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Abstract

In recent years, social media has witnessed an exponential growth in promoting healthy relationships and communication
between family, friends, and acquaintances, but it isn’t without its flaws. It is clear that sometimes social media freedom
can create an unattractive online environment. Hate speech and offensive language are frequently spread on social media
platforms. Thus, they encompass different negative effects on our society. Therefore, detecting hate speech and offensive
language has become the theme of one of the major research trends. Although the Arabic language occupies a distinct posi-
tion among the languages on social media networks such as Twitter and Facebook, the ability to identify Arabic hate speech
and offensive language is still developing due to the variety and complexity of Arabic dialects and forms. In this paper,
we present an in-depth review focused on studies published between 2019 and September 2023 related to Arabic offensive
language and hate speech detection. To conclude, we highlighted the most significant methods, Arabic datasets, taxonomy
analysis, and challenges. Moreover, this review provides a foundation of knowledge that can help the researchers design and
implement reliable and more accurate solutions.

Keywords Arabic offensive language - Arabic hate speech - Arabic dialects - Social media - Deep learning (DL) - Machine

learning (ML) - Taxonomy - Natural language processing (NLP)

1 Introduction

Disclaimer: due to the nature of this kind of study, some
examples of offensive or hate speech may be included in
this survey. These examples are solely for the purpose of
understanding this issue and do not represent the views
or opinions of the survey creators or any of their affiliated
organizations. We do not condone or support offensive or
hate speech of any kind. This work is an attempt to help
fight such speech.

Social media networks have revolutionized the way we
communicate and interact with each other. Through these
networks (Shannaq et al. 2022), people from all over the
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world can connect and communicate instantly. Moreover,
they can feel emboldened to freely (ElZayady et al. 2023;
Mansur et al. 2023; Makram 2022) share and express their
thoughts, views, and opinions in ways that may not be on a
personal level (Azzi and Zribi 2022). Although offensive
language and hate speech are unfortunate, they have become
very common on social media platforms such as Facebook
and Twitter.

In common language, hate speech refers to the term used
to describe offensive statements in everyday discourse. Hate
speech (Ruwandika and Weerasinghe 2018) can also be
defined as the use of language to disparage or incite hatred
towards a person or group based on their religion, race, gender,
or social standing. Excessive use of social media has led to the
spread of this kind of speech. Thus, it impacts negatively on
mental health and may lead to real-world consequences such as
hate crimes, discrimination, and intimidation. This can affect
individuals and communities” well-being and social cohesion,
as mentioned in (Shannagq et al. 2022; Althobaiti 2022). There-
fore, finding a solution for detecting hate speech has become
crucial for countries, companies, and academic institutions
(Elzayady et al. 2023). In addition, numerous studies on hate
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speech detection have been published, with a greater focus on
the English language. In contrast, investigations into detecting
Arabic hate speech are still emerging (Abuzayed 2020; Elzay-
ady et al. 2022). Recently, due to the great interest in detecting
online hate speech, we found a set of papers published to find
appropriate solutions in an automated way for detecting hate
speech in Arabic on social media platforms using different
approaches and methods.

In the scope of our survey, we have concentrated on stud-
ies published in the last five years (2019-2023) pertaining
to Arabic offensive language and hate speech detection.
However, it is crucial to acknowledge that investigations
predating 2019 have made substantial contributions to our
comprehension of the distinctive challenges, solutions and
the trends in this period regarding Arabic offensive language
and hate speech detection. For instance, the authors in (Alak-
rot et al. 2018a, b) presented a comprehensive approach for
detecting abusive language on Arabic social media using
a large dataset of YouTube comments in Arabic to train a
support vector machine classifier, exploring combinations
of word-level features, N-gram features, and various pre-
processing techniques achieving superior results. Another
approach for detecting abusive language on Arabic social
media, specifically in dialectal Arabic, was presented in a
study by (Mubarak et al. 2017) The approach utilized two
datasets: the first comprised 1100 manually labeled dialectal
tweets, and the second included 32k comments flagged as
inappropriate by moderators of prominent Arabic newswires.
The authors introduced a statistical approach centered on a
list of offensive words, achieving better outcomes. Thus, the
insights gleaned from earlier research have laid a founda-
tional understanding, providing valuable steps that continue
to inform contemporary studies in this evolving field.

Therefore, this review focuses on the most recent stud-
ies on the detection of hate speech, offensive language, and
abusive texts in Arabic. Our goal is to help researchers in
the natural language processing (NLP) field understand the
extent of the problem, evaluate the effectiveness of existing
models, and develop customized solutions to mitigate the
negative impacts of Arabic hate speech on social media. So,
we presented this comprehensive survey, including the ear-
lier studies, Arabic datasets, various machine learning (ML)
and deep learning (DL) models, hybrid solutions, and data
preparation processes: Arabic language preprocessing steps
and feature extraction methods. The existing challenges with
methods and the Arabic language are discussed. Moreover,
we highlighted the challenges for future trends in this field.

1.1 Methodology
This section presents the procedures followed in this review,

such as the search strategy, the keywords, inclusion and
exclusion criteria, data extraction, and data synthesis.
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The main objective of this study is to investigate the state
of the art of the latest techniques in NLP to automatically
detect Arabic hate speech and offensive language on differ-
ent social media platforms. This survey covers the following
research questions:

e (] What is your understanding of offensive language and
hate speech in the Arabic language?

e (2 What are the most promising NLP techniques, com-
mon preprocessing, and feature extraction methods for
Arabic hate speech detection, and how can these tech-
niques be optimized for Arabic datasets?

e ()3 What are the most available Arabic datasets and how
are the datasets annotated? Which social media platforms
are the most frequently used?

e (4 What are the specific linguistic and socio-cultural
features of Arabic language that make it challenging for
offensive language and hate speech detection using NLP
techniques?

e (5 What are the future directions for research in Arabic
hate speech detection using NLP, and what are the key
challenges and opportunities for advancing this field?

1.1.1 Search strategy

The primary objective of this review is to investigate the
current scientific literature from 2019 to September 2023
that concerns Arabic offensive language and hate speech
detection on social media platforms. The study aims to
analyze and synthesize recent works conducted on social
media platforms for detecting offensive Arabic language
and hate speech in order to provide an all-inclusive sum-
mary of advancements made in this area. Therefore, we for-
mulated a search query to find the most relevant papers on
the subject of interest as follows: firstly, we established the
most frequently used keywords, such as offensive language,
hate speech, Arabic, Arabic offensive, Arabic hate, abusive
language, classification, and detection. Second, these terms
were used in multiple combinations using the Boolean oper-
ators (AND) and (OR) to form the search query.

The databases used in our search process are IEEE,
Springer, Science Direct, ACL Anthology, ACM DL, JECE
Journal, IJACSA Journal, SCITEPRESS, Taylor & Francis,
Emerald, applied science, Revue d’Intelligence Artificielle
Journal, I0S Press, and Scopus. These databases have been
carefully selected based on their abundant scientific compe-
tence in several high-impact research papers, or at least the
databases that are indexed in Scopus provide fair coverage
of the reviewed literature.
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Fig. 1 The number of studies
per digital library

# Studies / Digital Library

1.1.2 Inclusion and exclusion criteria

The inclusion and exclusion criteria were used in the
selected studies to identify which studies fulfilled the tar-
get of this review. The inclusion criteria involved papers
that were published from 2019 to September 2023. Our
main focus was only on studies about offensive language
and hate speech related to the Arabic language and its chal-
lenges, whether these studies are experimental, comparative,
reviews, or survey articles. While the exclusion criteria are
as follows: we excluded all papers related to the detection of
offensive and hate speech in other languages, such as Eng-
lish, Turkish, Indian, etc. Also, any publications before 2019
were excluded.

After deep analysis, we have included 54 studies in this
review from variant databases published in the last five
years, as shown in Fig. 1 and Fig. 2 respectively.

This survey was conducted to provide a background on
Arabic offensive language and hate speech detection on
social media by answering the questions mentioned above.
The rest of this paper is organized as follows: the above
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section provides a brief introduction to the main topic. Sec-
tion 2 presents a theoretical background. Then preprocess-
ing steps and feature extraction methods will be presented
in Section 3. Section 4 will go through NLP, ML, and DL
techniques for detecting offensive Arabic language and hate
speech. Thereafter, Section 5 presents the datasets used in
previous experiments. Section 6 will go through the work
related to Arabic offensive language and hate speech detec-
tion. Then a discussion about challenges and future research
directions will be presented in Section 7. Finally, we con-
cluded the work in this paper.

2 Background

This section introduces the Arabic language and its signifi-
cance, as well as defining Arabic hate speech and offen-
sive language. Understanding the uniqueness of the Ara-
bic language and cultural nuances is crucial for effectively
detecting and addressing offensive language and hate speech
within the Arab-speaking communities. By acknowledging
the importance of detecting and combating such harmful
speech, we aim to contribute to a safer and more inclusive
online environment for Arabic speakers.

2.1 Arabiclanguage

Arabic is a unique language. It is also the original language
of the Quran and the Hadith! (Referring to reports of state-
ments or actions of the Prophet Muhammad, or of his tacit
approval or criticism of something said or done in his pres-
ence). The Arabic language, with its profound historical and
cultural significance, has distinct characteristics that shape

! https://en.wikipedia.org/wiki/Hadith
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Fig. 4 Different meanings of words have the same shape

its linguistic landscape. It comprises 28 letters, follows a
right-to-left writing system, and incorporates gender-specific
forms for various parts of speech (Rahma et al. 2023; Husain
and Uzuner 2022a, b). For example, the word “Qaseera/
3 uad” refers to a short female, and the word “Qaseer/ juad
” refers to a short male. Moreover, the limited presence of
vowels (i/alef, waaw/s, and (s/yaa) adds another layer of
intricacy (Azzi and Zribi 2021). An additional characteristic
of the Arabic language is the variability in the appearance
of each letter, contingent upon its position within a word. To
illustrate, the letter “&/qaf” can manifest in various forms,
such as “_3 /.3 / s, 7 depending on whether it is posi-
tioned at the word’s outset, in the middle, or at the end. Refer
to Fig. 3 for a visual representation. Diacritics, commonly
referred to as Tashkil or Harakat in Arabic. These diacritics
play a crucial role in conveying the precise meaning of an
Arabic word. Interestingly, they facilitate disambiguation,
as words with distinct meanings may share the same visual
form. For example, the Arabic word “JL” means the north
cardinal directions, and “Jw&” carries a dual meaning, refer-
ring not only to the left direction but also encompassing a
connotation of something negative or offensive in language
in Arabic. Refer to Fig. 4 for a visual representation. Simi-
larly, singular, dual, and plural forms contribute to the lan-
guage’s expressive depth. On the other hand, the Arabic
language consists of mixed dialects (Alsafari et al. 2020a,
b), such as Gulf Arabic, Egyptian Arabic, and Levantine
Arabic. From the aforementioned characteristics, the Arabic
language presents several challenges in the context of natural
language processing (NLP), stemming from its complex
morphology and the use of dialects with rich cultural and
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historical roots. Although, the Arabic language has wit-
nessed a substantial increase in its prevalence on various
digital spaces, including but not limited to social networks.
Moreover, it holds the fourth position among the most fre-
quently utilized languages on the web (Khezzar et al. 2023).
Unfortunately, there has been a surge in offensive language
and hate speech on Arabic social media platforms in recent
years (Shannaq et al. 2022; Mohaouchane et al. 2019). How-
ever, in response to these challenges, researchers have lever-
aged advanced technologies, including natural language
processing, machine learning, and deep learning techniques
in their studies. The findings from these studies emphasize
that hate speech and offensive language in Arabic have
evolved into a pressing concern, underscoring the need for
further investigation and the development of effective miti-
gation strategies (ElZayady et al. 2023), (Althobaiti 2022).

2.2 Offensive language

Abusive or offensive language definition is a very com-
plex task and a debatable issue (Husain and Uzuner 2021).
Offensive language on social media refers to any language
used that is intended to harm, insult, degrade, or discrimi-
nate against an individual or group of individuals based on
their race, gender, sexual orientation, religion, nationality,
or disability. It can take many forms (Alshalan and Al-
Khalifa 2020) including hate speech, cyberbullying, troll-
ing, and harassment. For instance, a YouTube comment like
¢ iad i lasd) (5 Jale liga”, which means: “May God
curse you; your voice is like a donkey’s voice”. As men-
tioned in (Azzi and Zribi 2021), offensive language can be
defined as any content that contains some form of abusive
behavior, exhibiting actions with the intention of harming
others, causing hurt, and making others angry. Also, (Azzi
and Zribi 2022) provides some offensive language classes,
namely, racism, sexism, xenophobia, violence, hate, pornog-
raphy, religious hatred, and LGBTQ hate. The definition of
offensive language depends on people’s social and political
backgrounds. Regarding the types of offensive language,
(Azzi and Zribi 2021) provides the main types of offensive
language on social media as follows: discriminative content
includes any sort of prejudice against a person showing dif-
ferent physical characteristics, belongings, or preferences,
while violent content is the use of any term threatening or
promoting an intentioned act of violence. Adult content
includes pornography, texts illustrating sexual behavior and
more importantly children sexual abuse. Vulnerable catego-
ries of people like children or youth are particularly vulner-
able to the psychological threat of adult-oriented content on
social media.

To the best of our knowledge, detecting offensive lan-
guage on social media is a complex task due to the sheer
volume of data, new words continuously emerging (Mubarak
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and Darwish 2019), the use of slang or highly contextualized
language, and the rapidly changing nature of language use
on social media platforms. Research has been conducted on
the detection of offensive language on social media using
natural language processing (NLP) techniques, including
machine learning, deep learning techniques, and sentiment
analysis.

2.3 Hate speech

The definition of hate speech has always been a topic of dis-
cussion (Boulouard et al. 2022a, b). According to (ElZayady
et al. 2023; Alhejaili et al. 2022; Awane et al. 2021; Husain
and Uzuner 2021; AlKhamissi 2022), hate speech is any
form of public expression that promotes, incites, or justifies
hatred, discrimination, or hostility against one person or a
group of people based on their identity. For instance, a tweet
like ** L hddig Ao Spald 4y pus CuiS lia gl Lif g i) Juli”, which
means: “This is a poorly mannered family, and if I were you,
I would slap him on his face”. Hate speech in (Guellil et al.
2020) was defined as any communication that disparages or
defames a person or a group on the basis of some character-
istic such as race, color, ethnicity, gender, sexual orientation,
nationality, religion, or other characteristic, and it was classi-
fied into four categories: gender-based hate speech, religious
hate speech, racial hate speech, and disability hate speech.
The study (Faris et al. 2020) defines hate speech as the use
of offensive language to spread hatred and discrimination
based on race, sex, religion, or disability.

Finally, hate speech is complex and ambiguous because
it is not just word identification (Haddad 2020). It can occur
in different linguistic styles and through different acts, such
as insulting, abusing, provocation, and aggression (Omar
et al. 2020).

2.4 Importance of offensive language and hate
speech detection

Arabic offensive language detection and hate speech detec-
tion on social media would be crucial for several reasons.
First, with the increasing number of Arabic speakers on
social media (Boulouard et al. 2022a, b), it is essential to
have effective tools to detect offensive language and hate
speech produced in Arabic. Second, social media has been
used as a platform for hate speech and offensive language
due to the freedom of expression on such platforms (Badri
et al. 2022). The spread of misinformation, propaganda, and
biased narratives has led to social unrest and violence in
some countries. By detecting and removing such content
in Arabic, social media platforms can promote a safe and
inclusive online environment. Third, automated detection
systems that can perform real-time analysis of large vol-
umes of social media data in Arabic can help governments

and authorities detect and prevent hate crimes, radicaliza-
tion, and other forms of extremist behavior. In conclusion,
Arabic offensive language detection and hate speech detec-
tion on social media are critically important for promoting
peace, harmony, and inclusivity in society. This review can
enhance our understanding of the challenges of detecting
and addressing offensive language and hate speech on social
media and help develop effective algorithms and tools for
mitigating such content.

3 Preprocessing and feature extraction
methods

Hate speech and abusive language are prevalent on social
media platforms, and controlling such language is essen-
tial to promoting a safer and more inclusive online environ-
ment. In recent years, researchers have started to develop
algorithms and models to detect hate speech and abusive
language in Arabic and its dialects. Preprocessing steps and
feature extraction methods play a critical role in the accuracy
of these algorithms. Preprocessing steps usually involve seg-
mentation, normalization, and cleaning techniques. Feature
extraction methods used for Arabic language hate speech
and abusive language detection include lexical, syntactic,
and semantic features. This section aims to provide an over-
view of the preprocessing steps and feature extraction meth-
ods used for Arabic language and dialect hate speech and
abusive language detection on social platforms.

3.1 Preprocessing steps

In the literature presented, researchers have employed vari-
ous preprocessing steps to improve the accuracy of Ara-
bic offensive language detection and hate speech detection
methods on social media. Some of the most commonly used
preprocessing steps include:

3.1.1 Stop words removal

Stop words are frequently occurring words that do not carry
much meaning. Researchers remove these words from the
text before running any analysis (Alshalan and Al-Khalifa
2020; Husain 2020; Alotaibi and Abul Hasanat 2020; Abdel-
Hamid et al. 2022). In addition, the authors in (Albadi et al.
2019) presented that they didn’t remove any negation words
since these are usually informative in sentiment analysis
tasks.

3.1.2 Noise removal

Researchers remove various forms of noise such as URLSs,
Emojis, digits, punctuation marks, non-Arabic words,
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repeated characters, mentions, HTML tags, and other sym-
bols such as <div>, emails, dates, and diacritics. Diacritics
are short vowels and characters above and beneath letters,
such as fatha, damma, kasra, etc. (Shannagq et al. (2022);
Elzayady et al. 2023a, b); Makram 2022; Azzi and Zribi
2022; Althobaiti 2022; Berrimi et al. 2020; Alshalan and Al-
Khalifa 2020; Haddad 2020; Omar et al. 2020; Husain 2020;
Mubarak 2020; Alakrot et al. 2021; AbdelHamid et al. 2022;
Badri et al. 2022; Alsafari et al. 2020a, b; Mostafa 2022;
Alzubi 2022; Boulouard et al. 2022a, b; Khezzar et al. 2023).
In addition, the authors in (Elzayady et al. 2022) raised the
removal of empty lines to obtain cleaner text.

3.1.3 Tokenization

Researchers split the text into small units, such as words
or phrases, to facilitate analysis. This operation therefore
makes it possible to segment a text document into word
tokens (Badri et al. 2022).

3.1.4 Stemming and lemmatization

Stemming and lemmatization are used to reduce words to
their base forms and reduce the number of unique words
in the dataset (Elzayady et al. 2023a, b; Boulouard et al.
2022a, b).

3.1.5 Emoji and emoticon conversion

It means changing emoji and emoticons into Arabic textual
labels that explain the content of them such as ®), is
replaced by (x=~) which means ‘happy’ (Elzayady et al.
(2023a, b; Husain and Uzuner 2022a, b; Alshalan and Al-
Khalifa 2020; El-Alami et al. 2022), and (Alzubi 2022).

3.1.6 Normalization

(Shannagq et al. (2022); Husain and Uzuner 2022a, b; AlFa-
rah et al. 2022) The normalization of Arabic characters, such
as changing the letters (5 1) to ()), and () to (s). Also,
(Al-Hassan and Al-Dossari 2021) included the removal of
the Arabic dash that is used to expand the word (e.g.,
als— «lf) to (alaill) which means ‘learning’.

3.2 Feature extraction methods
Feature extraction is the process of transforming raw data

into features that can be used for model training. Different
feature extraction methods have been used to identify the
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presence of offensive language and hate speech in Arabic
social media texts. The most commonly used feature extrac-
tion methods include:

3.2.1 Bag of words (BOW)

This method involves counting the frequency of each word
in the text and then treating the counts as features.

3.2.2 TF-IDF

This method assigns a weight to each word based on its
frequency in the document and its frequency across all
documents.

3.2.3 N-grams

This technique involves extracting a sequence of n words
from the text and treating them as features, where n can be
any positive integer.

3.2.4 Word embedding (WE)

This method involves representing words in a vector space,
such that words with similar meanings are closer together.
We can also say that it helps in capturing the underlying
semantic relationships between words.

3.2.5 Linguistic-based features (part of speech tagging
(POS))

This technique involves identifying the grammatical struc-
ture of the text and using it to extract meaningful features. It
involves labeling each word in the text with its correspond-
ing part of speech, such as noun, verb, adjective, etc., and
extracting features based on the frequency of hate speech
keywords in each part of speech category.

Finally, Table 1 demonstrates the different feature extrac-
tion and word representation methods used in Arabic offen-
sive language and hate speech detection.

4 Taxonomy: NLP, ML and DL models
FOR Arabic offensive and hate speech
detection

Natural language processing (NLP) is an advanced computa-
tional approach that deals with the analysis, understanding,
performing natural-language commands, and generation of
human language (Mansur et al. 2023). Over the past few
years, NLP has gained significant attention from research-
ers and practitioners due to its promising applications in
several fields, including but not limited to text classification,
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Table 1 Feature extraction and word representation methods

Method

Reference

TF-IDF

Aravec

Skip-Gram (SG)

Elzayady et al. (2023a, b, 2022); Althobaiti (2022); Al-Hassan and Al-Dossari (2021); Alhejaili et al. (2022);
Haddad (2020); Boulouard et al. (2022a, b); Shannag et al. (2022); Husain (2020); AbdelHamid et al. (2022);
AlFarah et al. (2022); Alzubi (2022); Aljuhani et al. (2022); Khezzar et al. (2023); Khairy et al. (2023)

Shannaq et al. (2022); Azzi and Zribi (2022); Mohaouchane et al. (2019); Husain and Uzuner (2022a, b); Faris
et al. (2020); Haddad (2020); Husain (2020); Mubarak (2021); AbdelHamid et al. (2022); Badri et al. (2022);
Albadi et al. (2019); Alsafari et al. (2020a, b); Aljuhani et al. (2022)

Shannaq et al. (2022); Azzi and Zribi (2022); Elzayady et al. (2023a, b); Mohaouchane et al. (2019); Duwairi
et al. (2021); Guellil et al. (2020); Faris et al. (2020); Haddad (2020); Mubarak et al. (2021); Alsafari and
Sadaoui (20214, b); AbdelHamid et al. (2022); Alsafari et al. (2020a, b); Alsafari and Sadaoui (2021a, b)

CBOW Shannaq et al. (2022); Azzi and Zribi (2022; Elzayady et al. (2023a, b); Mohaouchane et al. (2019); Duwairi
et al. (2021); Alshalan and Al-Khalifa (2020); Guellil et al. (2020); Haddad (2020); Albadi et al. (2019);
Alsafari et al. (2020a, b); Anezi (2022); Aljuhani et al. (2022)

Word2Vec (Azzi and Zribi (2022); Alshalan and Al-Khalifa (2020); Guellil et al. (2020); Faris et al. (2020); Haddad
(2020); Alsafari and Sadaoui (2021a, ba, b, 2021a, ba, b); Anezi (2022); Aljuhani et al. (2022)

n-grams Shannaq et al. (2022); Husain and Uzuner (2022a, b); Alshalan and Al-Khalifa (2020); Mubarak and Darwish
(2019); Alsafari et al. (2020a, b); Alsafari and Sadaoui (2021a, b)

FastText Guellil et al. (2020; Mubarak and Darwish (2019); Mubarak (2021); Badri et al. (2022); Alsafari et al. (2020a,
b)

AraBert WE Alsafari et al. (2020a, b); Mubarak (2021); Alsafari and Sadaoui (20214, b); Alsafari and Sadaoui (2021a, b)

AraVec2.0 Elzayady et al.(2023a, b, 2022)

MUSE Duwairi et al. (2021); Alzubi (2022)

MARBERT Makram (2022); Elzayady et al. (2023a, b)

Mazajak WE Mubarak (2021); Alzubi (2022)

GloVe Shannaq et al. (2022); Anezi (2022)

biLM El-Alami et al. (2022)

ELMo El-Alami et al. (2022)

AraBERTv0.2-Twitter large Alzubi (2022)

Emoji score Alzubi (2022)

BERTbase-multilingual Mubarak (2021)

DistilBert Alsafari and Sadaoui (2021a, b)

Blend Embeddings Aljuhani et al. (2022)
FastText-SkipGram Alsafari et al. (2020a, b)
MBert WE Alsafari et al. (2020a, b)
Part-Of-Speech Tagger Alakrot et al. (2021)
AraVec3.0 Shannag et al. (2022)

Bert Abbes et al. (2023)

Count of positive and negative ~ Mubarak (2021)
terms, based on polarity
lexicon

sentiment analysis, and speech recognition. Text classifica-
tion can be useful for automatically identifying offensive
language by assigning labels to new unseen texts (Husain
and Uzuner 2021). To the best of our knowledge, one of
the most pressing challenges that NLP has recently faced
is the rise of offensive language and hate speech on social
media platforms. Arabic, as a language with a rich history
and a broad user-base, has been heavily affected by this
challenge. Therefore, in this section, we aim to provide a
comprehensive taxonomy analysis of various methods used
in this domain, including machine learning, deep learning,
transformer-based methods, and ensemble approaches.

Machine learning methods have been widely used in hate
speech detection tasks. These methods have shown promis-
ing results in identifying hate speech, but they may struggle
to capture complex semantic relationships and dependencies
in Arabic text. Table 2 provides a summary of the most com-
mon ML methods used in the selected studies.

To overcome this limitation, deep learning techniques
have gained popularity due to their ability to capture intri-
cate patterns in text data. Deep learning models, such as
Convolutional Neural Networks (CNN), recurrent neural
networks (RNN). Table 3 provides a summary of the most
common DL methods used in the selected studies.

@ Springer
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Table2 A summary table of the most ML methods used in the selected studies

ML techniques

Reference

Logistic regression (LR)

Support vector classifier (SVM) or (SVC)

Random forest (RF)

Shannaq et al. (2022); Elzayady et al. (2023a, b); Makram (2022); Althobaiti (2022); Alhejaili
et al. (2022); Husain and Uzuner (2022a, b); Alshalan and Al-Khalifa (2020); Guellil et al.
(2020); Haddad (2020); Omar et al. (2020); Boulouard et al. (2022a, b); Mubarak (2021); Alak-
rot et al. (2021); Badri et al. (2022); AlFarah et al. (2022); Albadi et al. (2019); Alsafari et al.
(2020a, b); Anezi (2022); Aljuhani et al. (2022); Khezzar et al. (2023); Khairy et al. (2023);
Muaad et al. (2023)

Shannaq et al. (2022); Elzayady et al. (2023a, b); Azzi and Zribi (2022); Althobaiti (2022); Al-
Hassan and Al-Dossari (2021); Alhejaili et al. (2022); Husain and Uzuner (2022a, b); Alshalan
and Al-Khalifa (2020); Haddad (2020); Omar et al. (2020); Boulouard et al. (2022a, b); Shannag
et al. (2022); Mubarak (2021); AlFarah et al. (2022); Albadi et al. (2019); Alsafari et al. (2020a,
b); Aljuhani et al. (2022); Khezzar et al. (2023); Khairy et al. (2023); Muaad et al. (2023)

Shannaq et al. (2022); Elzayady et al. (2023a, b); Makram (2022); Alhejaili et al. (2022); Husain

and Uzuner (2022a, b); Guellil et al. (2020); Boulouard et al. (2022a, b); Mubarak (2021); Badri
et al. (2022); Alsafari et al. (2020a, b); Anezi (2022); Khezzar et al. (2023); Khairy et al. (2023);

Muaad et al. (2023)
Decision tree (DT)

Shannaq et al. (2022); Elzayady et al. (2023a, b); Alhejaili et al. (2022); Omar et al. (2020);

Mubarak (2021); Alakrot et al. (2021); AlFarah et al. (2022); Anezi (2022); Khezzar et al.
(2023); Muaad et al. (2023)

Naive Bayes (NB)

Shannaq et al. (2022); Boulouard et al. (2022a, b); AlFarah et al. (2022); Alsafari et al. (2020a, b);

Anezi (2022); Muaad et al. (2023)

Linear support vector machine (LinearSVC)
Extreme Gradient Boosting (XGBoost)
Multi-layer perceptron (MLP)

Gaussian naive Bayes (GNB)

Stochastic gradient descent (SGD)

Guellil et al. (2020); Alakrot et al. (2021); Khezzar et al. (2023)

Shannagq et al. (2022); Elzayady et al. (2023a, b); AbdelHamid et al. (2022)

Guellil et al. (2020); Anezi (2022)

Alhejaili et al. (2022); Mubarak (2021); Guellil et al. (2020)

Guellil et al. (2020); Omar et al. (2020); Khezzar et al. (2023)

Shannaq et al. (2022); Alhejaili et al. (2022); Khezzar et al. (2023); Khairy et al., (2023)

Omar et al. (2020); Khezzar et al. (2023); Muaad et al. (2023)

KNearestNeighbor (KNN)

MultinomialNB Omar et al. (2020); Khezzar et al. (2023)
BernoulliNB

Ridge Haddad (2020); Omar et al. (2020)
Perceptron Omar et al. (2020); Mubarak (2021)
AdaBoost Alhejaili et al. (2022); Mubarak (2021)

extra trees

Gradient boosting

Nu-support vector classification (NuSVC)  Omar et al. (2020)
Omar et al. (2020)

Omar et al. (2020)

Complement NB
Nearest centroid
CatBoost

Passive-aggressive classifier (PAC) Elzayady et al. (2022)

AbdelHamid et al. (2022)

Elzayady et al. (2023a, b); Alakrot et al. (2021); Muaad et al. (2023)
Elzayady et al. (2023a, b); Mubarak (2021)

On other hand, transformer-based methods such as,
BERT (Bidirectional Encoder Representations from Trans-
formers) and GPT (Generative Pretrained Transformer)
have achieved remarkable success in various natural lan-
guage processing tasks, including hate speech detection.
Table 4 provides a summary of the most Transformer-
based and transfer learning methods used in the selected
studies.

Additionally, ensemble methods have been proposed to
capitalize on the strengths and weakness of different mod-
els and enhance hate speech detection performance further.
Table 5 provides a summary of the most common ensemble
models used in the selected studies.

@ Springer

Finally, an extensive taxonomy analysis of machine learn-
ing, deep learning, transformer-based, and ensemble meth-
ods for offensive language and Arabic hate speech detection
is illustrated in Fig. 5.

5 Datasets

The datasets used in Arabic offensive language and hate
speech detection play a crucial role in determining the
effectiveness and accuracy of the techniques used. The
quality and quantity of the data directly impact the per-
formance of these techniques. Consequently, it is essential
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Table 3 A summary table of the most DL methods used in the selected studies

DL techniques Reference

CNN Azzi and Zribi (2022); Mohaouchane et al. (2019); Duwairi et al. (2021); Alshalan
and Al-Khalifa (2020); Faris et al. (2020); Haddad (2020); Omar et al. (2020);
Alotaibi and Abul Hasanat (2020); El-Alami et al. (2022); Alsafari et al. (2020a,
b); Khezzar et al. (2023)

LST™M Elzayady et al. (2023a, b); Al-Hassan and Al-Dossari (2021); Husain and Uzuner

BiLSTM bidirectional LSTM

The gated recurrent unit (GRU)

RNN

Bidirectional gated recurrent unit with attention (BI-GRU)
EL LSTM, ESoA, ELSoA (Soft attention mechanism)

Bi-LSTM with attention mechanism
CNN_ATT,

Bi-GRU_ATT

DRNN-2

DRNN-1

(2022a, b); Guellil et al. (2020); Faris et al. (2020); Boulouard et al. (2022a, b);
Husain (2020); El-Alami et al. (2022); Alsafari et al. (2020a, b); Boulouard et al.
(2022a, b)

Elzayady et al. (2023a, b); Azzi and Zribi (2022); Mohaouchane et al. (2019);
Guellil et al. (2020); Husain (2020); El-Alami et al. (2022); Alsafari and Sadaoui
(2021a, b); Aljuhani et al. (2022)

Elzayady et al. (2023a, b); Al-Hassan and Al-Dossari (2021); Alshalan and
Al-Khalifa (2020); Husain (2020); Albadi et al. (2019); El-Alami et al. (2022);
Alsafari et al. (2020a, b)

Husain and Uzuner (2022a, b); Faris et al. (2020); Omar et al. (2020); Husain
(2020)

Azzi and Zribi (2022); Elzayady et al. (2022); Haddad (2020); Husain (2020)
Berrimi et al. (2020)

Mohaouchane et al. (2019); Abbes et al. (2023)

Haddad (2020)

Haddad (2020)

Anezi (2022)

Anezi (2022)

Table4 A summary table of the most Transformer-based and Transfer Learning methods used in the selected studies

Techniques Reference

AraBERT Elzayady et al. (2023a, b); Husain and Uzuner (2022a, b); Duwairi et al. (2021); Husain and
Uzuner (2022a, b); Mubarak (2021); AbdelHamid et al. (2022); El-Alami et al. (2022);
Alsafari et al. (2020a, b); Mostafa (2022); Alzubi (2022); De Paula (2022); Boulouard et al.
(2022a, b); Khezzar et al. (2023); Muaad et al. (2023); M. Abbes et al. (2023); Mohamed
et al. (2023)

MBERT Duwairi et al. (2021); El-Alami et al. (2022); Alsafari et al. (2020a, b), De Paula (2022)

BERT Azzi and Zribi (2022); Awane et al. (2021); Alshalan and Al-Khalifa (2020); Mubarak (2021)

QARIB Duwairi et al. (2021); Mostafa (2022)

ArabicBERT Husain and Uzuner (2022a, b); AbdelHamid et al. (2022)

MARBERT Elzayady et al. (2023a, b); Mostafa (2022); Mohamed et al. (2023)

XLM-Roberta Duwairi et al. (2021); De Paula (2022)

AraElectra De Paula (2022)

Albert-Arabic De Paula (2022)

AraGPT2 De Paula (2022)

MARBERTV2 Mostafa (2022); Ahmed et al. (2022); Mohamed et al. (2023)

GigaBERT AbdelHamid et al. (2022)

AraULMFiT El-Alami et al. (2022)

BERT base-multilingual Mubarak (2021); Ahmed et al. (2022)

BERTEN Boulouard et al. (2022a, b)

mBERTAR Boulouard et al. (2022a, b)

mBERTEN Boulouard et al. (2022a, b)

bert-large-arabertv02-twitter
Bert-base-arabic-camelbert-mix
Araelectra-base-discriminator

Camelbert-DA, Camelbert-CA, Camelbert-MSA

Ahmed et al. (2022)

Ahmed et al. (2022); Al-Dabet et al. (2023)
Ahmed et al. (2022)

Al-Dabet et al. (2023)
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Table 5 A summary table of the most ensembles of models used

Techniques Reference

CNN+GRU Elzayady et al. (2023a, b); Al-Hassan and Al-Dossari (2021); Alshalan and Al-Khalifa
(2020); Badri et al. (2022); El-Alami et al. (2022)

CNN-LSTM Elzayady et al. (2023a, b); Mohaouchane et al. (2019); Al-Hassan and Al-Dossari
(2021); Duwairi et al. (2021)

BiLSTM-CNN Elzayady et al. (2023a, b); Duwairi et al. (2021); El-Alami et al. (2022)

CNN + AraBert Alsafari et al. (2020a, b); Alsafari and Sadaoui (2021a, b)

BiLSTM + AraBert

CNN + DistilBert

BiLSTM + DistilBert

CNN+SG

BiLSTM +SG

CNN + Bert

Emoji-Score, AraBERT,Char + word + MUSE + Emoji
LightGBM + MARBERT + MARBERTV?2
AraBERT-B-T + MARBERT + QARiB
MARBERTV2 + MARBERT + QARiB
Majority vote and Highest sum

Alsafari et al. (2020a, b); Alsafari and Sadaoui (2021a, b)
Alsafari and Sadaoui (2021a, b)
Alsafari and Sadaoui (2021a, b)
Alsafari and Sadaoui (2021a, b)
Alsafari and Sadaoui (2021a, b)
Alsafari and Sadaoui (2021a, b)
Alzubi (2022)

Mostafa (2022)

Mostafa (2022)

Mostafa (2022)

De Paula (2022)

AraHS model
GA-XGBoost

GA-SVM

Bagging (Random forst)
Boosting (Adaboost)

AlKhamissi (2022)

Shannaq et al. (2022)

Shannaq et al. (2022)

Khairy et al. (2023); Muaad et al. (2023)
Khairy et al. (2023); Muaad et al. (2023)

to use high-quality datasets that can accurately represent
the different types of offensive language. The data-
sets building process involves three stages (Omar et al.
2020): data collection, data filtering, and data annota-
tion. Figure 6 depicts the dataset building process. In this
section, to present a clear overview, we have provided
a comprehensive table (Table 6) outlining the datasets
employed, offering crucial details such as their names,
sizes, sources, and characteristics. These datasets were
representing a diverse range of offensive language and
Arabic hate speech instances, allowing for a more thor-
ough examination of the problem at hand.

Furthermore, we introduced the dataset from availabil-
ity/non-availability perspective. Figure 7 shows the per-
centage of dataset availability. On other hand, this survey
revealed that a large majority of the Arabic hate speech
datasets are imbalanced in nature. This means that the
datasets contain a disproportionate amount of data rep-
resenting certain types of hate speech, while other types
are underrepresented. By analyzing the datasets used in
this review, researchers can identify common features and
patterns that could be leveraged to improve the accuracy
and efficiency of hate speech detection algorithms. More-
over, by comparing the results of different studies and

@ Springer

analyzing the underlying datasets, researchers can deter-
mine the most effective approaches and identify areas for
future improvement. Also, in Table 7 we showed the most
frequent datasets used for Arabic offensive language and
hate speech detection in recent studies.

6 Literature review

This section highlights a brief summary of the earlier
studies related to the domain of our survey and how they
contribute to the existing body of knowledge on Arabic
offensive language detection on social media. First of all, it
should be mentioned that the Arabic language is one of the
most widely spoken languages globally, and social media
platforms are widely used by Arabic-speaking communi-
ties (Azzi and Zribi 2022; Berrimi et al. 2020; Husain and
Uzuner 2022a, b; Mohaouchane et al. 2019; Al-Hassan and
Al-Dossari 2021). In the research conducted by (Elzayady
et al. (2023, 2022); Abuzayed 2020; Husain and Uzuner
2022a, b), and to the best of our knowledge, studies done
in Arabic compared to other languages to find an opti-
mum solution for automatically detecting offensive and
hate speech are still few. Recently, the researchers paid
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Fig.5 Taxonomy of the approaches in Arabic offensive language and hate speech detection studies

Arabic Dataset

Fig.6 The datasets building process

attention to Arabic natural language processing (ANLP)
and its challenges in developing automatic solutions for
Arabic offensive language detection on social media.
Researchers used a variety of approaches to detect and
classify offensive Arabic languages in these competitions.
For instance, some authors examined ML methods such
as NB, KNN, SVM, RF, XGBoost, DT, and LR (Shannaq
et al. 2022; EL-Zayady et al. 2023a, b; Azzi and Zribi
2022; Makram 2022; Althobaiti 2022; Alhejaili et al.
2022). Others applied a fine tuning of deep bidirectional

transformers for Arabic, such as AraBERT and MAR-
BERT (Althobaiti 2022; Elzayady et al. 2023; Husain and
Uzuner 2022a, b). However, (Elzayady et al. 2023a, b;
Azzi and Zribi 2022; Mohaouchane et al. 2019; Al-Hassan
and Al-Dossari 2021; Alsafari et al. 2020a, b; Duwairi
et al. 2021) trained various deep neural network models.

This review of Arabic offensive language and hate
speech detection does not exceed fifty-four studies, as
mentioned above. In addition, a brief summary of the
studies, contributions, techniques, and superior results is
presented in Table 8.

Several attempts are conducted in the literature to detect
Arabic offensive language using a variety of datasets col-
lected from different social media platforms. For instance,
the authors in (Shannagq et al. 2022) proposed an intelligent
prediction system to detect offensive language in Arabic
tweets. For this purpose, they tested the proposed approach
on an Arabic Cyber Bullying Corpus (ArCybC), which
contains 4505 tweets collected from different domains on
Twitter: gaming, sports, news, and celebrities, by fine-tun-
ing the pre-trained word embedding models using seven
ML classifiers, namely NB, KNN, SVM, RF, XGBoost,
DT, and LR. They found that the XGBoost and SVM

@ Springer
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Fig. 7 The percentage of datasets availability

algorithms gave excellent results. Therefore, they applied
a hybrid approach to these two classifiers using a genetic
algorithm (GA), namely GA-SVM and GA-XGBoost, to
reduce the time and cost and mitigate the challenges of
optimizing their hyperparameters.

The SVM algorithm with the Aravec SkipGram word
embedding model achieved superior results in terms of accu-
racy (88.2%) and F1-score rate (87.8%).

Similarly, the authors in (Shannag et al. 2022) presented
the development and evaluation of a multi-dialect and anno-
tated Arabic cyberbullying corpus (ArCybC) for detecting
and analyzing cyberbullying in Arabic. They highlighted
the lack of annotated Arabic cyberbullying data as a hin-
drance to the development of effective detection models.
To address this, they introduced machine learning models
and experimented with techniques such as support vector
machine (SVM), random forest (RF), XGBoost, decision

tree (DT), and logistic regression (LR) using both TF-IDF
and Aravec word embedding. The authors used the same
corpus in (Shannaq et al. 2022), and the results of the experi-
ments reveal that the SVM model with word embedding per-
formed the best, achieving an accuracy rate of 86.3% and an
F1-score rate of 85%.

In another cyberbullying study (AlFarah et al. 2022),
the authors focused on the detection in the Arabic language
using machine learning techniques of cyberbullying. They
identified the challenges of working with an imbalanced
dataset, where the number of cyberbullying instances is sig-
nificantly lower than the number of non-bullying instances,
and proposed the use of sampling techniques such as
SMOTE to overcome this issue. The authors used a dataset
of 24,560 Arabic tweets and comments collected from Twit-
ter and YouTube and oversampled the minority class to bal-
ance the data. They also compared the performance of vari-
ous machine learning algorithms and found that Naive Bayes
achieved the highest AUC at 89%. The proposed approach
shows promise in effectively detecting cyberbullying in Ara-
bic tweets, despite the imbalanced nature of the dataset.

Moreover, the surveys (Khairy et al. 2021; ALBayari
et al. 2021) reviewed cyberbullying classification methods
for Arabic, classified into three categories: deep learning-
based, machine learning-based, and hybrid. These reviews
also highlighted the challenges posed by the Arabic language
for natural language processing tasks as well as the growing
interest in developing machine learning and deep learning
models for detection. Contextual features such as sentiment
analysis and user profiling were found to be more effective
in capturing the nuances of the Arabic language. Results
show that SVM and CNN are the most used algorithms, but
the quality of datasets and features has a significant impact
on performance.

Table 7 The taxonomy of the most frequent Arabic offensive language and hate speech detection datasets

Dataset Reference

OSACT4 Elzayady et al. (2023a, b); Berrimi et al. (2020); Husain and Uzuner (2022a, b); Duwairi et al. (2021);
Mubarak (2020); Husain (2020); Mubarak (2021); Haddad (2020); Mohamed et al. (2023); Al-Dabet et al.
(2023)

OSACTS Makram (2022); Althobaiti (2022); AlKhamissi (2022); Mostafa (2022); Alzubi (2022); De Paula (2022);

Al-Dabet et al. (2023)

ArabicCommentsFromYouTube
et al. (2022a, b)

ArabicHateSpeechDataset

Mohaouchane et al. (2019); Awane et al. (2021); Boulouard et al. (2022a, b); Alakrot et al. (2021); Boulouard

Alsafari et al. (2020a, b); Alsafari and Sadaoui (2021a, b)
Berrimi et al. (2020); Husain and Uzuner (2022a, b); Mulki et al. (2019); Husain and Uzuner (2022a, b)

L-HSAB

T-HSAB Berrimi et al. (2020); Husain and Uzuner (20224, b); Haddad et al. (2019)
AraHate Berrimi et al. (2020); Albadi et al. (2018); Albadi et al. (2019)

ArCybC Shannaq et al. (2022); Al-Dabet et al. (2023)

Arapersonality Elzayady et al. (2023a, b)

Tun-EL Badri et al. (2022)
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Table 8 (continued)

Results

Dataset(s)

Algorithms

Contribution

Reference

CAMeLBERT mix version achieved superior results with 87.15%

Combined dataset (OSACT

CAMeL-BERT-Da
CAMeL-BERT-Ca

A proposed approach

Al-Dabet et al. (2023)

accuracy and 83.6% F1 score

2022 + OSACT4 + multi-

employs versions of
the CAMeLBERT
model and is vali-

platform dataset+ ArCybC)

CAMeL-BERT- Msa

CAMeL-BERT-Mix

dated using a mixture
of four benchmark

Twitter Arabic

datasets annotated for
hate speech detection

task,

In another study (Azzi and Zribi 2022), the authors aimed
to investigate various state-of-the-art models for detecting
abusive language in Arabic social media. They conducted
their experiments to detect eight specific subtasks of abusive
language in Arabic social platforms, namely racism, sexism,
xenophobia, violence, hate, pornography, religious hatred,
and LGBTQa hate, using CNN, BiLSTM, and BiGRU deep
neural networks with pre-trained Arabic word embeddings
(AraVec) and also pre-trained Arabic word embeddings and
a BERT model comparing the results with an ML-based
algorithm (SVM). They compiled a dataset from two famous
platforms, which are Twitter and YouTube. The dataset con-
sists of 6000 records. They performed manual annotation for
it; 1914 out of the 6000 lines (31%) were labelled as normal,
while the rest were marked as abusive. The result shows that
CNN, BiLSTM, BiGRU, and BERT have outperformed the
base ML classifier SVM, and the BERT model achieved the
best results in terms of precision (90%) and micro-averaged
F1-Score (79%).

Unlike, a more specific dataset was presented in (Alsafari
et al. 2020a, b) for hate and offensive speech, containing
5340 records collected from Twitter. It was written in the
most common Arabic languages: the Gulf Arabic dialect,
spoken by the Arabian Peninsula countries, and modern
standard Arabic, understandable by all Arabic speakers.
This corpus has been divided among two-class, three-class,
and six-class labelling datasets. The authors proposed sin-
gle and ensemble artificial neural network (ANN) architec-
tures, CNN and BiLSTM that are trained with different word
embedding techniques, non-contextual: Fasttext-SkipGram,
and contextual: multilingual Bert (MBERT) and AraBert.
The challenge was a six-class classification setting where
the goal was not only to detect the existence of hate but also
the type of hate.

The experiments showed that for single learners,
CNN + AraBERT is the best single classifier on each clas-
sification task, and the two contextualized word embeddings,
AraBert and MBert, outperformed the non-contextualized
FastText with both ANN models. For an ensemble of learn-
ers, the ensemble models perform better than the single
models across all performance metrics. The CNN-Average
improves the performance across two-class and three-class
labels, but for the challenge of six-class classifications,
the average-based BiLSTMs ensemble model obtained an
F1-Macro of 80.23%, which outperformed the average-based
CNN ensemble. For future work, they aim to try semi-super-
vised classification.

Reference (Berrimi et al. 2020) worked on a novel deep
learning model based on the attention mechanism for smooth
and accurate learning and classification to filter out offen-
sive and abusive Arabic content on social media posts and
comments. They used four available Arabic datasets from
some previous studies (Mubarak et al. 2017; Albadi et al.
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2018; Mulki et al. 2019; Haddad et al. 2019) related to
inappropriateness in the Arabic language. These datasets
are collected from different platforms as follows: the first
one was obtained from comments deleted from Aljazira.
com. It contains 32k comments that were annotated using
CrowdFlower; these comments were labelled as obscene,
offensive, or clean. The second, AraHate dataset, consists of
6000 tweets collected from Twitter and labelled as “hate” or
“not hate”. Third, they used the Subtask ‘A’ dataset shared
within the 4th Workshop on open-source Arabic Corpora
and Processing Tools (OSACT#4). It contains 10,000 tweets
that were manually annotated and labelled as OFF or NOT
OFF. Finally, they combined two datasets, namely, L-HSAB
(5846 tweets) and T-HSAB (6024 records collected from
Facebook and YouTube), to obtain a larger dataset of differ-
ent Arabic dialects of abusive and hate speech. The authors
proposed a soft attention mechanism to detect different types
of inappropriate speech by applying three models, namely,
EL LSTM, ESoA, and ELSo0A, to each dataset. The results
indicated that the ELSoA model has achieved superior accu-
racy of 97.47%.

Also, F. Husain et al. (Husain and Uzuner 2022a, b)
worked on the same dialectal datasets (L-HSAB, T-HSAB,
and OSACT4) used in (Berrimi et al. 2020), except the
authors used the Egyptian Tweets dataset instead of Aljazira.
com. The Egyptian Tweets dataset consists of 1100 records
collected from Twitter and labelled as offensive or not offen-
sive. They proposed a transfer learning approach across dif-
ferent Arabic dialects for offensive language detection using
the BERT model. They built on the pre-trained AraBERT
model using the above dialectal datasets for fine-tuning and
evaluating the model to see the effect of different Arabic
dialects on offensive language detection. The experiments
indicated that the Egyptian and Tunisian dialects gained
better performance than Levantine in terms of accuracy of
0.86% and F'1 rate of 0.85%.

On the other hand, the study (Mohaouchane et al. 2019)
aimed to fill this gap in Arabic offensive language detection
on social media. The authors proposed four different neu-
ral network models, namely: convolutional neural network
(CNN), bidirectional long short-term memory (Bi-LSTM),
attentional Bi-LSTM, and a combined CNN-LSTM model
for detecting offensive texts on social media platforms.
They used an available dataset of 15,050 records of Arabic
YouTube comments taken from popular, controversial You-
Tube videos about Arab celebrities. The dataset was manu-
ally annotated, and the data was labelled either offensive or
not offensive. The dataset was imbalanced, so the authors
used the random oversampling technique to balance its
classes and obtain accurate classification results. The com-
bined CNN-LSTM network achieved the best recall rate of
83.46%, while it was clear that the CNN model achieved the

@ Springer

best accuracy and precision rates of 87.84% and 86.10%,
respectively.

Likewise, the authors in (Alhejaili et al. 2022) built a
dataset during the COVID-19 pandemic period from January
31 to March 6, 2021, to provide an automatic way to detect
hate speech in Arabic tweets during this pandemic using a
variety of machine learning classifiers. The dataset was col-
lected and preprocessed from Twitter and consists of 5408
tweets, which were then annotated as hate or not hate. They
used TF-IDF for feature extraction and trained the dataset
in three types: unigram, bigram, and trigram. The authors
used a set of machine learning classifiers, namely support
vector machine (SVM), random forest (RF), logistic regres-
sion (DT), decision tree, AdaBoost, k-nearest neighbours
(KNN), and Gaussian naive Bayes (GNB), to classify the
content into hate or not hate. The seven classifiers did well,
but the classifier LR achieved the highest performance in
accuracy (Acc) of 90.8% with unigram. Otherwise, the Ada-
Boost model achieved the highest precision (P) at 90.8%
with trigram. In the future, they aim to use deep learning
models for Arabic hate speech detection during COVID-19
and compare the results with the above machine learning
models results.

Elzayady et al. 2022 proposed two effective models
using online supervised machine learning and deep neu-
ral networks, namely, passive-aggressive classifiers (PAC)
and bidirectional gated recurrent units with attention (BI-
GRU), to improve Arabic hate speech identification. The
authors used the first Arabic hate speech multi-platform
dataset. It was collected from four social media networks
that contributed comments: Twitter, YouTube, Facebook,
and Instagram. The dataset is well-balanced and consists
of 20,000 posts, tweets, and comments, of which 10,000
are hateful and the other 10,000 are non-hateful. A variety
of preprocessing steps for data preparation have been con-
ducted. They used both term frequency-inverse document
(TF-IDF) and pre-trained AraVec2.0 word embeddings as
feature extraction techniques for text representation. The
experiments were done and tested in Google Colab Pro by
using NumPy, Pandas, Re, Alphabet Detector, Sklearn, and
Keras packages. The results were assessed in terms of accu-
racy, precision, recall, and F1 score values. It was clear that
the BI-GRU model outperformed PAC, where Bi-GRU with
an attention layer provided an accuracy of 99.1% and PAC
achieved 98.4%.

Moreover, Duwairi et al. 2021 proposed a deep learning
framework for automatic detection of hate speech within
Arabic tweets. The framework was developed using a hybrid
approach of recurrent and convolutional neural networks,
namely: CNN, LSTM-CNN, and BiLSTM-CNN, along with
pre-processing techniques such as word-level (SG, CBOW)
and sentence-level (pre-trained MUSE) embedding to rep-
resent and classify text data. The authors evaluated their
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model on a large dataset of 23,678 Arabic tweets, which
was compiled from three datasets: the Arabic Hate Speech
(ArHS) dataset, the Levantine Hate Speech and Abusive
(L-HSAB) dataset, and the 4th workshop on Open-Source
Arabic Corpora and Processing Tools (OSACT4) shared task
dataset, and compared its performance with other existing
methods, demonstrating the effectiveness of the proposed
framework in accurately detecting hate speech. The study
highlights the potential of deep learning approaches for hate
speech detection in languages other than English. The results
showed that the SG-BiLSTM-CNN and SG-CNN were the
best-performing models with the multi-class classification
using the ArHS dataset.

In addition, the study by (Makram 2022) introduces
machine learning and transformer-based models as a hybrid
model for detecting offensive and hateful Arabic speech.
The model consists of multiple classifiers, such as logistic
regression and random forest; each specialized in detecting
a specific type of offensive language. The authors trained the
model on a dataset of Arabic social media posts using the
Arabic pre-trained Bert language model MARBERT for fea-
ture extraction of the Arabic tweets in the dataset provided
by the OSACT2022 shared task. The results were divided
among hate and offensive classes, where the best results
achieved for the offensive tweet detection task were achieved
by the logistic regression model with accuracy, precision,
recall, and f1-score of 80%, 78%, 78%, and 78%, respec-
tively, while the results for the hate speech tweet detection
task were 89%, 72%, 80%, and 76%. The authors also dis-
cussed the limitations and future directions for improving
the model’s performance. They also plan to investigate dif-
ferent machine learning classifiers such as SVM and Naive
Bayes for the binary classification tasks using different rep-
resentation models in the hope of achieving higher scores.

Also, Al-Hassan et al. (Al-Hassan and Al-Dossari 2021)
presented a method for detecting hate speech in Arabic-
language tweets using deep learning techniques. The
authors collected a dataset of Arabic tweets consisting of
11k tweets and manually annotated them as five distinct
classes: none, religious, racial, sexism, or general hate. The
authors used the SVM model with TF-IDF word representa-
tion as a baseline for several deep learning models, namely,
LTSM, CNN +LTSM, GRU, and CNN + GRU, to classify
new tweets. The results showed that the proposed models
achieved high accuracy in detecting hate speech in Arabic
tweets, suggesting that these techniques can be useful for
identifying and addressing hate speech in online Arabic-
language communities. Overall, the ensemble model of
CNN + LTSM obtained superior performance with 72%
precision, 75% recall, and 73% F1 score.

Another study (Althobaiti 2022) proposed a new approach
using the BERT model for hate speech and offensive lan-
guage detection in Arabic tweets. The approach utilizes both

emojis and sentiment analysis as appending features along
with the textual content of the tweets in order to improve the
accuracy of the detection. The authors compared their model
with two conventional machine learning classifiers, support
vector machine (SVM) and Logistic Regression (LR). They
used the largest and most recently released dataset (OSACT
2022 shared task) for offensive language and hate speech
detection in Arabic, which contains 12,698 tweets. The
dataset was defined for three tasks: offensive language, hate
speech, and fine-grained hate speech, which focus on spe-
cific types of hate speech. Various levels of preprocessing
were done for data preparation, such as cleaning (CLN),
appending sentiments (SA) as additional textual features,
and replacing emojis (EmoT'xt) with their corresponding tex-
tual descriptions. As a result, there are five versions of the
dataset: original tweets, CLN, CLN + SA, CLN + EmoTxt,
and CLN + SA + EmoTxt. They trained SVM and LR on
these datasets’ versions using word n-grams and TF-IDF,
and they built five BERT models for each task as follows:
AraBERT, QARiB, mBERT, XLLM-RoBERT?4, and their pro-
posed model with its suggested preprocessing levels. The
results of the experiments demonstrate that the proposed
approach achieves high performance in detecting offensive
language, hate speech, and fine-grained hate speech in Ara-
bic tweets, with an F1-Score of 84.3%, 81.8%, and 45.1%
for each task respectively.

Another work by Elzayady et al. (2023a, b) proposed a
hybrid approach for hate speech detection in Arabic social
media by combining machine learning algorithms and per-
sonality trait analysis. They collected a dataset of social
media posts (the Arapersonality dataset and the OSACT
dataset) and extracted linguistic features using natural lan-
guage processing (NLP) techniques. They investigated the
implementation of both machine learning models: RF, extra
trees, DT, SVM, gradient boosting, XGBoost, and logistic
regression (LR) and deep learning models: recurrent neural
networks (RNNs) and CNN, namely, LSTM, bidirectional
long short-term memory (BI-LSTM), a gated recurrent unit
(GRU), and hybrids of CNN and RNN models (CNN-LSTM,
CNN-BILSTM, and CNN-GRU). Then, they analyzed the
personality traits of the authors and used them as additional
features in their proposed AraBERT model. The proposed
approach achieved promising results with a macro-F'1 score
of 82.3% compared to other state-of-the-art methods.

Similarly, in another study by (Elzayady et al. 2023a, b),
the authors continued their work in (Elzayady et al. 2023a,
b) using the same datasets, proposing a novel method for
enriching the MARBERT model with hybrid features that
incorporate static word embedding (AraVec 2.0) and per-
sonality trait features for Arabic hate speech detection. They
implemented their experiments by fine-tuning the MAR-
BERT model with hybrid features using the convolutional
neural network (CNN) to be utilized for classification. The
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results showed that they achieved outstanding outcomes for
Arabic hate speech challenges, greatly surpassing previous
studies, where the proposed model achieved a high-perfor-
mance score in terms of macro-F1 score of 86.4% compared
with the traditional MARBERT. In the future, the authors
will need to extend their proposed methodology to include
multi-personality trait features rather than binary ones and
investigate sampling methods in greater depth to address
the issue of imbalanced data. They will also try to improve
their proposed model for future goals in Arabic hate speech
classification using multi-task learning approaches.

Another trend is semi-supervised learning, which is a
hybrid of supervised and unsupervised learning, combin-
ing labelled and unlabeled data to understand how it can
change learning behaviour. It is of great interest in machine
learning and data mining, as it can use readily available
unlabeled data to improve supervised learning tasks. Several
attempts were made to analyze the effectiveness of several
semi-supervised learning approaches. For instance, (Alsa-
fari and Sadaoui 2021a, b) proposed a new approach for
Arabic hate speech detection called semi-supervised self-
learning (SSSL). The authors used two datasets, a smaller
seed dataset of labelled data and a larger unlabeled corpus of
data, to train the model that can detect hate speech in Arabic
text. The experiments for the SSSL framework consisted of
three primary phases: training several pairs of deep learning
classifiers with non-contextualized or contextualized word
embedding models, labelling the unlabeled dataset using the
optimal classifier artificially, and fine-tuning the baseline
classifier. The results showed that the CNN + SG achieved
superior performance in terms of an F1-Score of 88.59%.

Similarly, in (Alsafari and Sadaoui 2021a, b), the authors
presented a semi-supervised self-training framework
to detect hate and offensive speech on social media. The
authors used the same datasets in (Alsafari and Sadaoui
2021a, b) to train the model. They conducted six groups
of experiments to validate the SSST approach and selected
the best classifier by assessing several text vectorization
algorithms and machine learning algorithms. The results of
the experiments showed that the self-training approach out-
performed the baseline model, achieving higher accuracy,
precision, and recall. The authors also found that ensemble-
based selection of confident pseudo-labelled data achieved
comparable results to classical self-training. Finally, the
CNN + W2VSG achieved an F1-Score of 89.51.

In a further work (Alakrot et al. 2021), the authors intro-
duced a novel approach to identifying offensive language
in Arabic online communication using machine learning
algorithms. Their dataset of 15,050 labelled YouTube
comments served as a unique resource for future research
on anti-social behaviour in Arabic online communities.
The authors applied a series of text preprocessing, feature
extraction, and feature selection techniques to represent

@ Springer

the data, including word n-grams, character n-grams, and
part-of-speech tags. Various classifiers, such as naive
Bayes, support vector machines, and random forest, are
trained to detect offensive language, and their performance
is evaluated using precision, recall, and F1-score metrics.
Additionally, the authors examined different methods for
feature selection, including logistic regression, support
vector machines with L1 regularization, and feature rank-
ing with recursive feature elimination. The superior results
from the RFEULR-L1 method demonstrate the efficacy
of the machine learning approach in effectively detecting
offensive language in Arabic online communication.

The issue of racism on social media platforms has
become increasingly prevalent, and with it comes potential
harm to individuals and society. To address this problem,
the authors in (Alotaibi and Abul Hasanat 2020) propose
a model for detecting racism in Arabic tweets using deep
learning and text mining techniques. This automated tool
applies convolutional neural networks (CNN) to classify
Arabic tweets as either racist or non-racist, utilizing a
Twitter dataset that contains both types of tweets. Pre-
processing of the data involves cleaning and tokenizing
the tweets, converting them to vectors, and feeding them
into models for training and testing. The results demon-
strate the effectiveness of deep learning and text mining
techniques in detecting racism on Twitter, surpassing the
performance of statistical machine learning models. Such
models are crucial in mitigating the impact of harmful
content on individuals and society and therefore repre-
sent a significant contribution to the field of social media
analysis.

The Levantine Arabic dialect is very close to standard
Arabic. The study presented in (AbdelHamid et al. 2022)
is concerned with the detection and classification of hate
speech in Arabic tweets from the Levant region. The authors
highlighted the harmful effects of hate speech on individu-
als and society and argued for the need for automated and
accurate hate speech detection methods. The authors utilized
a variety of models and algorithms for detecting hate speech,
including deep learning and traditional machine learning
techniques. A hybrid approach was adopted that combined
word embedding and TF-IDF features for traditional clas-
sification models and BERT models for deep learning mod-
els. The dataset used in the study was collected from Twit-
ter using specific keywords related to hate speech from the
Levant region and was manually annotated into two classes.
The experiment results demonstrate that the concatenation
of word embedding and TF-IDF can improve classification
performance and that deep learning classifiers show superior
performance compared to traditional ones. The best model,
using GigaBERT, achieved an AUC-ROC curve of 94.6%
and a macro F1-score of 0.81, outperforming other models.
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Also, the work (Awane et al. 2021) focused on the detec-
tion of hate speech in the Arab electronic press and social
networks. The authors proposed the BERT Large model in
Arabic, which was pre-trained on various dialects. They
used a combination of three hate speech datasets to ana-
lyze 38,654 entries made up of texts in classical Arabic,
Levantine, and North African dialects. The proposed model
was evaluated using precision metrics, recall, and F'1-Score,
reaching an accuracy of 83% and an F1-Score of 89%.

Furthermore, (Badri et al. 2022) presented a new
approach for detecting inappropriate content in Arabic hate
speech and abusive language by using multi-dialecticism.
The authors built a large dataset called Tun-EL, which cov-
ers three Arabic dialects, and proposed a CNN-BiGRU
model with fastText and AraVec word embeddings to clas-
sify the content. The experimental results showed that the
deep learning model outperformed traditional machine
learning models, achieving 88% classification accuracy for
hateful content and 76% classification accuracy for abusive
content. However, the model’s performance varied depend-
ing on the dialect used. Therefore, the authors suggested
enlarging the dataset and fine-tuning the hyperparameters
to improve the model’s accuracy.

However, authors in (Faris et al. 2020) discussed a study
on detecting hate speech in Arabic using word embeddings
and deep learning techniques. They highlighted the chal-
lenges of detecting hate speech in Arabic and presented a
novel approach that uses pre-trained word embeddings and
deep neural networks. The approach was evaluated using
several deep learning models, including convolutional neural
networks (CNN), recurrent neural networks (RNN), and long
short-term memory (LSTM). The dataset used for the study
was collected from Twitter and consisted of 3696 tweets
that were manually annotated and labelled as hate, normal,
and neutral. The experiments showed that the AraVec word
embedding approach with the recurrent convolutional net-
works was competent and achieved a high accuracy and F1-
score of 71.688% compared to existing methods, demon-
strating its effectiveness in identifying hate speech in Arabic.

In a recent review article (Azzi and Zribi 2021), the
author discussed the use of machine learning and deep
learning techniques for detecting abusive messages in Ara-
bic social media. The authors introduced the problem of
detecting abusive messages and explained why it is impor-
tant. They then provide an overview of machine learning
and deep learning methods and techniques, along with their
taxonomy. The authors also discussed common datasets
used for training and testing models for detecting abusive
messages. Finally, the paper concluded with a summary of
the research and discussed future challenges in this area of
research. The results suggested that deep learning models
perform better than traditional machine learning models for
detecting abusive messages in Arabic social media.

Also, the survey by (Husain and Uzuner 2021) provided a
structured overview of previous approaches, including core
techniques, tools, resources, methods, and main features
used for offensive language detection in the Arabic language.
The paper also discussed the limitations and gaps of the pre-
vious studies. It concluded that there is still a need for more
research in this area and that there are several challenges that
need to be addressed, such as data scarcity, dialectal varia-
tion, and context dependence. As for the best methods and
algorithms used for offensive language detection in Arabic,
the paper mentions several approaches, such as supervised
learning, unsupervised learning, rule-based methods, and
deep learning. However, it does not provide a definitive
answer as to which method is best, as each approach has its
own advantages and disadvantages depending on the specific
use case.

In (Mubarak and Darwish 2019), the focus was on devel-
oping a classifier for offensive Arabic language in tweets.
Offensive language has become a major concern on social
media platforms such as Twitter, prompting the need for
a reliable and robust classifier. The main objective of this
research was to build a large word list of offensive words
and create a classifier that outperformed using a word list.
The authors used a seed list of offensive words to tag a large
number of tweets, which enabled them to discover other
offensive words by contrasting those tweets with random
ones. They employed word-list, fastText, and SVM classi-
fiers and used an existing dataset of 1100 Arabic tweets with
offensive language. To train the fastText classifier, they uti-
lized 36.6 million automatically tagged tweets and compared
the fastText setup to another SVM classifier with promising
results. The results of this study showed that the FastText
classifier achieved a high level of precision, recall, and F1
of 90%.

The study (Omar et al. 2020) conducted a comprehensive
comparison of traditional machine learning and deep learn-
ing algorithms for identifying Arabic hate speech on social
media platforms. The authors collected a diverse dataset of
20,000 posts, tweets, and comments from multiple social
network platforms and manually annotated them as hate or
non-hate speech. They trained twelve machine learning algo-
rithms and two deep learning classifiers, CNN and RNN,
on the dataset to determine which approach yielded better
results. The study found that the RNN model in deep learn-
ing achieved the highest accuracy score of 98.70%, while
Complement NB in machine learning had the best perfor-
mance, achieving an accuracy score of 97.59%. The authors
concluded that deep learning algorithms are more effective
in detecting Arabic hate speech in online social networks and
outperform traditional machine learning approaches.

Boulouard et al. (Boulouard et al. 2022a, b) addressed
the issue of hate speech in Arabic social media using
machine learning techniques. The authors highlighted the
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negative impact that hate speech can have on society and
identified the need for effective tools to prevent and iden-
tify such speech online. They trained and evaluated several
machine learning algorithms, including logistic regression,
Naive Bayes, random forests, support vector machines, and
long short-term memory, on a dataset of 15,050 comments
from YouTube channels known for publishing controver-
sial videos. The authors used TF-IDF for feature extraction
and found that LSTM had the best performance in terms of
F1-Score, with SVM following closely behind. The authors
conclude that machine learning algorithms show promise
in detecting hate speech in Arabic social media but suggest
that fine-tuning is necessary in the preprocessing step and
that additional feature extraction may improve performance.
Overall, this study demonstrates the potential of machine
learning to combat hate speech.

The study (Albadi et al. 2019) investigated the effective-
ness of combining handcrafted features and gated recurrent
unit (GRU) neural networks for detecting religious hatred
on Arabic Twitter. The authors emphasized the importance
of addressing issues related to hate speech, specifically
religious hate speech. They used an available dataset for
evaluating the proposed approach, which was an automati-
cally annotated dataset of Arabic tweets containing religious
hatred. The dataset consists of 6,000 Arabic tweets collected
from Twitter. They also created three public Arabic lexicons
of terms related to religion along with hate scores using three
well-known feature selection methods to generate these lexi-
cons: pointwise mutual information (PMI), chi-square, and
bi-normal separation (BNS). They employed three different
approaches to detect religious hate speech: a lexicon-based
approach, N-gram-based approach, and GRU + word embed-
dings. The proposed approach is a hybrid approach that
combines GRU neural networks with handcrafted features
to detect religious hatred in Arabic Twitter achieved supe-
rior results for detecting religious hatred in Arabic in terms
of recall (0.84%).However, the authors in (El-Alami et al.
2022) proposed a multilingual offensive language detection
method using transfer learning from transformer fine-tun-
ing models like BERT, mBERT, and AraBERT to improve
accuracy across different languages. The authors evaluated
their model on a bilingual dataset from SOLID and com-
pared BERT models to various neural models such as CNN,
RNN, and bidirectional RNN. They conduct three experi-
ments using joint-multilingual, joint-translated monolingual,
and translation methods to evaluate the performance of dif-
ferent models. The results show that BERT outperforms
other models in terms of accuracy and F1 value, where the
translation-based method in conjunction with Arabic BERT
(AraBERT) achieves over 93% and 91% in terms of F'1 score
and accuracy, respectively.

The study (Alsafari et al. 2020a, b) examined the detec-
tion of hate and offensive speech on Arabic social media
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platforms. The authors highlighted the need to detect such
content, as it can have negative effects. However, the com-
plexity of the language and lack of resources make this a
unique challenge. The authors used several algorithms and
methods, including SVM, naive Bayes, logistic regression,
deep neural networks, and various feature extraction meth-
ods. They created an Arabic hate/offensive corpus consist-
ing of 5340 manually annotated tweets. The results showed
that SVM outperformed other models, and the CNN + mBert
model performed the best across all prediction tasks. Addi-
tionally, word embedding is efficient with deep learning
models and less effective with machine learning models.

Another study (Alzubi 2022) proposed an approach to
detect hate speech on social media platforms, which is a
critical social issue with severe consequences. The approach
is specifically designed for Arabic, which has a complex
structure and relies heavily on context. They used a data-
set consisting of 12,698 annotated tweets and focused on
offensive speech detection. The approach includes three
main steps: augmentation, pre-processing, and passing data
through an ensemble. The ensemble includes models such
as AraBERTv0.2-Twitter-large, Mazajak Pre-trained Embed-
dings, Character + Word Level N-gram TF-IDF Embeddings,
MUSE, and Emoji Score. The results showed that AraBERT
outperformed all other models with F1-macro of 0.85%.

In (Mostafa 2022), the GOF (gradient over-fitting) team
for the Arabic hate speech detection shared task at the 5th
Workshop on Open-Source Arabic Corpora and Processing
Tools aimed to improve the performance of imbalanced text
detection models in Arabic. They used a dataset of 13,000
Arabic tweets labelled as 35% offensive and 11% hate
speech. The team experimented with five different loss func-
tions, including weighted cross-entropy, focal loss, and Tver-
sky loss, and proposed pre-trained models such as QARIiB,
MARBERT, and AraBERT. The team also proposed a deep
learning ensemble approach that achieved superior results
with a macro F1 score of 87.044.

The authors in (De Paula 2022) discussed the approach
taken by researchers for the Arabic Hate Speech 2022
Shared Task to detect offensive language and hate speech in
Arabic social media comments. The team used transformer-
based models such as AraBert, AraElectra, Albert-Arabic,
AraGPT2, mBert, and XLM-Roberta and ensemble tech-
niques like majority vote and highest sum to improve classi-
fication performance. They used the OSACTS dataset, which
contained around 13k tweets, with only 35% annotated as
offensive and 11% as hate speech, while tweets marked
as vulgar and violent only accounted for 1.5% and 0.7%,
respectively. The team achieved impressive results in both
offensive language and hate speech detection subtasks. The
AraBert model achieved the highest F1-Macro scores in
Tasks A and C, while the highest sum ensemble achieved
the best results in Task B.
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Similarly, the paper (AlKhamissi 2022) was about the
authors’ approach to the Arabic hate speech detection
(AHSD) task, which is part of the Meta Al competition
in 2022. The approach involved using multi-task learning
(MTL) with a self-correction mechanism to enhance the
classification of hate speech in Arabic text. The dataset used,
OSACTS, consists of around 13k tweets, 35% of which are
annotated as offensive and only 11% as hate speech. The
proposed approach is the AraHS model, which outperformed
the QARIiB baseline models. MARBERTYV2, pretrained with
1B multi-dialectal Arabic (DA) tweets and passed to 3 task-
specific classification heads, is used as the core model. The
final AraHS model is an ensemble of several trained models,
each using different hyperparameters. Self-consistency cor-
rection is used to correct errors in one classification head.
The results show that the AraHS model is more effective in
detecting hate speech and offensive language by utilizing
the self-consistency correction mechanism. The authors also
conducted a detailed error analysis to identify the strengths
and weaknesses of their approach and provide insights for
future improvements.

The article (Mubarak 2021) analyzed the use of offensive
language in Arabic tweets and evaluated machine learning
models’ effectiveness in identifying such language. The
authors developed a method to construct an unbiased data-
set and produced the most extensive Arabic dataset to date.
The dataset involved 10,000 tweets manually annotated
with special tags for vulgarity and hate speech. The authors
employed various state-of-the-art representations and clas-
sifiers, including static and contextualized embeddings,
transformer-based and SVM classifiers, and other classi-
fication techniques like AdaBoost and logistic regression.
The study’s results indicated that AraBERT was the most
successful model, attaining an F1 score of 83.2.

The authors in (Haddad 2020) focused on identifying
offensive language in Arabic text using deep neural networks
with attention. They also utilized the OffensEval2020 data-
set, which contains Arabic tweets labelled as offensive or
non-offensive. They applied different methods to balance
out the dataset and improve model performance. The pro-
posed models, including CNN, Bi-GRU, CNN_ATT, and Bi-
GRU_ATT, were tested alongside baseline machine learning
classifiers. Their results indicated that the attention-based
models performed better, with BIGRU_ATT achieving the
highest F1 score of 0.859 for the offensive language detec-
tion task and 0.75 for hate speech detection.

In (Husain 2020), the SalamNET deep learning model
was developed to detect offensive language in Arabic texts
for SemEval-2020 Task 12. The authors tested various deep
learning architectures, including a baseline LR-based model,
using the Scikit-learn and Keras libraries of Python. The
dataset used was the Arabic OffensEval 2020 dataset, which
consisted of 10,000 tweets labelled as either offensive or

not offensive. However, the dataset had a highly imbalanced
distribution of offensive and non-offensive tweets, with
only 1900 tweets labelled as offensive. The SalamNET Bi-
directional Gated Recurrent Unit (Bi-GRU)-based model
achieved a macro-F1 score of 0.83.

The study (Husain and Uzuner 2022a, b) examined six
preprocessing techniques that impact the automatic detection
of offensive Arabic language. The techniques included dif-
ferent forms of normalization, conversion of selected words
to their hypernyms, hashtag segmentation, and cleaning.
The study used various traditional and ensemble machine
learning classifiers and artificial neural network classifiers.
It analyzed two datasets: one that contains multiple dialects,
a highly imbalanced dataset, and the other focused on the
Levantine dialect. Both datasets were manually annotated.
The research showed significant variations in preprocessing
effects on each classifier, with AraBert achieving the best
results.

The authors in (Alshalan and Al-Khalifa 2020) presented
a novel approach for automatic hate speech detection in the
Saudi Twittersphere using deep learning techniques. They
also discussed the negative impact of hate speech in the Arab
world and the challenges of detecting it due to the complex-
ity of the Arabic language and the lack of labelled datasets.
They proposed a deep learning model based on four models
that were trained on a large Arabic Twitter dataset collected
from Saudi Arabia. This dataset was developed using 9316
tweets classified as hateful, abusive, or normal that covered
different types of hate speech to test their models. After per-
forming several preprocessing steps and binary classifica-
tion, the model’s performance was evaluated using different
metrics. The results showed that CNN outperformed other
models, with an F1-score of 0.79 and an AUROC of 0.89.

Another study (Boulouard et al. 2022a, b) discussed the
use of transfer learning to detect hateful and offensive speech
in Arabic social media. The authors emphasized the negative
consequences of hate speech on individuals and communi-
ties and compared the performance of different BERT-based
models trained using a dataset of Arabic social media posts
collected from YouTube. They preprocessed the dataset by
removing missing values, leaving 11,268 YouTube com-
ments with 42% hateful and 58% non-hateful comments.
They use a pre-trained language model (BERT) to extract
features from the text and a binary classification model to
determine whether a given message is hateful or not, includ-
ing features related to sentiment and emotion. The authors
trained different BERT-based models, evaluated their per-
formance using precision, recall, and F1 scores, and found
BERT-EN provided accuracy of 98%.

Furthermore, the authors in (Anezi 2022) discussed
the issue of hate speech on social media and the need for
effective detection mechanisms. The study used a unique
dataset of 4203 Arabic comments from various sources and
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manually labelled them into different categories. The authors
conducted experiments using a deep recurrent neural net-
work model (DRNN-2), along with another model (DRNN-
1) for binary classification. The models were evaluated using
different performance metrics and compared with tradi-
tional ML classifiers. The authors found that their proposed
approach provides a valuable contribution to hate speech
detection research and could have potential applications in
combating hate speech on social media platforms.

In another study (Guellil et al. 2020), the authors aimed
to develop a supervised learning approach for detecting
hate speech against politicians in Arabic social media.
Two datasets, one unbalanced and the other balanced, were
constructed from YouTube comments and manually anno-
tated. The authors used various preprocessing techniques
and experimented with different feature extraction methods,
including bag-of-words, word embeddings, and character
n-grams. The proposed approach included classical and deep
learning algorithms like GNB, LR, RF, SGD Classifier, and
LSVC, as well as CNN, MLP, LSTM, and Bi-LSTM. The
performance of the LSVC, BiLSTM, and MLP models was
the best, with an accuracy rate of up to 91% when associated
with the SG model.

In (Aljuhani et al. 2022), the authors proposed a new
method to detect offensive Arabic language in microblogs
using deep learning and domain-specific word embeddings.
They aimed to address the increasing prevalence of online
hate speech on Arabic social media platforms. They built
a new large multi-domain and multi-dialect Arabic data-
set of offensive language, consisting of almost 30k tweets,
and manually annotated it. The proposed approach uses the
bidirectional long-short-term memory (BiLSTM) model and
two domain-specific word embeddings (Word2Vec and Fast-
Text) to classify tweets as offensive or not. The results show
that the BiLSTM model with Blend Embeddings achieved
superior performance with an F1-Score of 0.93. Overall,
the study demonstrates the effectiveness of using domain-
specific word embeddings and deep learning for detecting
offensive language in Arabic microblogs.

The article (Khezzar et al. 2023) detailed the development
of arHateDetector, a web application designed to detect hate
speech in both standard and dialectal Arabic tweets. The
authors explained that the diversity of the Arabic language
and the lack of research on hate speech in dialectal Arabic
make the task challenging. To address this challenge, the
authors integrated and compiled multiple online public data-
sets into the arHateDataset, which consists of 34,107 tweets.
The system used machine learning models such as linear
SVC, random forest, and logistic regression in addition to
deep learning models like convolutional neural networks
(CNNs) and AraBERT, achieving high accuracy in detect-
ing hate speech in Arabic tweets. The linear SVC model
achieved the highest accuracy of 89%, but the AraBERT
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model is the best overall, with the highest accuracy result of
93%. The authors concluded that arHateDetector can be a
valuable tool for identifying and removing instances of hate
speech in Arabic.

Khairy et al. (2023) conducted a study to automate the
detection of offensive language or cyberbullying. They
created a new Arabic offensive balanced dataset of 12,000
records using two available datasets which were collected
for Facebook & Twitter. They examined the effectiveness
of several single and ensemble machine learning algo-
rithms (Linear SVC, Logistic Regression, and K Neigh-
bors) and three ensemble machine learning approaches
(Bagging-Random Forest, Voting, and Boosting-Ada-
boost). The authors found that the impact of the ensem-
ble machine learning methodology is better than that of
the single learner machine learning. They also discussed
that the reliance on machine learning algorithms is one
of the major weakness to detect offensive language and
cyberbullying. Finally, they found that voting is the best
performing trained ensemble machine learning classifier,
outperforming the best single learner classifier (65.1%,
76.2%, and 98%).

The authors in (Muaad et al. 2023) proposed an Arabic
hate speech detection (AHSD) model which composed of
preprocessing, feature extraction, detection, and classifica-
tion to identify hate speech on the Arabic benchmark dataset.
They conducted various experimental setup with standalone
ML, ensemble learning, and transfer learning models namely
as follows: passive-aggressive (PA), logistic regression (LR),
random forest (RF), decision tree (DT), K-nearest neighbors
(K-NN), linear support vector classifier (Linear SVC), sup-
port vector classifier (SVC), naive Bayes classifier (NB),
Bernoulli naive Bayes classifier (BNB), extra tree classi-
fier (ET), ensemble bagging classifier, ensemble AdaBoost,
ensemble gradient boosting classifier (GB), and Arabic bidi-
rectional encoder representations (Arab-BiER) as a Trans-
former. The final results showed that proposed AraBERT
model outperformed the others and got very good results in
terms of accuracy, precision, recall, and f-score which were
equal to 84%, 79%, 80%, and 79% for hate speech binary
classification. The authors finally suggested as a future work
designing a new model to cover imbalanced datasets using
transfer learning techniques with Zero-shot learning and
deep active learning could enhance the performance of the
proposed model.

The authors of (Abbes et al. 2023) proposed a solution,
employing Bi-LSTM with an attention mechanism and inte-
grating BERT to find hateful and offensive speech on Arabic
social media sites like Facebook. Extending their contribution,
they introduced the multi-class Tunisian hate speech (MC_
TunNS) dataset, providing a comprehensive benchmark with
six labeled classes. The dataset consist of 20,000 comments
sourced from Facebook. They performed their experiments by
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integrate the araBERT-based contextual embedding with Bi-
LSTM and attention mechanism; we also trained the araBert
language model for hate speech detection. The findings indi-
cated that AraBert exhibited superior performance, achieving
the highest accuracy of 97.84%. Following closely, BI-LSTM
with the attention mechanism demonstrated commendable
results with an accuracy of 93.17%, showcasing enhanced
proficiency in classifying Tunisian comments.

In a complementary study by (Ahmed et al. 2022), the
emphasis lies on the detection of hate speech and offensive lan-
guage. The authors undertake fine-tuning of Arabic pre-trained
transformer models, specifically attuned to the Egyptian-Ara-
bic dialect. Their efforts are grounded in a tailored dataset
comprising 8000 text samples, meticulously labeled into five
distinct classes: neutral, offensive, sexism, religious discrimi-
nation, and racism. They selected distinct Arabic pre-trained
transformer models, namely bert-large-arabertv02-twitter,
Bert-base-arabic-camelbert-mix, MARBERTV2, Araelectra-
base-discriminator, and Bert-base-multilingual-uncased for
conducting their experiments. Finally, they achieved an aver-
age accuracy of about 96% across all fine-tuned transformer
models.

In a different study, an offensive speech detection model,
leveraging the CAMeLBERT transformer different versions,
is introduced by (Al-Dabet et al. 2023). The model’s effec-
tiveness is validated across four benchmark Arabic Twitter
datasets. The combined dataset consists of 31,203 records.
Notably, the proposed CAMeLBERT model, specifically the
(CAMeLBERT-Mix) version, outperformed other variants and
models, demonstrating superior performance through its utili-
zation of diverse Arabic language forms with 87.15% accuracy
and 83.6% F1 score.

Concluding our exploration of related work, (Mohamed
et al. 2023) made notable experiments in tackling the class
imbalance challenge within the context of hate speech and
offensive language detection. Their approach involved the
strategic incorporation of data augmentation techniques, lev-
eraging oversampling methods, and introducing a focal loss
function alongside traditional loss functions. They used the
dataset provided by the shared task of (OSACT) in LREC
2020, which consists of 10k tweets, labelled as: hateful and
non-hateful. The experiments involved the utilization of three
distinct transformer models: MARBERT v2, MARBERT vl1,
and ARBERT. To refine the performance of these models, they
implemented the QRNN deep learning architecture. In the final
stage, they adopted a majority vote ensemble approach, com-
bining the outcomes of the pre-trained models fine-tuned with
QRNN. The proposed ensemble model demonstrated superior
performance compared to the comparative models evaluated in
this study, achieving a Macro-F1 score of 91.6%. This under-
scores the significance of incorporating diverse loss functions
and oversampling techniques to enhance model performance
on imbalanced datasets.

7 Challenges and future work
7.1 Challenges

Arabic offensive language and hate speech detection
on social media pose significant challenges in terms of
language complexity, cultural sensitivities, and limited
available and well balanced resources. At the moment,
identifying offensive language and hate speech on social
media is a challenging task (Elzayady et al. 2022). There
is a scarcity of research studies that focus solely on this
aspect, and those that are available indicate the need for
tailored NLP techniques. The vast majority of offensive
language or hate speech detection studies have focused on
English, not Arabic (Alsafari et al. 2020a, b). Addition-
ally, Arabic’s rich and complex morphology (Elzayady
et al. 2023a, b), (Elzayady et al. 2022), (Duwairi et al.
2021), (Mubarak and Darwish 2019), and syntax require
special preprocessing techniques and attention to com-
mon linguistic nuances that can be used to spread offen-
sive language and hate speech. Another challenge is that
Arabic includes a huge number of dialects, which may
negatively affect the annotators’ effectiveness, especially
if they are native speakers of only one of the dialects. This
drawback has been found in most previous studies, mainly
when annotators were chosen via crowdsourcing (Alsafari
et al. 2020a, b). Furthermore, to effectively identify hate
speech in postings, it is necessary to support multi-dialect
languages and use large datasets (Khezzar et al. 2023).
Furthermore, certain Arabic words may undergo seman-
tic shifts across different dialects, altering their meaning
and offensiveness levels. For example, the word “ 434
” it means “a dancer” in the Moroccan dialect, while in
other dialects like Egyptian and Gulf, it doesn’t have any
negative meaning, but rather indicates a high status. In
addition, with multi-labelled datasets, the task becomes
more challenging due to the labels’ correlation (Azzi and
Zribi 2022). The similarities between the different dialects
mean that annotators had difficulty labelling some tweets
as being in a specific dialect (Badri et al. 2022). Moreover,
imbalanced datasets are a common drawback in several
studies, such as (Makram 2022) and (Badri et al. 2022).
For the dataset imbalance problem, the authors presented
some methods for handling class imbalance using re-sam-
pling methods, including ROS, SMOTE, and ADASYN,
and different loss functions (Mansur et al. 2023), (Badri
et al. 2022). While other researchers have attempted to
increase the number of samples of a rare species (Husain
and Uzuner 2021), another issue is that social media posts
lack uniformity and grammar standards, making language
models difficult to build (Berrimi et al. 2020). Many of
the tweets are not in MSA; finding a good stemmer could
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be challenging (Berrimi et al. 2020), and the lack of clear
policies hinders automated hate speech detection (Duwairi
et al. 2021). For instance, it is challenging to extract rep-
resentative characteristics from tweets due to their short
length and syntactic and grammatical errors. Additionally,
if the dataset is limited, it is impossible to train the model
using just the dataset since static word embedding may not
contain all of the dataset’s vocabularies (Shannaq et al.
2022). The most popular social media network for data
collection is Twitter, but Facebook and YouTube are also
widely used. Due to Facebook’s tight data usage regula-
tions, accessing data is more challenging. Although Twit-
ter is a wonderful resource, details like the limit on the
length of a tweet might condense information (Azzi and
Zribi 2021). In (Farghaly and Shaalan 2009), the authors
presented the difficulty of the Arabic script to read due to
its lack of dedicated letters, changes in the form of the let-
ter depending on its place in the word, and the absence of
capitalization and punctuation. To manage this problem,
NLP systems normalize the input text, but this increases
the probability of ambiguity. Moreover, homographs and
internal word structure ambiguities are two of the most
common ambiguities. Homograph ambiguity, internal
word structure ambiguity, syntactic ambiguity, constitu-
ent boundary ambiguity, anaphoric ambiguity, and features
of Arabic contribute to ambiguity. Normalizing dialects
and misspelt words also presents a significant challenge
(Mohaouchane et al. 2019), (Alzubi 2022).

Finally, to the best of our knowledge, to overcome these
challenges, the following steps can be taken:

1. Developing language models specific to Arabic, includ-
ing Arabic dialects and colloquial language, to facili-
tate the detection of offensive Arabic language and hate
speech.

2. Encouraging the use of NLP techniques and large pre-
trained language models to improve the automation and
efficiency of Arabic offensive language and hate speech
detection.

3. Implementing a multilingual approach to Arabic offen-
sive language and hate speech detection, including lin-
guistic rules in different contexts.

7.2 Future trends

In recent years, there has been a growing interest in devel-
oping effective algorithms to detect offensive language and
hate speech on social media platforms. While a significant
amount of research has been conducted in this area, studies
focusing on the Arabic language have been relatively lim-
ited. However, there are some promising developments in
this emerging field. Between 2019 and April 2023, a number
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of studies investigating the use of machine learning and deep
learning techniques to detect offensive Arabic language and
hate speech are growing. These studies highlighted vari-
ous future directions for the detection of abusive and hate
speech in Arabic. These directions include experimenting
with BERT models and its recent variants like AraBERT
(Azzi and Zribi 2022), investigating the use of pre-trained
Arabic embeddings (Berrimi et al. 2020), exploring semi-
supervised classification techniques (Berrimi et al. 2020),
detecting other forms of offensive content such as video or
audio containing offensive speech (Elzayady et al. 2022),
(Mohaouchane et al. 2019), assessing the effects of various
contextualized word embedding techniques (e.g., BERT,
GPT, GPT-2, and Elmo) on hate speech models (Elzayady
et al. 2022), expanding the dataset to cover different dialects
and cultures (Husain and Uzuner 2022a, b), (Omar et al.
2020), (AbdelHamid et al. 2022), (Badri et al. 2022), and
using powerful GPUs for deep learning models (Al-Hassan
and Al-Dossari 2021). To the best of our knowledge, it is
important to investigate self-learning, zero-shot and few-
shot learning using different pre-trained large language
models for lablelling Arabic datasets; this is because data-
sets annotation is more expensive and may be biased by
different annotators. The future work also emphasizes the
use of active learning techniques (AbdelHamid et al. 2022),
the incorporation of socio-cultural context, and building a
balanced Arabic dataset (Khairy et al. 2021). Additionally,
future research should focus on the continuous development
and modification of machine learning and deep learning
techniques for better accuracy in classifying hate speech in
Arabic. Overall, as Al technology develops, there is hope
that hate speech and offensive language can be detected
more accurately and efficiently.

8 Conclusion

Offensive language on social media platforms is a growing
concern, especially in the Arab world. However, there have
been several effective solutions that have been developed
to detect and remove such content. The impact of offen-
sive language on social media platforms is significant. It
can lead to cyberbullying, hate speech, and even violence
in extreme cases. Therefore, it is critical that all social
media platforms continue to invest in solutions that can
help mitigate this problem. This review has shed light on
the issue of offensive Arabic language and hate speech
on social media. The aim of this study is to determine
the effectiveness of current tools and methods utilized for
detecting and moderating offensive language in Arabic.
Moreover, the prevalence of offensive language on social
media requires effective tools and methods for detecting
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and moderating harmful content, particularly in Arabic,
where the language is known for its complexity and high
variability among its dialects. Machine learning and deep
learning techniques have proven to be effective in detect-
ing offensive language and hate speech; however, there
are still challenges to overcome, such as the complexity
of the Arabic language, the lack of standardization in the
datasets, and cultural nuances. As such, more research is
needed to develop and refine models that can accurately
detect offensive language and hate speech in Arabic. This
study serves as a stepping stone for researchers to conduct
further investigation towards the advancement of offensive
language and hate speech detection techniques in Arabic.
By addressing the challenges and improving the detection
methods, we can work with the community and leverage
technology towards creating safer online environments for
everyone, irrespective of their race, gender, religion, or
nationality. Ultimately, this study can provide insights and
recommendations for the development of robust and accu-
rate tools to combat offensive language and hate speech on
social media platforms.
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