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Abstract
Online social networks (OSNs) have become increasingly popular on the web in recent years. There are millions of users on 
these networks, and they generate a great deal of interaction among them.  Network sampling is often used to study and measure 
OSNs, which produce a small, accessible network with a limited number of edges and nodes. In this paper, two algorithms are 
proposed to sample OSNs. The first algorithm finds several spanning trees with the highest number of nodes that satisfy a given 
degree constraint from randomly chosen root nodes; edges and nodes of computed spanning trees are ranked based on how often 
they appear in them. Finally, a fraction of the highly ranked nodes and edges are considered in the sampled network. Second, 
a partial spanning tree algorithm is proposed in place of a full spanning tree algorithm to improve the performance of the first 
algorithm. We conduct several experiments on well-known real networks to determine the performance of the proposed sampling 
algorithms. As a result of the experiments, the proposed algorithms outperformed some of the baseline and recently presented 
algorithms in terms of the Kolmogorov-Smirnov (KS) test, Skew Divergence (SD) distance, and Normalized Distance (ND).

Keywords  Sampling · Spanning tree · Degree constraint spanning tree · Social networks

1  Introduction

The growth of online social networks (OSN) like Facebook 
and Twitter has enabled users to interact with their friends 
and share information in real-time. Several research projects 
rely on the study and characterization of OSNs. However, 
due to the large size and access limitations of these net-
works, many large OSNs are currently studied via sampling 
techniques (Kurant et al. 2012; Rezvanian et al. 2019). The 
sampling techniques also could be applied for simulation, 

data mining, measuring performance of protocols, informa-
tion retrieval, viral marketing experimentations, and fraud 
detection in social network analysis (Ahmed et al. 2010). 
Sampling techniques should consider every aspect of the 
initial network including the presence or absence of influ-
ential edges and nodes and the connection topology of these 
nodes and edges to present a sampled network that can pre-
serve characteristics of the initial network. In sampling lit-
erature, most sampling techniques focus on either preserving 
influential nodes or influential edges, meaning they could 
not consider both of them. Besides, most existing sampling 
methods including random nodes and random edges work 
based on random selection, thus the topology of the original 
network is not considered. In this paper, we propose two 
novel sampling algorithms using several spanning trees with 
the highest number of nodes that satisfy a given degree con-
straint. The proposed algorithm not only takes into account 
important edges but also makes use of important nodes.

The proposed algorithm first finds several Spanning 
Trees with the Highest Number of nodes that satisfy a cer-
tain degree of Constraint (STHNC) from the input network. 
Based on the number of times each edge and each node in 
the set of computed spanning trees has appeared in the set 
of spanning trees, the edges and nodes with degrees greater 
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than the given constraint are ranked. A sub-graph is con-
structed as the sampled network containing a fraction of 
nodes and edges that are highly ranked. According to the 
algorithm proposed, the edges with the highest number 
of presences in spanning trees of an arbitrary number of 
STHNCs with different starting points can be considered 
important edges that reflect several characteristics of the 
original network, since they reflect several characteristics 
of the original network. Besides STHNC, visits edges in a 
uniform manner which prevents the sampled network from 
being biased to high-degree nodes, but sometimes it is inevi-
table to have some nodes with degrees higher than the given 
constraint. These nodes preserve many connections, and in 
the absence of these nodes, many connections will be lost. 
So, considering these nodes as influential nodes helps better 
preserve the properties of the network.

We evaluate the efficiency of the proposed sampling algo-
rithms via simulation. In terms of Kolmogorov-Smirnov 
(KS) test, Skew Divergence (SD) distance, and Normal-
ized Distance (ND), we compare the results of the proposed 
algorithms with those reported in the literature recently. Our 
results show the superiority of our proposed algorithm over 
well-known algorithms in terms of several criteria.

The rest of the paper is organized as follows: In the sec-
ond section, we discuss the essential information needed to 
understand the rest of the paper. A review of related works 
about sampling methods in complex networks is presented 
in the third section. The proposed methods are discussed 
in Sect. 4. In Sect. 5, simulation experiments on standard 
graphs of complex networks are used to assess the perfor-
mance of the proposed algorithm. As a conclusion, Sect. 6 
concludes the paper.

2 � Preliminaries

Social networks can be represented as graph G = ⟨V ,E⟩ 
where V =

{
v1, v2,… , vn

}
 is the vertex set that represents 

the users of an OSN and E =
{
e1, e2,… , em

}
 is the set of 

edges that represent a kind of relationship between users 
in an OSN.

A sampling technique on input graph G can be defined as 
a  function f ∶ G → Gs with sampling rate 0 < 𝜑 < 1 , where 
Gs = ⟨Vs,Es⟩ is the sampled network in which Vs ⊆ V  and 
||Vs

|| = � × |V| (Jalali et al. 2016).

2.1 � Evaluation metrics on sampling

A sampling algorithm's quality or representativeness is eval-
uated using network statistics. In network statistics, edges, 
nodes, and sub-graphs are taken into account.

Two well-known and widely used statistical properties 
provide insight into sampling algorithms: clustering coef-
ficient distribution ( CCD ) as a local property and degree 
distribution ( DD ) as a global property. Graph connectivity 
is understood by looking at degree distributions, which show 
the fraction of nodes with a degree k (for all k > 0 ). A func-
tion on the number of triangles centered on a node is called 
the clustering coefficient. Clustering coefficient distributions 
show the proportion of nodes with clustering coefficients 
C . In a network, it determines the strength of the connectiv-
ity between a node and its nearest neighbors. The distance 
between both distributions of the statistical property for ini-
tial graph G and sampled network Gs is computed according 
to some distance functions such as Kolmogorov–Smirnov 
Test ( KSD ), Skew-Divergence distance ( SDD ), and Normal-
ized-Distance (ND ) (Ahmed et al. 2014b). In the remainder 
of this section, we describe these distance measures.

When two cumulative distribution functions (CDFs) are 
compared, Kolmogorov's D statistic ( KSD ) is used to cal-
culate the distance between them. The KSD measures the 
agreement between the actual distribution F1 and the esti-
mated distribution F2 . A value between 0 and 1 is returned 
by this test. Both distributions will be more similar as they 
get closer to zero; and as they get closer to one, they will be 
more different.

This measure has been defined by Eq. (1), where F1 and 
F2 denote the cumulative distribution function (CDF) of the 
original distribution and estimated distribution respectively. 
Also, x represents the random variable's range. The distance 
between two distributions is therefore calculated as the max-
imum vertical distance (James 2006).

A Normalized Distance (ND) is a measure of how far 
there is a difference between two positive m-dimensional 
vectors that are F1 and F2 where F1 represents the original 
dimensional vector and F2 represents the estimated dimen-
sional vector. ND is defined by Eq. (2) (Rezvanian et al. 
2019).

Using the Skewed Divergence Distance ( SDD ) we can 
compare two probability density functions (PDF). The SDD 
is a Kullback–Leibler (KL) divergence between two PDFs 
F1 and F2 with no continuous support (e.g., skewed degree). 
KL measures the average number of bits needed to represent 
samples from the original distribution when using sampled 
distributions. Since KL divergence cannot be defined for 
distributions with different support areas, skew divergence 
smooths the two PDFs before computing the KL divergence 

(1)KS
(
F1,F2

)
= maxx

||F1(x) − F2(x)
||

(2)ND
�
F1,F2

�
=

‖F1 − F2‖
‖F1‖
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(Rezvanian et al. 2019). Equation (3) describes SD distance, 
in which the constant � lies between 0 and 1. The divergence 
of P from Q is calculated by KL.

Cost measures are also defined to assess the efficiency of 
sampling algorithms during the construction of a sampled 
network (Jalali et al. 2016). It is calculated using two num-
bers, Ct and Cp , and two cost units, c1 and c2 . A sampling 
network is constructed by traversing edges Ct times and each 
edge travel has a cost c1 . The construction of a sampling net-
work requires Cp number of pre- or post-operations. Let c2 be 
the cost of each such process. As shown below (Eq. (5)), the 
cost per sample is calculated by dividing the weighted sum 
of these two costs by the total number of edges.

In Eq. (5), |E| represents the number of edges of the origi-
nal graph. In any pre- or post-processing step, an edge tra-
versal cost is constant c1 and a processing operation cost is 
constant c2.

3 � Related work

In addition to simple measures, advanced sampling tech-
niques can be used to uncover useful information in social 
network graphs. However, to study OSNs directly, graph 
sampling is needed to reduce the size of the graphs while 
keeping their important features. Network sampling tech-
niques can be classified in different ways in the literature. 
For instance, they can be divided into vertex sampling, 
edge sampling, and topology-based sampling (Ahmed et al. 
2014a). Vertex sampling randomly and independently selects 
graph nodes. Breadth First Search (BFS) and Metropolis 
Hasting Random Walk (MHRW) are two examples of vertex 
sampling algorithms. Edge sampling randomly and indepen-
dently chooses some edges of a given network. Frontier sam-
pling (FS) is a type of edge sampling algorithm. Topology-
based sampling selects nodes and edges based on the graph's 
structure. Snowball Sampling (SS), Forest Fire Sampling 
(FFS), and Random Walk Sampling (RWS) (Lovász 1993) 
are some topology-based sampling algorithms (Kurant et al. 
2011a).

Random sampling methods are introduced as a category 
of sampling algorithms in (Kurant et al. 2011b), where each 
vertex is visited only once (Leskovec and Faloutsos 2006). 

(3)SD
(
F1,F2

)
= KL

[
�F1 + (1 − �)F2||�F2 + (1 − �)F1

]

(4)KL(P||Q) =
∑

i

ln

(
Pi

Qi

)
Pi

(5)Cost =
c1.Ct + c2.Cp

|E|

Graph traversal sampling is also introduced in (Kurant et al. 
2011b) as the other category of sampling algorithms. A 
graph traversal sampling technique, such as Random Walk 
Sampling (RWS), iteratively samples nodes adjacent to the 
last sampled node (Kurant et al. 2011b).

There are two other categories of sampling algorithms 
presented in (Kurant et al. 2011b): random vertex sampling 
and graph traversal sampling. In random vertex sampling, 
each vertex is visited only once and is not replaced dur-
ing sampling (Leskovec and Faloutsos 2006). A graph tra-
versal sampling technique, such as Random Walk Sampling 
(RWS), picks the next node iteratively according to some 
criteria among those adjacent to the last node sampled.

There are two types of sampling algorithms based on 
their processing methods: classical and modern. Classical 
sampling algorithms build a sampled network by choosing 
or visiting edges or nodes only once. Examples of these 
algorithms are BFS, RWS (Lovász 1993), FFS (Leskovec 
and Faloutsos 2006), and RDS (Gile and Handcock 2010). 
Modern sampling algorithms add an extra step of pre/post-
processing that may involve selecting or visiting edges 
or nodes more than once. Some of these algorithms are 
DLAS (Rezvanian et al. 2014), SSP (Rezvanian and Mey-
bodi 2015), RPN (Yoon et al. 2015), and DPL (Yoon et al. 
2015). Classical sampling algorithms are fast and simple, 
but they have different results for each run and may not suit 
different network settings. Modern sampling algorithms are 
more accurate and adaptable but require more processing. 
They use extra information about the network structure, such 
as some measures (Peng et al. 2014), network properties 
(Blagus et al. 2015), or community structures (Yoon et al. 
2015). This trade-off between processing and accuracy is a 
key challenge for modern sampling methods. It is possible 
to use the sampled network for a variety of applications and 
analyses once it is obtained. The main goal of designing 
a sampling algorithm is to create a sampled network that 
preserves the characteristics of the original network, rather 
than minimizing time complexity.

Leskovec et al. were among the first to study network 
sampling (Leskovec and Faloutsos 2006). They proposed 
several sampling algorithms to find a sampled graph that is 
similar to the original graph or a previous version of it. A 
comparison was also made between several algorithms for 
graph sampling. This comparison shows that FFS performed 
better than the others. As a web-based sampling algorithm, 
RDS was evaluated by Wejnert et al. for its effectiveness 
and feasibility (Wejnert and Heckathorn 2008). The analysis 
of Facebook users was conducted by Gjoka et. al. through 
the implementation and comparison of several crawling 
algorithms. They showed that BFS and RWS are biased, 
while MHRW and RWRW perform very well (Gjoka et al. 
2010). Kurant et al. suggested a method to correct sam-
pling bias (Kurant et al. 2011b). Based on their study, the 
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BFS overestimated, and the RWS underestimated the graph 
degree in the absence of the graph degree. Ribeiro et. al. 
analyzed the steady state behavior of CTRWs on Markov 
dynamic networks and compared two types of rates in walk-
ing: a constant rate (CTRW-C) and a vertex degree-related 
rate (CTRW-D) (Ribeiro et al. 2011).

Son et al. (2012) compared BFS and RS analytically and 
studied their sampling biases. Siciliano et al. (2012) sug-
gested an adaptive threshold algorithm for network research 
that can deal with sampling biases. Ribeiro et al. (2012) 
introduced a modified random walk sampling algorithm 
for directed graphs that can make random jumps. Papgelis 
et al.  (2013) proposed an algorithm that can quickly col-
lect information from the user's neighborhood in a dynamic 
way without visiting all the nearby nodes. They only showed 
the benefits of their algorithm through experiments. Pina-
Garcia et. al. changed the way MHRW performed by using 
spirals rather than normal distributions as a probabilistic 
distribution (Piña-García and Gu 2013). They demonstrated 
that their algorithm outperformed normal MHRW in illu-
sion spiral cases. In addition, they confirmed Gjoka et al.'s 
(2010) estimations. In Wang et al.'s sampling algorithm, 
all neighbors are considered valid samples (Wang and Lu 
2013). The average degree of this algorithm improves ran-
dom walk sampling.

Rezvanian et al. (2014) suggested an algorithm based 
on distributed learning automata (DLAS). This algorithm 
cooperates to sample a network. Based on KS tests, the 
algorithm outperformed RDS and RWS. They also achieved 
better results with low sampling rates. Although it relied 
on nodes of high degree, it still had some biases. Rezva-
nian and Meybodi (2015) also proposed a sampling method 
using the shortest path concept and demonstrated its effec-
tiveness by simulations on well-known data sets. Peng et al.  
(2014) presented two sampling methods: one that improved 
the stratified random sampling method by selecting high-
degree nodes with higher probability based on their degree 
distribution, and another that improved the snowball sam-
pling method by selectively sampling the targeted nodes. 
Gao et al. developed a sampling method that used multiple 
random snowballs and Cohen's process based on snowball 
sampling (Gao et al. 2014). They simulated their method on 
model networks and verified that it preserved the network's 
local and global structures.

Jaouadi and Romdhane (2021) presented a parameter-
less model called Distributed Graph Sampling (DGS) for 
sampling large-scale social networks to reduce the graph’s 
size. A key feature of their proposal is its distributed strat-
egy based on the MapReduce paradigm to sample a large 
graph in a parallel way to reduce the size of the network 
and conserve its key properties. In Ebadi Jokandan et al. 
(2021), proposed an optimization approach to efficiently 
sample large-scale social networks using a combination of 

cuckoo search (CS) and genetic algorithms (GA). In Liu 
et al. (2022), two concepts of node neighborhood clustering 
coefficient and random walk are combined to introduce a 
hierarchical sampling algorithm to efficiently sample nodes 
at different levels of the network hierarchy. Roohollahi et al. 
(2022), introduced an improved version of a learning autom-
ata-based approach to sampling in weighted social networks 
using a Levy flight-based learning automata. The authors 
combined Levy flights as stochastic search processes with 
learning automata to adapt and learn from their network 
environment. In Luo et al. (2024), the authors introduced a 
novel approach for sampling hypergraphs using joint unbi-
ased random walks. They proposed a new random walk 
algorithm that efficiently explores the hypergraph structure 
and generates statistically unbiased samples. Their method 
is based on a combination of node sampling and edge sam-
pling, which allows for more efficient and accurate sampling 
of hypergraphs compared to existing methods.

To name some evidence for the importance of the con-
cept of spanning trees in network analysis, we briefly review 
some of these methods in the rest of this section. Spanning 
trees are a way of connecting vertices by a single path (White 
and Newman 2001) and provide the basis for any chain-
ing algorithm (Hill 1999). Spanning trees can also reveal 
important information from graphs, such as the structure of 
romantic relationships in a social network of 800 adolescents 
over 18 months, as studied by Bearman et al. (2004). They 
showed that every romantic relationship exists in a large 
spanning tree. This can capture the long and extensive chains 
of communication between large groups of people.

A study by Ansari et al. (2004) shows that a random 
spanning tree can preserve the topological and modular fea-
tures of a network and that the network's structure can be 
easily visualized from the properties of its spanning tree. 
Spanning trees are crucial for solving propagation problems 
in networks, as shown by previous studies (Bellur and Ogier 
1999). Spanning trees can efficiently and reliably propa-
gate edge states. Therefore, spanning trees can propagate 
complete information across a network, making them effec-
tive structures for information transmission. Tewarie et al. 
(2015) used a minimum-spanning tree (MST) to unbiasedly 
characterize a network of complex brain connections. MST 
is a subgraph that connects all its nodes without cycles. 
It can maximize a property of interest, such as brain area 
synchronization, that preserves both global and local prop-
erties. Jalali et al. (2016) discuss a novel method for sam-
pling social network data using spanning trees. The authors 
propose an algorithm that efficiently constructs a spanning 
tree from a social network graph, which can be used to 
sample the network while maintaining important structural 
features. In a recent study by Blomsma et al. (2022) with the 
aid of the concept of a spanning tree, the authors examine 
the effects of network size on the analysis, as well as the 
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sensitivity of this approach for detecting neuropsychiatric 
pathology. They also explore the specificity of disorder-
related network alterations. The review highlights the 
potential of minimum spanning tree analysis as a valuable 
tool for understanding the organization of brain networks 
in health and disease.

4 � Proposed sampling algorithm

As a sampling algorithm, the proposed method uses span-
ning trees with degree constraints to highlight some impor-
tant edges. In this work, we used a set of degree constraint-
spanning trees with a variety of starting points as a basis 
for the algorithm. It was concluded from the results that 
edges with a large presence in spanning trees are important 
edges that capture several characteristics of the original 
network.

Figure  1 shows the relation among proposed meth-
ods. The remainder of this section describes in detail 
what STHNC and SSTHNC are. We then briefly describe 
SPTHNC and SPSTHNC.

4.1 � STHNC: a spanning tree with a degree 
constraint

An example of the degree-constrained spanning tree prob-
lem is determining whether a given network has a particular 
spanning tree for a given c (Lee 2001). It is an NP-complete 
problem (Garey and Johnson 1979), which is shown by 
reducing it to the Hamiltonian path problem. This section 
proposes an algorithm that generates a degree-constrained 
spanning tree if it can find one, and if not, an approximation 
by minimizing the number of nodes that violate the given 
degree constraint. The basic idea of this algorithm is bor-
rowed from (Sundar et al. 2012).

The proposed algorithm, STHNC, starts with a randomly 
initial vertex and iteratively tries to find a spanning tree with 
the highest number of nodes satisfying a given degree con-
straint. Consider the initial vertex v randomly selected in 
the first step of STHNC. The vertex v is added to the set of 
spanning tree nodes T  . In addition, v is marked as visited. 
The algorithm forms an edge set E′ containing edges of the 
resulting spanning tree. The algorithm runs through sev-
eral iterations until T  contains all the vertices of the input 
graph (i.e. V  ). Each iteration consists of two parts, described 
below:

Part I: A vertex v is chosen from T  as the current node. 
The selection of the current node from set T  is performed 
as follows:

•	 If set T  has only the initial vertex, then this node is con-
sidered the current node v.

•	 If the set T  has more than one node, then the algorithm 
considers the degree of nodes in the spanning tree (i.e., 
deg(v, S)):

o	 Initially, such vertices with degrees below c ( c 
is the degree constraint) are considered in T  
( deg(v, S) < c ). From them, node v with the least 
number of unvisited neighbors is chosen as the cur-
rent node.

o	 Else, if there is a node that violates the constraint 
and also has unvisited neighbors then it is selected 
as the current node v.

o	 Otherwise, a vertex with a maximum number of 
unvisited neighbors is selected as the current node v.

Part II. Among unvisited neighbors of node v , vertex u 
with the least unvisited neighbors is chosen if such a vertex 
exists. Whenever such a vertex does not exist, another itera-
tion occurs. Then edge (v, u) is added to set E' and vertex v is 

Fig. 1   Relations among pro-
posed methods

STHNC: Spanning Tree with Highest Number of nodes that satisfy a desired degree Constraint
SSTHNC: Social Network Sampling using a set of STHNC.
PSTHNC: a Partial version of STHNC.
SPSTHNC: Social Network sampling using a set of PSTHNC.

SPSTHNC

PSTHNC
Improvement

SSTHNC

STHNC
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marked as visited and added to set T. The Current node is set 
to vertex u ( v ← u) and the algorithm goes to part II.

The pseudo-code of the algorithm is shown in Fig. 2.
In the proposed algorithm STHNC, selecting the cur-

rent node plays a significant role in obtaining a spanning 
tree with the highest number of nodes satisfying the degree 
constraint C . The proposed algorithm selects a current node 
with the minimum number of unselected neighbors, because 
the greater the number of unselected neighbors, the higher 
the probability of the vertex being selected in the future. 
Using this selection strategy, the spanning tree can be satis-
fied with the given constraint.

However, in some cases, the algorithm encounters a 
situation that has to allow a vertex to break satisfying the 
given constraint. To reduce the number of such vertices, a 
vertex with a maximum number of unselected neighboring 
vertices is selected as the current vertex. Until this vertex 
has any unselected neighbors, the algorithm will not allow 
other nodes to violate the given constraint. As a result of this 
selection, the number of vertices with degrees higher than 
the constraint is reduced.

4.2 � SSTHNC: social network sampling using a set 
of STHNCs

SSTHNC starts by constructing k different spanning trees 
with the highest number of vertices that satisfy the given 
degree constraint (i.e., k different STHNCs). Each STHNC 
starts with a random vertex. Based on the constructed STH-
NCs, each edge present in the set of STHNCs is ranked. 
Edges with more appearances in STHNCs have a higher rank.

Additionally, each vertex appearing in STHNCs is ranked 
based on how many times it violated the degree constraint. 
Afterward, the top-m vertices of the list of nodes sorted in 
decreasing order by rank are selected, where m represents 
the minimum number of degree-constraint violations in 
any STHNC constructed. As a result, these m vertices are 
referred to as hubs.

SSTHNC constructs an induced subgraph1 as the sampled 
network. A new sample vertex is inserted into the sampled 
graph, along with all edges between it and older samples, if 
they do not already exist.

Fig. 2   The pseudo-code of the spanning tree with the highest number of nodes that satisfy the given degree constraint

1  A subgraph H is an induced subgraph of G if for any two vertices 
uv in H , u and v are adjacent in H if and only if they are adjacent in 
G.
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SSTHNC first inserts hub nodes into the sampled net-
work. All edges between hubs are inserted into the sam-
pled network due to the induced property of the subgraph. 
It is inserted sequentially the (distinct) vertices incident on 
the edges selected from the beginning of the list of ordered 
edges as long as the number of nodes in the sampled network 
is not greater than x fraction of the original nodes. When a 
vertex is added to the sampled network, its edges to previ-
ous vertices are established every time a vertex is added. 
Figure 3 shows the pseudocode for the proposed sampling 
algorithm SSTHNC.

4.3 � SPSTHNC: social network sampling using partial 
STHNC

SSTHNC can be enhanced by an α-partial version of STHNC 
(i.e. PSTHNC) with the highest number of nodes that meet a 
desired degree constraint. A PSTHNC with starting vertex v 
is a subgraph of graph G and is a tree with starting vertex v 
with the number of nodes � ∗ |V| for 0 < 𝛼 < 1 . α-PSTHNC 
works like STHNC, as shown in Fig. 4.

Algorithm PSTHNC computes an α-partial spanning 
tree for a given α. The revised SSTHNC version, called 
SPSTHNC, uses PSTHNC instead of STHNC. This includes 
all the vertices of the input graph.

4.4 � Some remarks on the proposed methods

•	 By using degree constraint spanning trees, edges could be 
visited uniformly. This prevents the sampled graph from 
being biased to high-degree nodes and prevents variance 
from having large values. There is no doubt that when 
the algorithm uniformly samples the input graph, some 
nodes with high degrees will inevitably be sampled. 
Several connections would be lost if these nodes were 
unavailable. By considering these influential nodes, we 
can better preserve the network statistics.

•	 By considering a spanning tree with a minimum number 
of hub nodes (influential nodes), the sampled network is 
prevented from being biased towards influential nodes in 
the network.

•	 In a variety of fields, scale-free networks, such as online 
social networks, are dominated by a few nodes with many 
neighbors (Santos and Pacheco 2005). Also, according to 
the 20/80 rule, a small number of nodes typically contrib-
ute a large amount to a network's activities (Woolhouse 
et al. 1997). It seems that it is more convenient to con-
sider both nodes and significant edges when looking at 
network samples. This is to obtain better samples.

Fig. 3   The pseudocode of the proposed sampling graph with a set of STHNC (SSTHNC)
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4.5 � The time complexity of the proposed 
algorithms

In this section, we try to analyze the time complexity of the 
proposed algorithms. To find the time complexity of the pro-
posed algorithms, we need to count the number of operations 
that the algorithm performs in the worst case and express it 
as a function of the input graph size.

4.5.1 � The time complexity of STHNC

The STHNC consists of two nested while loops. The outer 
loop iterates until all the nodes are added to the spanning 
tree T  , which is at most |V| times. The inner loop iterates 
until all the unvisited neighbors of the current node v are 
visited, which is at most |E| times in total for all the nodes. 
Therefore, the total number of iterations of the inner loop 
is O(|E|) . Inside the inner loop, the algorithm performs 
some constant time operations, such as finding the node u 
with the minimum number of unvisited neighbors, mark-
ing u as visited, adding the edge (v, u) to E′ , adding u to 

T  , and updating v . These operations take O(1) time each. 
Therefore, the total time complexity of the algorithm is 
O(|V| × |E| × 1) = O(|V| × |E|).

4.5.2 � The time complexity of SSTHNC

SSTHNC consists of several steps. The first step is to 
call STHNC, k times. The time complexity of STHNC is 
O(k × |V| × |E|) . The second step is to find the edges in STH-
NCs and list them in descending order of appearance. This 
can be done by using a hash map and a sorting algorithm. 
The hash map can store the edges and their frequencies in 
O(|E|) time and space. The sorting algorithm can sort the 
edges in O(|E| log |E|) time. Therefore, the second step takes 
O(|E| + |E|log|E|) = O(|E|log|E|) time. The third step is 
to check the hub nodes in STHNCs and rank them based 
on the number of violations. This can be done by using a 
hash map and a sorting algorithm. Same the second step, this 
step takes O(|V|log|V|) time. The fourth step is to find the 
minimum number of hub nodes in the STHNC. This can be 
done by using a linear search on the sorted list of nodes. This 

Fig. 4   The pseudo-code of constructing an α-partial degree constraint spanning tree with the highest number of nodes that satisfy the given 
degree constraint
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takes O(|V|) time. The fifth step is to select the |E|-top hub 
nodes from the list and insert them into Vs . This takes O(|E|) 
time. The sixth step is the main loop of the algorithm, which 
iterates until L is empty or Vs reaches the desired size. The 
loop body consists of some constant time operations, such 
as inserting and removing edges, finding the first edge that 
connects two nodes, and adding nodes to Vs . These opera-
tions take O(1) time each. Therefore, the loop body takes 
O(1) time. The loop condition depends on the size of L and 
Vs . In the worst case, L has m edges and Vs has � × |V| nodes. 
Therefore, the loop condition takes O(|E| + � × |V|) time 
to check. Therefore, the total time complexity of the algo-
rithm is O(k × |V| × |E| + |E|log|E| + |V|log|V| + |V| + |E|
+(|E| + � × |V|) × 1) = O(k × |V| × |E| + |E|log|E| + |V|
log|V| + � × |V|) = O(|V| × |E|).

5 � Simulation results

This section compares the proposed algorithms with other 
popular sampling algorithms on six graphs drawn and 
described in Table  1 including Squeak Foundation.org 
(Leskovec et al. 2005) as D1, Robots.net (Leskovec et al. 
2005) as D2, Cit-HepPh (Leskovec et al. 2007), as D3, Epin-
ions1 (Leskovec et al. 2005) as D4, Slashdot0902 (Lesko-
vec et al. 2009) as D5, Email-EuAll (Leskovec et al. 2009) 
as D6. In addition, artificial graphs are also used in some 
experiments. Other sampling methods include Random 
Node Sampling (RVS) (Maiya and Berger-Wolf 2011), Ran-
dom Edge Sampling (RES) (Ahmed et al. 2010), Random 
Walk Sampling (RWS) (Lovász 1993), Metropolis–Hastings 
Random Walk Sampling (MHRW) (Murai et al. 2013) and 
Spiral Sampling (SS) (Piña-García and Gu 2013), distrib-
uted learning automation sampling (DLAS) (Rezvanian 
et al. 2014) the shortest path sampling (SPS) (Rezvanian 
and Meybodi 2015), sampling by spanning trees (SST) 
(Jalali et al. 2016), Hybrid cuckoo search and genetic algo-
rithm sampling (GACS) (Ebadi Jokandan et al. 2021), and 

Levy flight-Based Distributed Learning Automata sampling 
(LBDLA) (Roohollahi et al. 2022).

5.1 � Experiment I

This experiment is designed to study the performance of 
the first proposed algorithm (SSTHNC) for finding degree 
constraint spanning trees with the highest number of nodes 
that satisfy the given degree constraint on some synthetic 
random connected small graphs based on the Erdos–Renyi 
model (Erdos and Rényi 1960). The size of these networks 
varies from 20 to 100 nodes. The proposed algorithms are 
compared with brute force search, which constructs all 
spanning trees on a synthesis network. Among all these 
spanning trees, such a tree with a minimum degree would 
be considered the most suitable solution. In this spanning 
tree, the number of nodes that violate the degree constraint 
c is denoted as the real value (reported in Table 2). In 
contrast, a spanning tree can be constructed by running 
the proposed algorithm considering a predefined degree 
constraint c . This will reveal the number of nodes that 
do not satisfy the degree constraint. Using the proposed 
algorithm for multiple runs, an average number can be 
calculated, which is also reported in Table 2.

Besides, the SSTHNC algorithm is conducted on the 
chosen real networks as described in Table 1. The results 
of the number of vertices that do not satisfy constraints 
and run-time are reported in Table 3 . In this experiment 
degree constraint spanning tree is executed with different 
degree constraints varying from 2 to 5. For each experi-
ment, the algorithm is executed 30 times, and average 
results are reported in Table 3. The results are shown in 
terms of the number of nodes with degrees higher than the 
given constraint and times in seconds needed to construct 
a degree constraint spanning tree. From the results, we 
may conclude that by increasing the constraint, the number 
of vertices that violate the constraints (also called branch 
vertices) will decrease and also using the algorithm in a 
reasonable time, it can have a degree constraint spanning 

Table 1   Description of test networks

Name Network Node Edge Description

D1 Squeak Foundation.org (Leskovec et al. 2005) 1133 5451 A sample network of mailing lists for answers in Squeak Foundation.
org

D2 Robots.net (Leskovec et al. 2005) 1706 3561 A sample network from robots.net social network
D3 Cit-HepPh (Leskovec et al. 2007) 34,546 421,578 A sample network from the citation network of Physics Theory
D4 Epinions1 (Leskovec et al. 2005) 75,879 508,837 A sample network of consumer reviews from Epinions.com
D5 Slashdot0902 (Leskovec et al. 2009) 82,168 948,464 A sample network of Slashdot Zoo social network
D6 Email-EuAll (Leskovec et al. 2009) 265,214 420,045 A sample network from emails of a large European research institu-

tion
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trees with the highest number of nodes that satisfy the 
given degree constraint.

5.2 � Experiment II

This experiment studies the minimum degree of constraint 
on spanning trees required to meet a given sampling rate. 
In the first step, the first algorithm (SSTHNC) makes some 
BKDSTs. SKBDST is executed with different degree con-
straint values from 2 to 10 to examine minimum degree con-
straint c for spanning trees. Results of this experiment are 
demonstrated for chosen networks as described in Table 1. 
with respect to KSD for DD , KSD for CCD, SDD for DD , 
SDD for CCD , ND for DD , and ND for CCD in Fig. 5. From 
Fig. 5, one can conclude that for a sampling rate of 30%, 
depending on the type of the network at least a degree con-
straint k = 5 is required to meet a specific sampling rate. The 
results of this experiment will be used in other experiments 
to choose the right number of spanning trees.

5.3 � Experiment III

In this experiment, the minimal number of spanning trees 
that must be used to reach a given sampling rate is deter-
mined. In this case, we ran the first proposed algorithm, 
SSTHNC, for a sampling rate of 30% on different test net-
works as described in Table 1 and then plotted the number 
of spanning trees versus KSD for DD , KSD for CCD , SDD 
for DD , SDD for CCD , ND for DD and ND for CCD as given 
in Fig. 6. As a result of these findings, we can state that 

increasing the number of computed spanning trees beyond 
50 will not impact any of the statistical properties discussed 
above. Therefore, for the following experiments, we will set 
the number of computed spanning trees used to construct a 
sample to 50 to obtain a representative sample.

5.4 � Experiment IV

This experiment examines the impact of selecting starting 
vertices on spanning trees based on different strategies. To 
achieve this, three strategies for selecting vertex have been 
examined: Rd , Hd , and Hb . Rd is a random starting vertex 
strategy. In Hd strategy, vertices with high degrees are used 
as hub vertices. For Hb strategy, high betweenness vertices 
are used. A node's betweenness is measured as the percent-
age of times it is located on the shortest path among all other 
nodes. The transfer of information items through a network 
is greatly affected by nodes with high betweenness. Results 
of this experiment for chosen test networks as described in 
Table 1 with respect to KSD for DD , KSD for CCD , SDD for 
DD , SDD for CCD , ND for DD , and ND for CCD are given 
in Table 4. We can conclude from the results that it does 
not matter how the starting vertices are chosen for degree 
constraint spanning trees.

5.5 � Experiment V

This experiment compares two proposed algorithms 
SSTHNC (the first) and SPTHNC (the second) with Ran-
dom Node Sampling (RVS) (Maiya and Berger-Wolf 

Table 2   Comparison of results 
for number of vertices that do 
not satisfy constraints

Degree 
constraint c

Size of networks

20 40 60 80 100

Real Average Real Average Real Average Real Average Real Average

2 2 2.00 3 3.8 3 3.11 4 4.89 7 9.70
3 1 1.32 2 2.35 3 3.12 4 5.12 7 9.54
4 1 1.43 2 2.23 2 2.72 3 3.78 6 8.30
5 1 1.45 2 2.27 2 2.26 3 3.62 5 6.70

Table 3   Comparison of results 
for the number of vertices that 
do not satisfy constraints and 
run-time for varying degree 
constraints

Degree 
constraint 
c

Networks

D1 D2 D3 D4 D5 D6

Value Time Value Time Value Time Value Time Value Time Value Time

2 7.30 0.01 14.03 0.02 21.23 0.08 91.46 6.86 8.40 5.57 8.30 16.39
3 7.73 0.01 6.70 0.02 13.56 0.19 58.80 15.67 7.86 41.00 7.50 49.88
4 4.90 0.01 5.93 0.01 12.00 0.18 57.70 13.22 7.83 42.42 7.63 41.88
5 5.56 0.01 4.36 0.01 12.46 0.23 65.80 31.41 7.90 42.00 7.90 45.85
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a) KSD for by SSTHNC with different numbers of
spanning trees

b) KSD for by SSTHNC with different numbers of
spanning trees

d) SDD for by SSTHNCwith differentnumbers of spanning
trees

e) SDD for by SSTHNC with different numbers of
spanning trees

f) ND for by SSTHNC with different numbers of spanning
trees

g) ND for by SSTHNC with different numbers of
spanning trees
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Fig. 5   The minimum degree of constraint on spanning trees required to meet a given sampling rate
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a) KSD for by SSTHNC with different numbers of
spanning trees

b) KSD for by SSTHNC with different numbers of
spanning trees

c) SDD for by SSTHNCwith different numbers of spanning
trees

d) SDD for by SSTHNC with different numbers of
spanning trees

e) ND for by SSTHNC with different numbers of spanning
trees

f) ND for by SSTHNC with different numbers of
spanning trees
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2011), Random Edge sampling (RES) (Ahmed et al. 2010), 
Random Walk sampling (RWS) (Lovász 1993), Metropo-
lis–Hastings Random Walk sampling (MHRW) (Murai et al. 
2013), Spiral Sampling (SS) (Piña-García and Gu 2013), 
distributed learning automation sampling (DLAS) (Rezva-
nian et al. 2014) the shortest path sampling (SPS) (Rezva-
nian and Meybodi 2015), sampling by spanning trees (SST) 
(Jalali et al. 2016), Hybrid cuckoo search and genetic algo-
rithm sampling (GACS) (Ebadi Jokandan et al. 2021), and 
Levy flight-Based Distributed Learning Automata sampling 
(LBDLA) (Roohollahi et al. 2022) based on KSD for DD , 
KSD for CCD , SDD for DD , SDD for CCD , ND for DD , and 
ND for CCD . The sampling rate is 15%. The results reported 
are averaged over 30 runs. For statistical significance, a para-
metric t-test with 28 degrees of freedom was conducted at a 
95% level of significance. The t-test result on  SSTHNC is 
reported as better than (shown by “✓”), worse than (shown 
by “✘”), similar to (shown by “ ~ ”) that of the correspond-
ing sampling method. This experiment's results are shown in 
Tables 5, 6, 7, 8, 9 and Table 10. As the results of the t-test, 
the boldfaced results indicate the best results in Tables 5, 6, 
7, 8, 9 and 10 and also we show the percentages of the cases 
that the SSTHNC outperforms significantly other algorithms 
in the last column. Based on these results, our proposed sam-
pling algorithm outperforms sampling algorithms based on 
KSD, SDD, and ND. As well as outperforming the second 
sampling algorithm, the first is more efficient.

5.6 � Experiment VI

This experiment studies the impact of sampling rate on 
the performance of the first proposed sampling algorithm. 
This goal is achieved by running the algorithm for changes 
in sampling rate from 5 to 30% with an increment of 5% 
on different test networks. The results are given in Fig. 7. 
According to the results, we may say that the impact of 
the sampling rate on the algorithm's performance is very 

much dependent on the type of network. Generally, how-
ever, increasing the sampling rate leads to better results in 
most networks.

5.7 � Experiment VII

A comparison of SSTHNC and PSTHNC is presented 
along with a few existing two-phase sampling algorithms, 
including the shortest path sampling (SPS) (Rezvanian and 
Meybodi 2015),  distributed learning automation sampling 
(DLAS) (Rezvanian et al. 2014), sampling by spanning trees 
(SST) (Jalali et al. 2016), and Levy flight-Based Distributed 
Learning Automata sampling (LBDLA) (Roohollahi et al. 
2022). For this experiment, the sampling rate is 30%. As 
shortest paths or spanning trees increase, algorithms cost 
more. In this experiment, the accuracy of sampling algo-
rithms is compared based on KSD for DD and KSD for CCD 
versus sampling cost (as defined by Eq. (5)). In Figs. 8 and 9, 
we present the cost results of this experiment using KSDs for 
DD and CCD for different two-phase sampling algorithms. 
As shown, increasing sampling costs result in decreasing 
KSDs for DD and CCD . Results say that at the same cost, the 
PSTHNC algorithm generally outperforms other two-phase 
sampling algorithms at least in five of the six networks based 
on KDS for DD and four of the six networks based on KSD 
for CCD . For some networks such as D3, SPS sometimes 
outperforms SSTHNC based on KSD for CCD . For the D1 
network, SSTHNC and PSTHNC produce similar results for 
the same KDS.

6 � Conclusion

This paper proposed two sampling algorithms for social 
networks using degree constraint spanning trees. The idea 
behind these algorithms was that by building STHNCs, 
they could identify important nodes (those that exceed the 
degree limit) and edges (those that appear more often in 

Table 4   Results of the proposed algorithm for different starting vertex selection strategies: Rd, Hd, and Hb

Distance 
function

Statistical 
property

Networks

D1 D2 D3 D4 D5 D6

Rd Hd Hb Rd Hd Hb Rd Hd Hb Rd Hd Hb Rd Hd Hb Rd Hd Hb

KSS DD 0.13 0.13 0.13 0.03 0.03 0.03 0.09 0.09 0.09 0.19 0.19 0.19 0.05 0.05 0.05 0.19 0.19 0.19
CCD 0.17 0.17 0.17 0.18 0.18 0.18 0.00 0.00 0.00 0.01 0.01 0.01 0.03 0.03 0.03 0.07 0.07 0.07

SDD DD 0.89 0.89 0.89 1.03 1.03 1.03 1.00 1.00 1.00 0.84 0.84 0.84 0.97 0.97 0.97 0.52 0.52 0.52
CCD 0.94 0.94 0.94 0.77 0.77 0.77 1.03 1.03 1.03 1.06 1.06 1.06 1.00 1.00 1.00 0.98 0.98 0.98

ND DD 0.30 0.30 0.30 0.06 0.06 0.06 0.19 0.19 0.19 0.34 0.34 0.34 0.10 0.10 0.10 0.24 0.24 0.24
CCD 0.23 0.23 0.23 0.32 0.32 0.32 0.01 0.01 0.01 0.02 0.02 0.02 0.06 0.06 0.06 0.14 0.14 0.14
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Fig. 7   Comparison of KSD, SDD, and ND with respect to DD and CCD for different sampling rates
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Fig. 8   Using KSD for DD versus sampling costs to compare two-phase sampling algorithms 
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Fig. 9   Using KSD for CCD versus the sampling cost to compare two-phase sampling algorithms 
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STHNCs) that capture some features of the original net-
work. Moreover, STHNC visited edges uniformly, which 
reduced the bias towards high-degree nodes in the sam-
pled network. The proposed algorithms were evaluated by 
running several experiments on data sets based on social 
networks. Based on the results, the proposed algorithms 
outperformed other algorithms such as random vertex 
sampling, random edge sampling, random walk sampling, 
Metropolis–Hastings random walk sampling, spiral sam-
pling, shortest path sampling, spanning tree sampling, 
and distributed learning automata sampling with respect 
to Kolmogorov-Simonov, skew divergence, and normal-
ized distance tests.

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s13278-​024-​01247-4.

Authors' contributions  AR and ZSJ proposed the original idea, devel-
oped the code, designed, performed the simulation experiments, wrote 
the main manuscript text, and prepared Figs. 1, 2, 3, 4, 5, 6, 7, 8, 9 
and S.M.V. participated in the coordination of the study. All authors 
planned the work, analyzed the results, and reviewed the manuscript.

Funding  No funding.

Data availability  Data is provided within the supplementary informa-
tion files.

Declarations 

Conflict of interest  The authors declare no competing interests.

Ethical approval  Not applicable.

References

Ahmed NK, Neville J, Kompella R (2014b) Network sampling: from 
static to streaming graphs. ACM Trans Knowl Discov Data 
(TKDD) 8:7

Ahmed NK, Berchmans F, Neville J, Kompella R (2010) Time-based 
sampling of social network activity graphs. In: Proceedings of 
the Eighth workshop on mining and learning with graphs. ACM, 
pp 1–9

Ahmed NK, Duffield N, Neville J, Kompella R (2014a) Graph sample 
and hold: A framework for big-graph analytics. In: Proceedings 
of the 20th ACM SIGKDD international conference on Knowl-
edge discovery and data mining. ACM, pp 1446–1455

Ansari N, Cheng G, Krishnan RN (2004) Efficient and reliable link 
state information dissemination. IEEE Commun Lett 8:317–319

Bearman PS, Moody J, Stovel K (2004) Chains of affection: the 
structure of adolescent romantic and sexual networks1. Am J 
Sociol 110:44–91

Bellur B, Ogier RG (1999) A reliable, efficient topology broadcast 
protocol for dynamic networks. In: INFOCOM’99. Eighteenth 
annual joint conference of the IEEE computer and communica-
tions societies. Proceedings. IEEE. IEEE, pp 178–186

Blagus N, Šubelj L, Weiss G, Bajec M (2015) Sampling promotes 
community structure in social and information networks. Phys-
ica A 432:206–215

Blomsma N, de Rooy B, Gerritse F et al (2022) Minimum spanning tree 
analysis of brain networks: a systematic review of network size 
effects, sensitivity for neuropsychiatric pathology, and disorder 
specificity. Netw Neurosci 6:301–319

Ebadi Jokandan SM, Bayat P, Farrokhbakht Foumani M (2021) CS- 
and GA-based hybrid evolutionary sampling algorithm for large-
scale social networks. Soc Netw Anal Min 11:120. https://​doi.​org/​
10.​1007/​s13278-​021-​00836-x

Erdos P, Rényi A (1960) On the evolution of random graphs. Publ Math 
Inst Hung Acad Sci 5:17–61

Gao Q, Ding X, Pan F, Li W (2014) An improved sampling method of 
complex network. Int J Mod Phys C 25:1440007

Garey MR, Johnson DS (1979) Computers and intractability: a guide 
to the theory of NP-completeness, 1st edn. W. H Freeman, San 
Francisco

Gile KJ, Handcock MS (2010) Respondent-driven sampling: 
an assessment of current methodology. Sociol Methodol 
40:285–327

Gjoka M, Kurant M, Butts CT, Markopoulou A (2010) Walking in 
Facebook: a case study of unbiased sampling of OSNs. In: Pro-
ceedings IEEE INFOCOM 2010. San Diego, CA, pp 1–9

Hill RJ (1999) International comparisons using spanning trees. In: 
International and interarea comparisons of income, Output, and 
Prices. University of Chicago Press, pp 109–120

Jalali ZS, Rezvanian A, Meybodi MR (2016) Social network sampling 
using spanning trees. Int J Mod Phys C 27:1650052

James F (2006) Statistical methods in experimental physics. World 
Scientific

Jaouadi M, Romdhane LB (2021) A distributed model for sampling 
large scale social networks. Expert Syst Appl 186:115773

Kurant M, Markopoulou A, Thiran P (2011b) Towards unbiased BFS 
sampling. IEEE J Sel Areas Commun 29:1799–1809

Kurant M, Gjoka M, Butts CT, Markopoulou A (2011a) Walking on a 
graph with a magnifying glass: stratified sampling via weighted 
random walks. In: Proceedings of the ACM SIGMETRICS joint 
international conference on Measurement and modeling of com-
puter systems. ACM, pp 281–292

Kurant M, Gjoka M, Wang Y, et al (2012) Coarse-grained topology 
estimation via graph sampling. In: Proceedings of the 2012 ACM 
workshop on Workshop on online social networks. ACM, pp 
25–30

Lee L (2001) On the effectiveness of the skew divergence for statistical 
language analysis. In: AISTATS. Citeseer

Leskovec J, Kleinberg J, Faloutsos C (2007) Graph evolution: densifi-
cation and shrinking diameters. ACM Trans Knowl Discov Data 
(TKDD) 1:1–41

Leskovec J, Lang KJ, Dasgupta A, Mahoney MW (2009) Community 
structure in large networks: natural cluster sizes and the absence 
of large well-defined clusters. Internet Math 6:29–123

Leskovec J, Faloutsos C (2006) Sampling from large graphs. In: Pro-
ceedings of the 12th ACM SIGKDD international conference on 
Knowledge discovery and data mining. ACM, Philadelphia, pp 
631–636

Leskovec J, Kleinberg J, Faloutsos C (2005) Graphs over time: densi-
fication laws, shrinking diameters and possible explanations. In: 
Proceedings of the eleventh ACM SIGKDD international confer-
ence on Knowledge discovery in data mining, pp 177–187

Liu X, Zhang M, Fiumara G, De Meo P (2022) Complex network 
hierarchical sampling method combining node neighborhood 
clustering coefficient with random walk. New Gener Comput 
40:765–807. https://​doi.​org/​10.​1007/​s00354-​022-​00179-x

Lovász L (1993) Random walks on graphs: a survey. Comb Paul Erdos 
Eighty 2:1–46

Luo Q, Xie Z, Liu Y et al (2024) Sampling hypergraphs via joint unbi-
ased random walk. World Wide Web 27:15. https://​doi.​org/​10.​
1007/​s11280-​024-​01253-8

https://doi.org/10.1007/s13278-024-01247-4
https://doi.org/10.1007/s13278-021-00836-x
https://doi.org/10.1007/s13278-021-00836-x
https://doi.org/10.1007/s00354-022-00179-x
https://doi.org/10.1007/s11280-024-01253-8
https://doi.org/10.1007/s11280-024-01253-8


Social Network Analysis and Mining (2024) 14:101	 Page 21 of 21  101

Maiya AS, Berger-Wolf TY (2011) Benefits of bias: towards better 
characterization of network sampling. In: Proceedings of the 17th 
ACM SIGKDD international conference on Knowledge discovery 
and data mining. ACM, pp 105–113

Murai F, Ribeiro B, Towsley D, Wang P (2013) On set size distribution 
estimation and the characterization of large networks via sam-
pling. IEEE J Sel Areas Commun 31:1017–1025

Papagelis M, Das G, Koudas N (2013) Sampling online social net-
works. IEEE Trans Knowl Data Eng 25:662–676

Peng L, Yongli L, Chong W (2014) Towards cost-efficient sampling 
methods. http://​arxiv.​org/​abs/​arXiv:​14055​756

Piña-García CA, Gu D (2013) Spiraling facebook: an alternative 
Metropolis–Hastings random walk using a spiral proposal distri-
bution. Soc Netw Anal Min 3:1403–1415

Rezvanian A, Meybodi MR (2015) Sampling social networks using 
shortest paths. Physica A 424:254–268

Rezvanian A, Rahmati M, Meybodi MR (2014) Sampling from com-
plex networks using distributed learning automata. Physica A 
396:224–234

Rezvanian A, Moradabadi B, Ghavipour M, et al (2019) Social network 
sampling. In: Learning automata approach for social networks. 
Springer, pp 91–149

Ribeiro B, Figueiredo D, de Souza e Silva E, Towsley D (2011) Char-
acterizing continuous-time random walks on dynamic networks. 
In: Proceedings of the ACM SIGMETRICS joint international 
conference on Measurement and modeling of computer systems. 
ACM, pp 151–152

Ribeiro B, Wang P, Murai F, Towsley D (2012) Sampling directed 
graphs with random walks. In: Proceedings IEEE INFOCOM. 
Orlando, FL, pp 1692–1700

Roohollahi S, Khatibi Bardsiri A, Keynia F (2022) Sampling in 
weighted social networks using a levy flight-based learning 
automata. J Supercomput 78:1458–1478. https://​doi.​org/​10.​1007/​
s11227-​021-​03905-2

Santos FC, Pacheco JM (2005) Scale-free networks provide a unify-
ing framework for the emergence of cooperation. Phys Rev Lett 
95:098104. https://​doi.​org/​10.​1103/​PhysR​evLett.​95.​098104

Siciliano MD, Yenigun D, Ertan G (2012) Estimating network structure 
via random sampling: cognitive social structures and the adaptive 
threshold method. Soc Netw 34:585–600

Son S-W, Christensen C, Bizhani G et al (2012) Sampling properties 
of directed networks. Phys Rev E 86:046104

Sundar S, Singh A, Rossi A (2012) New heuristics for two bounded-
degree spanning tree problems. Inf Sci 195:226–240. https://​doi.​
org/​10.​1016/j.​ins.​2012.​01.​037

Tewarie P, Van Dellen E, Hillebrand A, Stam CJ (2015) The minimum 
spanning tree: an unbiased method for brain network analysis. 
Neuroimage 104:177–188

Wang H, Lu J (2013) Detect inflated follower numbers in OSN using 
star sampling. In: Proceedings of the 2013 IEEE/ACM interna-
tional conference on advances in social networks analysis and 
mining. ACM, pp 127–133

Wejnert C, Heckathorn DD (2008) Web-based network sampling: 
efficiency and efficacy of respondent-driven sampling for online 
research. Sociological Methods and Research

White DR, Newman M (2001) Fast approximation algorithms for find-
ing node-independent paths in networks

Woolhouse ME, Dye C, Etard JF et al (1997) Heterogeneities in the 
transmission of infectious agents: implications for the design of 
control programs. Proc Natl Acad Sci USA 94:338–342. https://​
doi.​org/​10.​1073/​pnas.​94.1.​338

Yoon S-H, Kim K-N, Hong J et al (2015) A community-based sampling 
method using DPL for online social networks. Inf Sci 306:53–69

Publisher's Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds 
exclusive rights to this article under a publishing agreement with the 
author(s) or other rightsholder(s); author self-archiving of the accepted 
manuscript version of this article is solely governed by the terms of 
such publishing agreement and applicable law.

http://arxiv.org/abs/arXiv:14055756
https://doi.org/10.1007/s11227-021-03905-2
https://doi.org/10.1007/s11227-021-03905-2
https://doi.org/10.1103/PhysRevLett.95.098104
https://doi.org/10.1016/j.ins.2012.01.037
https://doi.org/10.1016/j.ins.2012.01.037
https://doi.org/10.1073/pnas.94.1.338
https://doi.org/10.1073/pnas.94.1.338

	A spanning tree approach to social network sampling with degree constraints
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Evaluation metrics on sampling

	3 Related work
	4 Proposed sampling algorithm
	4.1 STHNC: a spanning tree with a degree constraint
	4.2 SSTHNC: social network sampling using a set of STHNCs
	4.3 SPSTHNC: social network sampling using partial STHNC
	4.4 Some remarks on the proposed methods
	4.5 The time complexity of the proposed algorithms
	4.5.1 The time complexity of STHNC
	4.5.2 The time complexity of SSTHNC


	5 Simulation results
	5.1 Experiment I
	5.2 Experiment II
	5.3 Experiment III
	5.4 Experiment IV
	5.5 Experiment V
	5.6 Experiment VI
	5.7 Experiment VII

	6 Conclusion
	References


