5
7

-
1
3
8
.9
1

1
6
–
1
9

x
x

N
at
al
i
et

al
.
(2
0
1
2
)

E
ig
h
t
M
il
e
L
ak
e,

A
la
sk
a,

U
S
A

6
3
.5
2

-
1
4
9
.1
3

2
x

x

P
at
ti
so
n
et

al
.
(2
0
1
5
)

A
rc
ti
c
N
at
io
n
al

W
il
d
li
fe

R
ef
u
g
e,

A
la
sk
a

6
9
.8

-
1
4
4
.2
5

2
6

x

P
o
st

an
d
P
ed
er
se
n
(2
0
0
8
)

K
an
g
er
lu
ss
u
aq
,
G
re
en
la
n
d

6
7
.6

-
5
0
.2

2
x

R
ic
h
ar
d
so
n
et

al
.
(2
0
0
2
)

A
b
is
k
o
V
al
le
y
,
S
w
ed
en

6
8

1
9

9
x

� Royal Swedish Academy of Sciences 2019

www.kva.se/en 123

Ambio 2020, 49:678–692 681



here we focused exclusively on Arctic and sub-Arctic

locations. Thus, evidence that synthesis studies found

trends consistent with those documented in this literature

review can help evaluate the robustness of observed pat-

terns in Arctic vegetation change.

RESULTS

We identified a total of 560 vegetation composition/

abundance observations (species or functional group) from

19 studies of long-term monitoring and 209 observations

from 14 studies of responses to experimental warming

(Fig. 1; Table 1). The duration of monitoring studies ran-

ged from 5 to 43 years, with a median duration of 19 years.

We additionally identified long-term monitoring of phe-

nology for 17 species in three studies and responses to

experimental warming of 52 species from 9 studies (Fig. 1;

Table 1). Phenological monitoring studies ranged from 9 to

21 years in duration, with a median duration of 16 years.

Our literature review reveals geographic gaps in both

long-term monitoring and experimental warming studies.

The FEC (Christensen et al. 2013) encompassing compo-

sition and abundance is better represented than that

encompassing phenology, but both lack published records

of change from Siberia and wide swaths of the Canadian

Arctic. Intensive, multivariate monitoring is concentrated

primarily in Alaska and Scandinavia, with the exception of

one site in high-Arctic Canada (Muc et al. 1989; Freedman

and Svoboda 1994; Hudson and Henry 2009; Hill and

Henry 2011; Bjorkman et al. 2015).

Change in the composition of vegetation

In all cases, the most common response documented by

long-term monitoring of compositional change was one of

no trend (52–84% of trends did not differ from zero,

depending on the significance cutoff used; Fig. 2). This is

likely an underestimate of the proportion of no-change

responses, as some studies reported results only for species

that changed significantly over time (e.g., Tømmervik et al.

2004). Forbs, graminoids, and both evergreen and decid-

uous shrubs were slightly more likely to increase in

abundance over time than decrease, but were most likely to

remain stable. Experimental warming led to more dramatic

responses, particularly in lichens, which were far more

likely to decrease in abundance in response to experi-

mental warming (46–63%) than to increase (0%) or remain

stable (37%). Bryophytes also had a tendency to respond

negatively to experimental warming, while evergreen and

deciduous shrubs were more likely to respond positively.

Few studies included both above- and belowground

measurements; of those that did, above- and belowgroundT
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responses were not always consistent. Aboveground

responses to experimental warming in northern Alaska

were greater than belowground responses (Chapin and

Shaver 1996), but belowground biomass increased more

than aboveground biomass over 30 years of monitoring at

Alexandra Fiord, Ellesmere Island (Hill and Henry 2011).

At Daring Lake, Canada, experimental warming enhanced

both above- and belowground biomass in evergreen shrubs,

but only aboveground biomass in deciduous shrubs (Zamin

et al. 2014).

These responses are largely in line with those revealed

in tundra-wide syntheses of vegetation change at the

functional group level. In a recent 30-year study of vege-

tation change across 46 Arctic, alpine, and Antarctic tundra

locations (Elmendorf et al. 2012b), only evergreen shrubs

(but not deciduous) increased significantly over time.

Bryophytes were more likely to decrease than increase, but

the response was not significant. Similar to results from our

literature review, responses to experimental warming were

more dramatic. Deciduous but not evergreen shrubs

increased significantly in abundance in response to

Fig. 2 Summary of studies investigating abundance change over time (a) and abundance change in response to experimental warming (b) by
species or functional group. Panels represent, from left to right, the proportion of observations decreasing in abundance, stable, or increasing in

abundance over time (median 20.5 years) or in response to experimental warming. Species-specific trends were grouped into the relevant

functional group category. The darker portions of each bar represent ‘‘significant’’ (p\ 0.05) change (decrease or increase) or insignificant

(stable, p[ 0.1) results, while lighter colors represent borderline or marginally significant change (e.g., p-values between 0.05 and 0.1). The

numbers above each bar represent a count of the number of observations included in that group. The proportion of ‘‘stable’’ species is

underrepresented in this figure, as some studies only reported results for species that changed in abundance
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experimental warming, while both lichens and bryophytes

decreased significantly (Elmendorf et al. 2012a). In both

monitoring and experimental synthesis studies, the quantity

of dead material (litter and attached dead) increased over

time or with warming (Elmendorf et al. 2012a, b).

Phenological change

In general, the timing of leaf emergence and flowering

advanced both over time and with experimental warming,

though a minority of species experienced stable or even

delayed flowering over time (Fig. 3). Interestingly, exper-

imental warming led to later leaf senescence in all cases,

while the one study that documents long-term trends in leaf

senescence (Myers-Smith et al. 2019) found a nonsignifi-

cant trend toward earlier leaf senescence over 16 years of

monitoring.

In a 17-year synthesis of phenological trends at 12

tundra sites (including 2 alpine locations), there was no

significant change in the timing of flowering or leaf

Fig. 3 Summary of studies investigating phenological change over time (a) and in response to experimental warming (b). Panels represent, from
left to right, the proportion of observations that advanced (‘‘earlier’’) in a given phenological stage, remained stable, or were delayed (‘‘later’’)

over time or in response to experimental warming. All observations represent species-specific responses. The darker portions of each bar

represent ‘‘significant’’ (p\ 0.05) change (decrease or increase) or insignificant (stable, p[ 0.1) results, while lighter colors represent borderline

or marginally significant change (e.g., p-values between 0.05 and 0.1). The numbers above each bar represent a count of the number of

observations included in that group
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senescence, though both events tended to advance over

time (Oberbauer et al. 2013), as we also found in the lit-

erature review. Surprisingly, this same synthesis study

found that leaf emergence was significantly delayed over

time despite increasing temperatures over the same period.

In a separate synthesis of responses to experimental

warming at 10 Arctic sites, leaf emergence and flowering

both occurred significantly earlier when warmed, but

senescence was not affected (Arft et al. 1999). This is also

in agreement with our literature review, where most sites

reported no difference in leaf senescence or a slight delay.

DISCUSSION

Studies of plot-based vegetation change reveal that while

some sites and species or functional groups have experi-

enced substantial shifts in vegetation and phenology in

response to ambient or experimental warming, the most

common response overall is one of no change. Further-

more, vegetation changes over time did not always match

responses to experimental warming. There is one pattern

that emerges: both long-term monitoring and experimental

studies suggest that the graminoid and shrub functional

groups respond positively to warming and are slightly more

likely to increase in abundance over time. This is in line

with studies of shrub infilling and expansion across much

of the tundra (Sturm et al. 2001; Myers-Smith et al. 2011a;

Martin et al. 2017). Even so, the majority of graminoid and

shrub abundance responses in our literature review were

that of no significant trend over time and no significant

response to experimental warming. Further exploration of

these trends reveals that increasing shrub abundance pri-

marily occurs in relatively warm tundra regions with mesic

or wet soils, while colder and dry tundra sites have not

experienced increasing shrub abundance (Elmendorf et al.

2012b) consistent with patterns in the climate sensitivity of

shrub growth (Myers-Smith et al. 2015). Grazing may also

influence shrub responses to summer temperature change

(Bråthen et al. 2017). The lack of strong trends over time in

many sites and for many species suggests that tundra plant

communities are remarkably resilient to moderate warm-

ing, at least over decadal time spans, and that site-specific

factors such as moisture availability and grazing may limit

vegetation responses to warming (Elmendorf et al. 2012b;

Myers-Smith et al. 2015; Ackerman et al. 2017).

Differing responses to experimental and ambient (nat-

ural) warming highlight both the benefits and the chal-

lenges of using experimental approaches to understand

tundra vegetation responses to climatic change. When

experimental and monitoring results agree, experimental

studies enable us to pinpoint the likely drivers of change

over time (Elmendorf et al. 2015), and improve our

confidence in predictions of the impacts of warming on

vegetation (e.g., increasing shrub abundance). Diverging

responses can challenge our understanding of tundra veg-

etation change. For example, while experimental warming

led to fairly dramatic declines in lichen abundance (Walker

et al. 2006; Elmendorf et al. 2012a and this study), lichen

abundance did not decline over time in long-term moni-

toring studies (Elmendorf et al. 2012b and this study).

Similarly, while experimental warming generally led to

later leaf senescence (Arft et al. 1999 and this study),

monitoring studies indicate that senescence is in fact

advancing over time, though not significantly (Oberbauer

et al. 2013 and this study). Trends in the timing of flow-

ering and leaf emergence are also varied despite a rela-

tively consistent advance in these variables in response to

experimental warming.

The reasons underlying these heterogeneous and con-

trasting trends are not entirely clear, but may have to do

with interactions among environmental drivers that are not

captured by experimental isolation of a single driver. For

example, lichens are sensitive to soil moisture, and may be

responding to changes in precipitation, hydrology, or snow

regimes over time rather than temperature trends alone

(Björk and Molau 2007). Similarly, phenological advance

with warming temperatures (Høye et al. 2007) may be

limited by concurrent changes in winter snowfall (Bjork-

man et al. 2015) and snowmelt date (Cooper et al. 2011). In

addition, growing season phenology might be controlled by

deterministic leaf age (Starr et al. 2000) or adaptation to

photoperiod (Kummerow 1992; Bjorkman et al. 2017) in

many Arctic species, thus limiting the impact of tempera-

ture change alone. Phenological responses to different

drivers may interact or be nonlinear, leading to more

complex responses than can be easily detected from simple

experiments or ecological monitoring studies (Iler et al.

2013). Finally, experimental warming chambers can alter

conditions other than temperature alone (Marion et al.

1997), and vegetation could be responding to these

unwanted environmental side-effects.

Improved monitoring of multiple environmental drivers

and experimental studies that manipulate several variables

simultaneously (e.g., snow depth, moisture availability)

could help to elucidate the importance of these interactions.

Multisite syntheses can also help to clarify the context

dependency of trends over time. For example, additional

syntheses of tundra plant phenology have shown that a

plant’s sensitivity to temperature varies by the temperature

of the site (greater sensitivity at colder sites, Prevéy et al.

2017) as well as the phenological niche of the species

(greater sensitivity in late-flowering species, Prevéy et al.

2019).
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Other vegetation trends: functional traits

and diversity

While trends in composition and phenology are perhaps the

most studied plot-based responses to global change, a

handful of studies document changes in other vegetation

parameters. Of these, increasing height is likely the most

well-documented. Increases in community height have

been documented by synthesis studies of responses to

experimental warming (Elmendorf et al. 2012a) and over

time (Bjorkman et al. 2018), a change driven primarily by

the influx of taller species into the monitoring plots

(Bjorkman et al. 2018). Some single-site studies have also

documented increasing height over time (Hollister et al.

2015) and in response to experimental warming (Hudson

et al. 2011; Hollister et al. 2015; Baruah et al. 2017).

Changes in other plant traits have also been documented.

Experimental warming at Alexandra Fiord in High Arctic

Canada resulted in greater leaf size, lower specific leaf area

(the ratio of leaf area to leaf dry mass), and decreased leaf

carbon content for at least some species-site combinations

(Hudson et al. 2011) but did not affect leaf nitrogen

(N) content, leaf dry matter content, or nitrogen isotope

signatures. Other studies have documented mixed respon-

ses of leaf size to experimental warming in the Swedish

sub-Arctic tundra (Graglia et al. 1997; Baruah et al. 2017)

and one study found trends toward reduced leaf size over

time (Barrett et al. 2015). Additional studies of leaf N

content responses to experimental warming are also mixed;

leaf N content increased in response to winter but not

summer warming across six species at Eight Mile Lake,

Alaska (Natali et al. 2012) but was either unaffected by

temperature or declined in response to warming at Toolik

Lake, Alaska (Chapin and Shaver 1996) and Alexandra

Fiord, Canada (Tolvanen and Henry 2001). A synthesis of

community-weighted mean functional trait change across

the tundra biome (including alpine sites) over 27 years

found no significant change in leaf area, leaf N content, leaf

dry matter content, or specific leaf area (Bjorkman et al.

2018). Overall, species composition has shifted toward

more thermophilic (warm-loving) species both over time

and in response to experimental warming (Elmendorf et al.

2015).

Over the long term, climatic warming may lead to

increased diversity in the Arctic as southern, species-rich

floras move northward (Parmesan 2006). However, short-

term responses to warming might differ substantially from

long-term trends, as immigration is likely to be slow rel-

ative to local assembly processes (e.g., competition;

Walker et al. 2006). Thus far, evidence of plot-scale

diversity change in Arctic ecosystems is mixed. A multisite

synthesis found a significant decline in both Shannon

diversity and species richness after 3 to 6 years of

experimental warming (Walker et al. 2006), but a more

recent, longer-term synthesis found no response (Elmen-

dorf et al. 2012a). Lichen diversity was found to decline

significantly in response to long-term experimental warm-

ing at three sites in northern Sweden and Alaska (Lang

et al. 2012). Among monitoring studies, a recent synthesis

found no change in vascular plant diversity over three

decades of monitoring across dozens of tundra sites (El-

mendorf et al. 2012b). This is in stark contrast to ongoing

changes in European mountaintop plant communities,

which have experienced rapid and accelerating increases in

richness over the past century (Steinbauer et al. 2018). The

difference between Arctic and alpine responses could

indicate that diversity change in nonalpine tundra com-

munities is limited by dispersal rates of southerly, warm-

adapted species, or that strong gradients in environmental

variables other than temperature (e.g., photoperiod) across

latitudes limit the establishment success of warm-adapted

species from farther south (Bjorkman et al. 2017).

Consequences of Arctic vegetation change

Changes in tundra vegetation could have far-reaching

impacts across trophic levels and to human societies

(Weller et al. 2004). Shifts in plant phenology and repro-

ductive success influence individual- and population-level

fitness (Berteaux et al. 2004; Cleland et al. 2012) and could

lead to trophic mismatches of resources for pollinators

(Høye et al. 2013; Wheeler et al. 2015; Prevéy et al. 2019),

breeding birds (McKinnon et al. 2012; Gauthier et al. 2013;

Boelman et al. 2015) and mammals (Hertel et al. 2017).

For example, one long-term study at Zackenberg, Green-

land documented a shortening of the flowering season with

climatic warming over time and a concurrent decline in the

abundance of insect visits to flowers (Høye et al. 2013).

Berry-producing (Hertel et al. 2017) and other tundra

plants provide forage for hunted or domestic wildlife (Post

and Stenseth 1999; Kerby and Post 2013) and represent

culturally important resources for Arctic peoples (Henry

et al. 2012).

The nearly ubiquitous shifts in phenology in response to

experimental warming (Arft et al. 1999 and this study)

suggest that many Arctic plant species are inherently sen-

sitive to interannual variations in temperature, though

concurrent changes in other environmental variables (e.g.,

precipitation, cloudiness) might limit the degree of advance

over time with warming. A meta-analysis of phenological

responses to experimental warming in temperate and alpine

regions found that the temperature sensitivity of a species’

phenology correlates with better growth and/or reproduc-

tive performance (Cleland et al. 2012), but it is not known

if this pattern holds true in the Arctic. A synthesis of

responses to 4 years of experimental warming at 10 Arctic
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sites revealed increased reproductive effort (e.g., number of

flowers produced) and success (e.g., number of seeds/fruits

produced or seed mass) in experimentally warmed plots,

though responses were generally not significant (Arft et al.

1999). Single-site studies have also found evidence of

increased reproductive effort in experimentally warmed

plots (Welker et al. 1997; Klady et al. 2011). Contrasting

responses have been documented for seed germination

rates, which increased with experimental warming at

Alexandra Fiord, Canada (Klady et al. 2011) but not at

Toolik Lake, Alaska (Welker et al. 1997).

Due to the large amount of carbon stored in tundra

permafrost soils (Koven et al. 2011; Schuur et al. 2015;

Crowther et al. 2016) and well-established links between

vegetation and carbon storage, vegetation change in the

Arctic can influence regional carbon cycling and feedbacks

to the global climate (Callaghan et al. 2004; Sturm and

Douglas 2005; Petrenko et al. 2016). For example,

increasing shrub abundance and/or plant height can lead to

increased winter snow trapping, greater insulation of

underlying soils, warmer winter soil temperatures (Myers-

Smith and Hik 2013), and potentially increased active layer

depth and decomposition (Blok et al. 2016). Taller shrubs

may also extend above the snowpack, decreasing winter

albedo and increasing absorbed solar radiation (Sturm and

Douglas 2005). Bryophytes have also been shown to play

an important role in soil insulation and energy fluxes;

experimental removal of bryophytes leads to increased

evapotranspiration and ground heat flux (Blok et al. 2011).

Thus, future declines in bryophytes—observed in warming

experiments but not yet in monitoring studies—could also

lead to deeper summer permafrost thaw and soil carbon

release, representing another positive feedback to climatic

warming.

Changing vegetation can also impact carbon cycling

through changes in the quantity and decomposability of

litter (Callaghan et al. 2004), as litter decomposition con-

tributes nearly 70% of global CO2 fluxes from soils (Raich

and Potter 1995). A long-term increase in shrubs, which

have relatively recalcitrant litter, could lead to reduced

litter decomposability and a negative feedback to climatic

warming (Cornelissen et al. 2007). A change in litter

composition can also indirectly influence soil carbon stor-

age by driving changes in soil microbial communities

(Christiansen et al. 2018) or altering tundra fuel loads. For

example, increased woody litter inputs from shrub expan-

sion might also increase flammability, which could lead to

positive feedbacks through fire-induced soil carbon loss

(Cornelissen et al. 2007; van Altena et al. 2012).

CONCLUSIONS

Rapid warming in the Arctic has the potential to cause

substantial shifts in vegetation, potentially driving wide-

spread changes across trophic levels and altering tundra

ecosystem functions. While our review identifies signifi-

cant shifts at some sites and in some species, the large

variations in the magnitude and even direction of responses

illustrate the high degree of context dependency in tundra

vegetation change. This context dependency highlights the

importance of maintaining multiple monitoring sites in

many different habitat types across the entire Arctic, as

well as increasing the monitoring of local ecological and

environmental conditions that would improve our under-

standing of how factors other than temperature influence

Arctic vegetation change. Thus, we recommend that

international bodies such as the Circumpolar Biodiversity

Monitoring Program (Christensen et al. 2013) prioritize

monitoring efforts that (i) fill current geographic gaps,

particularly in Canada and Siberia; and (ii) enable us to

better disentangle the relative importance of climatic

warming and other environmental factors on the diverging

responses reported here.
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123
� Royal Swedish Academy of Sciences 2019

www.kva.se/en

692 Ambio 2020, 49:678–692


	Status and trends in Arctic vegetation: Evidence from experimental warming and long-term monitoring
	Abstract
	Introduction
	Materials and methods
	Literature review of vegetation trends
	Comparison to tundra-wide syntheses

	Results
	Change in the composition of vegetation
	Phenological change

	Discussion
	Other vegetation trends: functional traits and diversity
	Consequences of Arctic vegetation change

	Conclusions
	Acknowledgements
	References




