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Abstract Detecting dispersal pathways is important both

for understanding species range expansion and for

managing nuisance species. However, direct detection is

difficult. Here, we propose detecting these crucial

pathways using a virtual ecology approach, simulating

species dynamics using models, and virtual observations.

As a case study, we developed a dispersal model based on

cellular automata for the pest insect Stenotus rubrovittatus

and simulated its expansion. We tested models for species

expansion based on four landscape parameters as candidate

pathways; these are river density, road density, area of

paddy fields, and area of abandoned farmland, and

validated their accuracy. We found that both road density

and abandoned area models had prediction accuracy. The

simulation requires simple data only to have predictive

power, allowing for fast modeling and swift establishment

of management plans.
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INTRODUCTION

Dispersal is a fundamental biological process that operates

at multiple temporal and spatial scales (Nathan 2001;

Wilson et al. 2009). Dispersal determines the scale at

which species interact with their environment, respond to

perturbations, and evolve (Kinlan et al. 2003). The dis-

persal pathway is a crucial factor for species expansion and

population dynamics (Wilson et al. 2009; Osawa and Ito

2015). For example, dispersal through multiple pathways

can stabilize populations (Dey and Joshi 2006; Campbell

Grant et al. 2010). Landscape corridors used by birds

strongly influence seed dispersal and plant distribution

ranges (Levey 2005). Understanding mechanisms of dis-

persal is important for ecology, especially when focusing

on management of nuisance species such as invasive spe-

cies, because it is one of the most important factors for

successful invasion (Wilson et al. 2009; Pyšek et al. 2011;

Donaldson et al. 2014). Despite their importance, however,

dispersal pathways are rarely observed directly because of

the difficulty involved (Nathan 2001; Campbell Grant et al.

2010).

In dealing with processes that are difficult to observe in

the real world, such as dispersal, a theoretical approach is

useful (Logan et al. 2003; Skarpaas et al. 2005). A theo-

retical model has shown that a propensity for limited dis-

persal through multiple pathways is especially critical for

population stability and metapopulation persistence (Hill

et al. 2002). The use of the virtual ecology approach—

which simulates species dynamics using models—along

with ‘‘virtual observation’’ of those species dynamics

(Zurell et al. 2010; Pagel and Schurr 2012) is effective in

dealing with dispersal pathways for predicting species

expansion (Skarpaas et al. 2005; Cabral and Schurr 2010;

Osawa and Ito 2015; Osawa et al. 2016). Using this

approach, a hypothetical pathway simulating dispersal can

be evaluated using actual distribution records, even if the

records are limited (Osawa and Ito 2015; Osawa et al.

2016). In the present study, we propose a virtual ecology

approach for detecting the crucial dispersal pathway of a

pest insect.

Governmental agencies in Japan collect records of major

pest insects in several regions to forecast their occurrence
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(Ministry of Agriculture, Forestry and Fisheries 2017;

Occurrence Prediction Project). However, these types of

records are usually used only to forecast the dynamics of

the pest in the year and around the location that they are

collected. In this study, we used such occurrence records as

time-series distribution records for evaluating the results of

virtual ecology simulations. As a case study, we selected

the grain-feeding mirid bug Stenotus rubrovittatus (Het-

eroptera: Miridae) in Japan. Although S. rubrovittatus is

considered to be a native species in Japan and the sur-

rounding region (Kobayashi et al. 2011), the economic

damage that it causes to crops has increased in recent years

(0.3% of rice yield was degraded in 1990, 5.3% was

degraded in 2012 at Akita Prefecture) as its distribution

range has expanded (the range was limited in 2004 but

dominated in 2010 at Akita Prefecture) (Tabuchi et al.

2017). There are some theories for the recent range

expansion, such as changes in agricultural land use (Ito

2004) or climate factors (Kiritani 2006), but there are no

clear plans or management strategy (Watanabe and Higu-

chi 2006; Higuchi 2010; Ohtomo 2013). In this study, we

focus on the dispersal pathways that might have con-

tributed to the recent expansion of S. rubrovittatus. If we

can determine the crucial pathway, we should be able to

predict future expansion of the species and contribute to

establishing effective management plans.

In this study, we modified the virtual ecology model for

predicting species dispersal previously established by

Osawa and Ito (2015). This earlier model focused only on

the physical form of the dispersal pathway, namely stream

flow. The model was thus difficult to apply to species that

can disperse unrestrained by stream flow. To apply the

model to our target species, which has flying capability

(i.e., unrestrained by stream flow), we incorporated the idea

of ‘‘matrix resistance’’ in which there is substantial vari-

ability in the landscape matrix for dispersal (Ricketts 2001;

Kuroe et al. 2011). In the modified model, a virtual pop-

ulation can expand into a neighboring landscape matrix

according to the resistance of the landscape. Thus, the

spatial locations of matrix types can determine dispersal

pathways of the target species. Using the new model, we

simulated the dispersal process of the mirid bug using some

candidate pathways and validated the results with real

time-series distribution records.

MATERIALS AND METHODS

Study area and analysis unit

This study was conducted in Akita Prefecture, Japan

(39�430N, 140�60E, 11637.52 km2; Fig. 1), with a mean

annual precipitation of 1686.2 mm including heavy snow

and a mean annual temperature of 11.7 �C (Japan Meteo-

rological Agency 2017). This area is in the Tohoku region

of Japan on the Sea of Japan side (Fig. 1) and is dominated

by rice-producing farms practicing paddy agriculture

(Akita Prefecture 2016).

We used a grid size of approximately 5 km, hereafter

‘‘5-km mesh’’ (Fig. 1). The 5-km mesh grid system is a

standard Japanese unit used for several types of statistical

analyses at this scale of geographic resolution, mainly of

wildlife records (Biodiversity Center of Japan 2017). We

used this as our analysis unit because a similar virtual

ecology model at this scale performed well (Osawa and Ito

2015; Osawa et al. 2016). We used the mesh ID of the

5-km mesh as the cell ID, which was derived from the

Japan Integrated Biodiversity Information System (J-IBIS

2017) available at the Biodiversity Center of Japan.

Study species

We used the mirid bug S. rubrovittatus as a case study.

Grain-feeding bugs cause major damages worldwide in rice

(Oryza sativa L.) and other economically important grains

(Nagasawa et al. 2012). In Japan, the discoloration of rice

grains caused by mirid bugs is a serious economic problem

for rice cultivation (Kiritani 2006; Shintani 2009; Takada

et al. 2012; Yoshioka et al. 2014) because the contamina-

tion of damaged rice with discolored grains results in a

lower grade under Japanese rice quality regulations and

thus a lower market price. Since the 1990s, mirid bugs

including S. rubrovittatus have been recognized as major

rice pests in the Tohoku and Hokuriku regions and have

caused economic damage to rice farmers (Watanabe and

Higuchi 2006; Tabuchi et al. 2015). During the past dec-

ade, the distribution range of S. rubrovittatus in this area

expanded drastically, causing serious agricultural damage

(Ohtomo 2013; Tabuchi et al. 2015).

Insect data collection

Time-series distribution records of S. rubrovittatus were

obtained from local plant-protection offices within the

study area. We requested the records for S. rubrovittatus

occurrence as collected by sweep-netting conducted out-

side of paddy-field areas. These data were mainly collected

originally for occurrence prediction. Summarized data have

been posted on the website of the Tohoku Agricultural

Research Center (Tohoku Agricultural Research Center,

NARO 2015). We focused on the data collected at field

boundaries and farm roads to avoid any effect of pesticide

application.

The sweep-netting for this species was conducted at 120

sites with some differences in sampling effort. That is not a

problem for this study because we merged and established
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the data on occurrence for 5-km mesh units for analysis.

The sweep-netting was conducted at all 120 sites three

times per year from 2003 to 2008, in mid and late July and

in mid September, which corresponds to the seasonal

occurrence of the species in the adjacent Iwate Prefecture

(Iimura et al. 2004). Netting was also conducted three

times per year at 100 sites in 2009 and 2010. In 2011 and

2012, sweep-netting was conducted at these three times and

in early August and mid or late August (five times in total

per year) at 100 sites. All distribution records were geo-

referenced using GIS software (ArcGIS 10.1, ESRI, Red-

land, CA) and maps from the Geospatial Information

Authority of Japan (GSI 2016). Occurrence records were

merged within each 5-km mesh square to establish the

distribution records for each year from 2003 to 2012. The

occurrence records for all years were merged to show the

overall occurrence. A total of 21 cells in the study area

contained sites with sweep-net data (Fig. 1).

Virtual ecology model

We used a simple cellular automata (CA) model that can

predict the expansion of a target species based on candidate

pathways. CA models apply flexible mathematical tools to

approximate spatiotemporal dynamics and are, therefore,

used for a wide range of ecological problems (Rácz and

Bulla 2003; Dragićević 2010; Koike and Iwasaki 2011).

The digital space in the CA model consists of a rectangular

grid of square cells representing the target area (Rácz and

Bulla 2003). The grid is set to the same size as the unit of

predicted range expansion. The model yields a theoretical

number of invasions, i.e., virtual invasion values in each

cell, which serves as an invasion probability. Each cell has

two parameters: cell ID and expansion path vector

(Fig. 2a). The cell ID indicates the spatial location of the

cell within the area of analysis. The expansion path

involves four variables representing the four directional

vectors into adjacent cells (Fig. 2b). Each variable is a

probability value, i.e., 0–1, that indicates the probability of

successful invasion. Thus, high resistance value has low

probability of successful invasion. This is the matrix

resistance value in this study.

The analysis unit of the target insect species was the

local population; that is, one cell can contain one popula-

tion. Thus, the model simulates the capability for popula-

tion expansion within the target area. The virtual

population can expand according to the expansion path

probability values (described below in detail).

Japan

5 km

Akita Prefecture

Monitoring mesh

5 km

Fig. 1 Study area and analysis unit for this study. Location and size of the 5-km mesh were defined by the Japanese Government. Bold squares

have monitoring data for Stenotus rubrovittatus; these meshes have time-series occurrence records
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Expansion path between cells

In this CA model, the expansion path is defined as the

probability of expansion into four adjacent cells: those on

the top, left, bottom, and right (Fig. 2b). The expansion

path is defined as a vector with four probability values:

Expansion path x ¼ ex ðe1; e2; e3; e4Þ; ð1Þ

where e1, e2, e3, and e4 indicate the probability of

expansion success to the top, left, bottom, and right cells,

respectively (Fig. 2b). If all expansion path values are 0,

the insect species in this cell cannot expand to any other

cells. If all expansion path values are 1, the species in this

cell can expand to all adjacent cells.

We used four candidate variables to represent potential

pathways (river density, road density, area of paddy fields,

and area of abandoned farmland) for setting the expansion

path values. We selected these four variables because of

the feeding habits of S. rubrovittatus; it feeds on inflores-

cences of various species of Poaceae and Cyperaceae

(Hayashi and Nakazawa 1988; Kashin et al. 2009; Naga-

sawa and Higuchi 2012; Nagasawa et al. 2012). In general,

in Japan there are grasslands with species of both Poaceae

and Cyperaceae along rivers, roads, in paddy furrows, and

on abandoned farmland (Hayashi 2009). The river line data

were derived from the National Land Numerical Informa-

tion Download Service of Japan (Ministry of Land,

Infrastructure, Transport and Tourism, Japan 2017). The

river lines were derived from GIS line data on national

primary rivers and developed in 2007 (Ministry of Land,

Infrastructure, Transport and Tourism, Japan). Although

data for smaller rivers such as secondary rivers, small

streams, and ditches are not available from this database,

these rivers do not have large riparian areas with grassland

supporting Poaceae or Cyperaceae. The road data were also

derived from the National Land Numerical Information

Download Service of Japan developed in 2010. The data

were derived from total road length per 1-km square grid

unit, and do not include other road characteristics such as

width. Data for both paddy-field area and abandoned

farmland area were derived from a data paper published in

2015 (Osawa et al. 2015). These areas did not drastically

change from 2003 to 2012.

The expansion path was defined on the basis of the

amount of a candidate pathway per unit area. The proba-

bility values for the dispersion paths e1, e2, e3, and e4 were

estimated as the amount of a candidate pathway in a des-

tination cell divided by the maximum amount of that

pathway per cell in Akita Prefecture. Thus, these were

relative values throughout the study area. These values

1) Cell ID: x

2) Expansion path: ex (e1, e2, e3, e4)

e1 (0–1)

e4 (0–1)

e3 (0–1)

e2 (0–1)

(b) Expansion path

(a) CA model

Target area (c) Example of expansion path

x
ex (0,0.3,0.6,0.9)

Fig. 2 Basic structure of the modified cellular automata (CA) model. a Two values are associated with each cell: 1) the cell ID ‘‘x’’, a unique ID

for each cell, and 2) the expansion path ex indicating four directional vectors into adjacent cells (described below). b Values e1, e2, e3, and e4

indicate the probability of dispersion using the path to the top, left, bottom, and right cells, respectively. If the dispersion path value is 1, the

insect species in this cell can expand to that adjacent cell. c Example of values for e1, e2, e3, and e4 for cell ‘‘x’’ as probability values between 0

and 1
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reflect the type of landscape matrix preferred by the insects

because if the matrix resistance is high, it is difficult for the

insect to expand into that cell and vice versa. In addition,

these values reflect the spatial position of the landscape

matrix in the study area. If the landscape matrix shows a

sequence of cells with low resistance, i.e., high probability

of successful invasion, that is, there is an existing pathway,

then the insect population can expand according to that

pathway.

Expansion simulation

Using this CA field, we calculated the potential expansion

range for all cells as the theoretical number of cells that

could be expanded into using each candidate pathway.

Thus, we had four CA simulation fields that were run

independently. We predicted and compiled the expansion

ranges from all cells; that is, we started the simulation from

one cell, repeated that simulation for all cells, and summed

all results. The results of one simulation from one cell

show the expanded range from that starting cell. Summed

cells with high values indicate that virtual insects could

invade from several other cells. We used these invasion

numbers (hereafter virtual invasion values) as indices of

expansion success. The model was run for 999 iterations. If

one virtual population failed to invade, it could try again

during other iterations. Simulation models were imple-

mented using the C language and compiled by MinGW ver.

0.6.2-beta-20131004-1 (MinGW.org Project 2017).

Model validation

Validation using the current distribution range

We validated the results of the CA model using merged

occurrence records of S. rubrovittatus from 2003 to 2012.

We compared average virtual invasion values between grid

cells containing occurrence records and those without. We

also compared average virtual invasion values between

grid cells containing occurrence records and all cells in the

study area. If the model prediction accurately represents S.

rubrovittatus dispersion in the real world, the virtual

invasion values should be higher in cells containing

occurrence records than in those without, and higher than

the average for all analyzed grid cells. We, therefore, used

the Mann–Whitney U test to compare model predictions

with field data.

Validation using time-series data

For the candidate pathways that showed predictive accu-

racy in the above analysis, we also validated the results of

the CA model using time-series occurrence records of S.

rubrovittatus from 2003 to 2012. For this analysis, we

attached rank values that reflected the year of invasion for

occurrence cells; that is, 2003, the first year of monitoring,

was given a rank of 1, 2004 was 2, up to 2012 as 10. The

small value indicates that the cell was preferred by S.

rubrovittatus, thus, we assumed that the year of first

invasion would reflect the preference of S. rubrovittatus. If

a pathway was not effective for expansion, there should be

a highly positive relationship between the year of first

invasion and the virtual invasion values because species

would use that pathway in later stages of an expansion. All

statistical analyses were performed using R software ver-

sion 3.2.1 (R Development Core Team 2015). A schematic

of the whole procedure is provided in Fig. S1.

RESULTS

Stenotus rubrovittatus distribution records

We acquired the distribution records for S. rubrovittatus

from 2003 to 2012 in Akita Prefecture. A total of 21 cells

within the 5-km mesh had sampling data for this time

period. There was a steady increase in the number of cells

where the target species was present (Fig. 3). After 2005,

the number of cells with positive occurrence increased

drastically until 19 of the 21 cells were occurrence cells.

Because only two cells in the mesh showed no occurrence,

we could not statistically compare our average virtual

invasion values between cells with and without occurrence.

2004 2006 2008 2010 2012
 (year)

15

10

 5

(occurrence mesh number)

Fig. 3 Numbers of meshes in the study area with Stenotus rubrovit-

tatus occurrence from 2003 to 2012. By 2012, 19 of 21 monitored

meshes were positive for occurrence
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Relationships among candidate pathways

Our CA field contained 920 cells in total. The correlations

(Pearson’s correlation coefficient) among the four candi-

date pathways are shown in Table 1. Three combinations

had relatively high correlation coefficients and the other

three combinations had relatively low correlation coeffi-

cients. The coefficient of correlation between river length

and paddy area was 0.707, between river length and

abandoned area was 0.635, and between paddy field and

abandoned area was 0.619. These results suggest that

simulations using these pathways might be expected to

show similar results. On the other hand, the coefficient of

correlation between river length and road length was 0.326,

between road length and paddy area was 0.214, and

between road length and abandoned area was 0.309. These

results suggest that simulations using these pathways might

be expected to show different results.

Accuracy of the cellular automata model simulations

We mapped the merged occurrence records and results of

simulations (virtual invasion values) onto the study area

(Fig. 4) and analyzed the models for accuracy (Table 2).

All four models showed obviously higher virtual invasion

values in cells with occurrence records (n = 19) than in

those without (n = 2) (Table 2). A statistical comparison is

not possible because there were only two cells with no

occurrences. Thus, at some level our simulation has pre-

dictive accuracy. On the other hand, the virtual invasion

values predicted by the river model (i.e., using river length

per grid cell) for cells with occurrence records (n = 19,

39.47 ± 23.58; mean ± S.D.) did not significantly differ

from that for all analyzed cells in the mesh, that is, all

except those over the ocean (n = 920, 40.74 ± 25.18)

(Mann–Whitney U test, U = 7281, P[0.05). The virtual

invasion values from the road model (n = 19,

14.21 ± 6.399), paddy area model (n = 19,

28.21 ± 17.27), and abandoned area model (n = 19,

15.68 ± 10.69) for cells with records of occurrence were

significantly higher than those for all analyzed cells in the

mesh (n = 920, 4.95 ± 6.37, 6.47 ± 12.06, 6.09 ± 9.11)

(Mann–Whitney U test, U = 2055.5, 1570.5, 3061.5,

P\0.001 for all). All models except the river model

accurately predicted the current distribution range. Thus,

our virtual ecology models using road density, paddy area,

and abandoned area are realistic. Among these three

pathways, all correlation coefficients excluding that

between paddy and abandoned area were relatively low:

0.214 for road–paddy, 0.309 for road–abandoned, and

0.619 for paddy–abandoned (Table 1).

Table 1 Correlations (Pearson’s correlation coefficient) among four

candidate pathways

Combination Correlation coefficient, r

River–road 0.326

River–paddy 0.707

River–abandoned 0.635

Road–paddy 0.214

Road–abandoned 0.309

Paddy–abandoned 0.619

River river density, road road density, paddy paddy field area,

abandoned abandoned farmland area

(a) Occurrence mesh

(b) River density model (c) Road density model

(d) Paddy area model (e) Abandoned area model

High

 Low

Fig. 4 Map of occurrence mesh for Stenotus rubrovittatus from

monitoring data for 2003–2012 a, with predicted occurrence units

based on our models b–e. The degree of shading reflects the

theoretical invasion number predicted by each model
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We used time-series occurrence records to validate the

results of these three models. Among these, the time rank

of first invasion and virtual invasion values from the paddy

model were significantly positively correlated even though

the correlation coefficient was low (r = 0.1; Table 3). This

suggests that paddy area does not reflect a preferred path-

way for S. rubrovittatus. In addition, there was a high

correlation between pathway values for paddy area and

abandoned area (Table 1).

DISCUSSION

We developed a dispersal simulation model based on CA

with matrix resistance theory to find the crucial dispersal

pathway of S. rubrovittatus from four candidate pathways.

The simulation predictions from road density, paddy area,

and abandoned area models had prediction accuracy for the

real distribution range. Among these, paddy area as a

pathway was relatively less preferred by the mirid bug.

These results suggested that both road and abandoned area

were crucial dispersal pathway of S. rubrovittatus. Our

results provide a variety of information about the expan-

sion mechanism of S. rubrovittatus. Thus, the virtual

ecology approach is useful for detecting the expansion

pathway of a species.

Estimation of efficient dispersal pathway

Among the four candidate pathway models, the road den-

sity, paddy area, and abandoned area models accurately

reflected the real distribution range. The most plausible

explanation for this is the existence of grassland in these

three habitats, which acts as an emergence and feeding site

for the mirid bug. Stenotus rubrovittatus is a euryphagous

species that uses more than ten species in the Poaceae or

Cyperaceae (Nagasawa and Higuchi 2012; Nagasawa et al.

2012), and it can survive in several types of grassland, such

as those on slopes along roadsides and in paddy furrows

and fallow soil (Yasuda et al. 2011). The extent of these

areas could reflect habitat area and habitat continuity. In

contrast, although there might be grasslands in riparian

areas, the river model did not predict the actual distribution

range of S. rubrovittatus. One possible explanation for this

is anthropogenic effects. Many riverbanks in Japan have

been recently concreted, the result being a lack of natural

riparian zones (Osawa et al. 2011). In addition, many river

banks are frequently mowed as part of river management

by local governments. In Akita Prefecture, many rivers are

concreted and managed. Therefore, in this study, river

density did not reflect the amount of grassland. These

anthropogenic effects, however, could differ by region,

depending on policies and management strategies. This

particular result should, therefore, be carefully interpreted

and the river model should be considered in other regions.

Table 2 Average number of invasions per cell for each model, and

results of model evaluations

Model Cells with

occurrence

(n = 19)

Cells

without

occurrence

(n = 2)

All cells

analyzed

(n = 920)

Mann–

Whitney

U-test

River

density

39.47 ± 23.58 8.5 40.74 ± 25.18 n.s.

Road

density

14.21 ± 6.399 1.5 4.95 ± 6.37 P\0.001

Paddy area 28.21 ± 17.27 13.0 6.47 ± 12.06 P\0.001

Abandoned

farmland

area

15.68 ± 10.69 1.0 6.09 ± 9.11 P\0.001

Table 3 Results of model validation using time-series records from

19 grid cells with positive occurrences. Each row shows the year of

first invasion (rank) for a cell and the theoretical invasion numbers for

each model. Correlation coefficients reflect the relationships between

the year rank and invasion numbers for each model

Year of first occurrence (rank) Invasion number

Road

model

Paddy

model

Abandoned

farmland model

2003 (1) 12 20 18

2003 (1) 13 10 26

2004 (2) 15 9 26

2005 (3) 17 24 9

2005 (3) 16 36 6

2005 (3) 8 9 20

2005 (3) 12 22 6

2005 (3) 18 12 21

2006 (4) 12 25 22

2006 (4) 6 24 13

2006 (4) 11 18 5

2007 (5) 2 4 9

2008 (6) 23 46 13

2008 (6) 14 36 0

2008 (6) 7 29 11

2010 (8) 20 58 21

2011 (9) 30 63 44

2011 (9) 16 51 25

2011 (9) 18 40 3

Correlation coefficient r 0.2 0.1 0.025

Significance n.s. P\0.001 n.s.
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Pathway preference by mirid bugs

Our time-series validation suggests that paddy area might

not be preferred by S. rubrovittatus as an expansion path-

way. Previous studies have shown that rice (O. sativa) was

neither preferred for oviposition by of S. rubrovittatus nor

improved its growth performance compared to other wild

poaceous species (Nagasawa and Higuchi 2012; Nagasawa

et al. 2012). Also, Yasuda (2012) showed that the number

of S. rubrovittatus captured by sweep-netting was not

affected by the extent of paddy-field area around the census

area (Yasuda 2012). Nagasawa et al. (2012) indicated that

S. rubrovittatus depended on a weed that had invaded a

paddy field, not the rice itself. Therefore, S. rubrovittatus

might not prefer a paddy field alone, either as a food

resource or as an expansion pathway even there are

furrows.

Nevertheless, our simulation using paddy area as a

pathway was able to predict the current distribution range

of S. rubrovittatus to some degree. One possible explana-

tion is that paddy area as a pathway reflected other path-

ways, specifically abandoned area. In fact, the correlation

between paddy area and abandoned area, which showed

relatively high prediction accuracy, was high (0.619,

Table 1). Thus, paddy area might act as a proxy for

abandoned farmland area in our study area to some degree.

This is a weak point of our model because there is some

correlation between all pathway proxies, including river

length and paddy area (Table 1). Although river length,

which was highly correlated with other pathways, did not

have high prediction accuracy in our case study, that might

not always be true. To apply our approach to other areas or

other species, it will be necessary to understand this

problem to avoid overlooking possible pathways.

Application to a management plan

Pest management resources are generally limited in terms

of both time and space, and thus it is necessary to have a

spatially explicit plan for intensive management in high

priority areas (Osawa and Ito 2015; Osawa et al. 2016;

Tabuchi et al. 2017). Spatially explicit management plans

should be developed at multiple spatial scales (Hiebert

1997; Shea et al. 2002; Foxcroft et al. 2009). Management

plans at large spatial scales are suitable for guiding man-

agement, for monitoring activities, and for risk and priority

assessment, whereas those at small spatial scales are pre-

ferred for management interventions (Foxcroft et al. 2009).

For mirid bugs, there are already established intervention

methods at small spatial scales, such as the timing of

pesticide application (Kashin 2009; Yokota et al. 2009) or

of mowing food plants (Yokota and Suzuki 2008), and

these have been systematized to some degree (Ohtomo

2013). Also, a technique has been proposed based on local

land-use maps for predicting potential damage to rice in

areas in which the mirid bug has already become estab-

lished (Tabuchi et al. 2017). Together with our approach

for regional spatial scales, these existing techniques for

small spatial scales will allow managers to establish a

spatially explicit management plan with multiple spatial

scales. Thus, managers can use our approach to identify

priority areas with high potential for a species invasion.

Subsequently, managers can implement an intervention

plan for the priority areas using the small-scale methods.

One of the advantages of our method is that it is prac-

ticable without detailed information on the target species

such as distribution records or monitoring data. In this

study, we used time-series distribution records of S.

rubrovittatus only for validation of the simulation results;

thus, the simulation itself can be applied to other regions

even there are no such data. Our approach could be applied

as the first step in establishing a management plan. If a

target area has not yet been invaded, managers should

implement monitoring efforts in areas with high virtual

invasion values to prevent invasion (Osawa and Ito 2015).

CONCLUSIONS

In this study, we used a virtual ecology approach to find

crucial expansion pathways of S. rubrovittatus. We iden-

tified several effective pathways, and our overall results are

consistent with ecological characteristics. We also

demonstrated that the more important pathways can be

screened in a simple manner using time-series information

that is often included in pest dynamics data obtained by

local governments. Thus, virtual ecology is one effective

approach for testing possible expansion pathways. The

expansion of all species is constrained by their pathways;

thus, our approach may be applicable to other species,

especially those with ecological characteristics similar to

those of the mirid bug. Using a pathway simulation model,

we should be able to find the important pathways of a target

species, and that is useful information for managing nui-

sance species such as pests, weeds, and invasive species.

Establishing a virtual ecology model is, therefore, an

appealing approach with multiple applications in ecology.
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Logan, J.A., J. Régnière, and J.A. Powell. 2003. Assessing the

impacts of global warming on forest pest dynamics. Frontiers in

Ecology and the Environment 1: 130–137. https://doi.org/10.

1890/1540-9295(2003)001[0130:ATIOGW]2.0.CO;2.

MinGW.org Project. 2017. Retrieved 19 May, 2017, from http://

mingw.org.

Ministry of Agriculture, Forestry and Fisheries. 2017. Occurrence

Prediction Project. Retrieved May 19, 2017, from http://www.

maff.go.jp/j/syouan/syokubo/gaicyu/.

Ministry of Land, Infrastructure, Transport and Tourism, Japan. 2017.

Retrieved 19 May, 2017, from http://nlftp.mlit.go.jp/ksj-e/index.

html.

Nagasawa, A., and H. Higuchi. 2012. Suitability of poaceous plants

for nymphal growth of the pecky rice bugs Trigonotylus

caelestialium and Stenotus rubrovittatus (Hemiptera: Miridae)

in Niigata, Japan. Applied Entomology and Zoology 47:

421–427. https://doi.org/10.1007/s13355-012-0135-5.

Nagasawa, A., A. Takahashi, and H. Higuchi. 2012. Host plant use for

oviposition by Trigonotylus caelestialium (Hemiptera: Miridae)

and Stenotus rubrovittatus (Hemiptera: Miridae). Applied Ento-

mology and Zoology 47: 331–339. https://doi.org/10.1007/

s13355-012-0123-9.

Nathan, R. 2001. The challenges of studying dispersal. Trends in

Ecology & Evolution 16: 481–483. https://doi.org/10.1016/

S0169-5347(01)02272-8.

Ohtomo, R. 2013. Occurrence and control of Stenotus rubrovittatus

(Hemiptera: Miridae) in Touhoku area in Japan. Japanese

Journal of Applied Entomology and Zoology 57: 137–149.

https://doi.org/10.1303/jjaez.2013.137. (in Japanese).

Osawa, T., and K. Ito. 2015. A rapid method for constructing

precaution maps based on a simple virtual ecology model: A

case study on the range expansion of the invasive aquatic species

Limnoperna fortunei. Population Ecology 57: 529–538. https://

doi.org/10.1007/s10144-015-0493-2.

Osawa, T., H. Mitsuhashi, H. Niwa, and A. Ushimaru. 2011. The role

of river confluences and meanderings in preserving local hot

spots for threatened plant species in riparian ecosystems. Aquatic

814 Ambio 2018, 47:806–815

123
� Royal Swedish Academy of Sciences 2018

www.kva.se/en

https://doi.org/10.1111/j.1466-8238.2009.00492.x
https://doi.org/10.1111/j.1466-8238.2009.00492.x
https://doi.org/10.1073/pnas.1000266107
https://doi.org/10.1126/science.1125317
https://doi.org/10.1111/gcb.12486
https://doi.org/10.1111/gcb.12486
https://maps.gsi.go.jp
https://doi.org/10.1303/jjaez.2010.171
https://doi.org/10.1086/341526
https://doi.org/10.1086/341526
http://gis.biodic.go.jp/webgis/sc-023.html
http://www.data.jma.go.jp/obd/stats/etrn/view/nml_sfc_ym.php%3fprec_no%3d32%26block_no%3d47582%26year%3d%26month%3d%26day%3d%26view%3dp1
http://www.data.jma.go.jp/obd/stats/etrn/view/nml_sfc_ym.php%3fprec_no%3d32%26block_no%3d47582%26year%3d%26month%3d%26day%3d%26view%3dp1
http://www.data.jma.go.jp/obd/stats/etrn/view/nml_sfc_ym.php%3fprec_no%3d32%26block_no%3d47582%26year%3d%26month%3d%26day%3d%26view%3dp1
http://doi.org/10.11455/kitanihon.2009.60_159
https://doi.org/10.1007/s10144-005-0225-0
https://doi.org/10.1007/s10144-005-0225-0
https://doi.org/10.1111/j.1600-0706.2010.18697.x
https://doi.org/10.1111/j.1600-0706.2010.18697.x
https://doi.org/10.1126/science.1111479
https://doi.org/10.1126/science.1111479
https://doi.org/10.1890/1540-9295(2003)001[0130:ATIOGW]2.0.CO;2
https://doi.org/10.1890/1540-9295(2003)001[0130:ATIOGW]2.0.CO;2
http://mingw.org
http://mingw.org
http://www.maff.go.jp/j/syouan/syokubo/gaicyu/
http://www.maff.go.jp/j/syouan/syokubo/gaicyu/
http://nlftp.mlit.go.jp/ksj-e/index.html
http://nlftp.mlit.go.jp/ksj-e/index.html
https://doi.org/10.1007/s13355-012-0135-5
https://doi.org/10.1007/s13355-012-0123-9
https://doi.org/10.1007/s13355-012-0123-9
https://doi.org/10.1016/S0169-5347(01)02272-8
https://doi.org/10.1016/S0169-5347(01)02272-8
https://doi.org/10.1303/jjaez.2013.137
https://doi.org/10.1007/s10144-015-0493-2
https://doi.org/10.1007/s10144-015-0493-2


Conservation: Marine and Freshwater Ecosystems 21: 358–363.

https://doi.org/10.1002/aqc.1194.

Osawa, T., T. Kadoya, and K. Kohyama. 2015. 5- and 10-km mesh

datasets of agricultural land use based on governmental statistics

for 1970–2005. Ecological Research 30: 757. https://doi.org/10.

1007/s11284-015-1290-2.

Osawa, T., S. Okawa, S. Kurokawa, and S. Ando. 2016. Generating

an agricultural risk map based on limited ecological information:

A case study using Sicyos angulatus. Ambio 45: 895–903. https://

doi.org/10.1007/s13280-016-0782-9.

Pagel, J., and F.M. Schurr. 2012. Forecasting species ranges by

statistical estimation of ecological niches and spatial population

dynamics. Global Ecology and Biogeography 21: 293–304.

https://doi.org/10.1111/j.1466-8238.2011.00663.x.
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