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Abstract
This study aims to examine the demographics of participants engaged in scholarly communication on Twitter, which has been 
rebranded as X. Firstly, based on a dataset of tweets citing COVID-19 publications, it proposed a more precise classification 
system consisting of eleven user categories for individuals who tweeted academic publication. Secondly, it explores the effec-
tiveness of graph neural network models (GNNs) in combination with a transformer-based text classification model (specifi-
cally, BERT) to classify these newly defined user categories. The findings of this research highlight that GNNs can effectively 
interpret the social networks within scholarly communication, and complement text classification models in characterizing 
user types. The best-performing model achieved an accuracy rate of 84.05 percent in classifying user categories for a dataset 
of 10,048 labeled users. Subsequently, this model was employed to analyze 393,030 tweeters in our dataset. The analysis 
revealed that relevant scholarly discussion on Twitter was dominated by members from the general public (over 71 percent). 
Academic researchers and institutions constituted 12.48 percent, while health science professionals and institutions made 
up 7.35 percent of the contributors to relevant scholarly discussions on Twitter. Notably, academic publishers and research 
feed accounts exhibited aggressive tweeting behaviors and were responsible for the highest volume of tweets on average. 
This study also demonstrates the active involvement of various non-academic members, including commercial businesses, 
mass media outlets, public authorities, politicians, and civil society organizations, in Twitter scholarly communication.

Keywords Altmetrics · Twitter · Scholarly communication · User classification · Graph neural networks · Social networks · 
Machine learning

1 Introduction

Altmetrics are metrics that track and quantify the attention 
given to a scholarly work or researcher through online plat-
forms (Priem and Hemminger 2010). Twitter (rebranded as 
X), a major source of altmetrics with the potential to trace 
up-to-date conversations about academic literature (Hassan 
et al. 2017; Holmberg and Vainio 2018; Özkent 2022), has 
received significant attention from researchers.

However, research communities have raised concerns 
about the validity of Twitter metrics as research impact 

indicators. Researchers have highlighted significant issues, 
such as obsessive duplicate tweeting from social media man-
agement tools and bots, unselective and mechanical tweet-
ing that expresses no original thoughts and self-retweets 
(Cao et al. 2023; Hassan et al. 2017; Robinson-Garcia et al. 
2017, 2018). Additionally, the lack of a robust understand-
ing of Twitter metrics may have undermined research com-
munities’ confidence in utilizing them for research impact 
evaluations.

To advance our knowledge of Twitter altmetrics, it is 
critical to gain a comprehensive understanding of Twitter 
scholarly communication. Demographic analysis of partici-
pants discussing scientific publications on Twitter could be 
the first step.

A main objective of this study is to facilitate Twitter met-
rics research on a large scale by constructing classification 
models that can effectively identify user types of participants 
in the context of Twitter scholarly communication. Specifi-
cally, this article makes the following contributions:
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(1) Firstly, we propose a refined user classification scheme 
tailored to the context of Twitter altmetrics. This 
scheme covers a variety of participants engaged in 
scholarly communication on Twitter.

(2) User classification models are developed to facilitate 
user analysis in the context of Twitter metrics on a 
large scale. The best-performing model significantly 
achieved an accuracy of 84.05 percent and up to around 
4 percent relative improvement compared to the fine-
tuned BERT model, the state-of-art text classification 
approach.

(3) We demonstrate how graph neural network models 
(GNNs), in conjunction with a transformer-based text 
classification model (i.e., BERT), enhance user attrib-
utes of tweeters by supplementing social network infor-
mation.

This article contributes to the current literature on demo-
graphics in Twitter scholarly communication by conducting 
a user analysis using a large dataset of tweeters discussing 
COVID-19 publications. The following section in this paper 
reviews related works and introduces the design of the pro-
posed user classification models. The proposed models are 
evaluated in the next section. The final section presents a 
straightforward user analysis of a sample of tweeters men-
tioning COVID-19 publications, based on the predicted 
results generated by a selected model.

2  Related works

2.1  User analysis of twitter scholarly 
communication

The extant literature has illustrated the diversity of demo-
graphics in Twitter scholarly communication. Altmetric.
com, a leading altmetrics service provider, categorizes 
Twitter users into four groups: members of the public, 
researchers, health science practitioners, and science com-
municators (e.g., journal publishers and editors) (Altmet-
ric.com 2021). This classification scheme has been com-
monly adopted by researchers. For example, Yu (2017) 
discovered that over 85 percent of 3,903,054 academic 
publications had been tweeted by the general public. 
Researchers, clinical science practitioners, and science 
communicators accounted for 33.12 percent, 16.19 per-
cent, and 16.43 percent of tweeted publications, respec-
tively. Similarly, the study of Díaz-Faes et  al. (2019) 
reported that approximately 86.3 percent of tweeters dis-
cussing academic articles between 2011 and 2017 were 
members of the general public. In a recent study, Abhari 
et al. (2022) developed a supervised learning model to 
classify users who tweeted about COVID-19 publications. 

Their user classification results indicated that researchers 
dominated the discussion, contributing 23.29 percent of 
relevant tweets and likes (including both non-retracted and 
retracted articles), followed by the general public (18.63 
percent), and science communicators (9.98 percent).

Some studies delve into detailed user categorization 
when examining tweeters who mention academic articles. 
For instance, Ferguson et al. (2014) identified a diversity 
of participants involved in scholarly discussion on Twitter, 
including faculty members, research fellows, communica-
tion officers, cardiologists, professional societies, and others, 
during a scientific conference held by the Cardiac Society. In 
another study, Didegah et al. (2018) examined 6388 tweets 
from multiple disciplines and classified Twitter users par-
ticipating in scholarly communication into 12 categories: (1) 
individual researchers; (2) individual citizens; (3) individual 
journalists; (4) individual professionals; (5) research organi-
zations; (6) funding organizations; (7) public authorities; 
(8) civil society organizations; (9) publishers/journals; (10) 
media; (11) businesses and (12) others. They found that indi-
vidual citizens tweeted most frequently about social sciences 
& humanities and physics & engineering, while individual 
researchers dominated discussions in math & computers and 
biomedical and health sciences. Civil society organizations 
played a significant role in discussions related to life & earth 
studies.

Vainio and Holmberg (2017) analyzed 100 profiles of 
tweeters from four research domains and divided them into 
seventeen user types, including students, researchers, post-
doc/Ph.D. researchers, professors, health care professionals, 
expertise, writers/editors/journalists, other professions, com-
panies, entrepreneurs, publishers, publications, non-profit 
organizations/non-profit groups, government organizations/
universities, opinions/propaganda, librarians/other academ-
ics, and others. As their study concluded, the discussions 
were primarily driven by researchers in fields such as agri-
cultural, engineering, and technology sciences (19 percent) 
and natural sciences (16 percent). About 25 percent of tweet-
ers discussing medical and health sciences publications 
were professionals, while company profiles accounted for 
the majority of tweeters mentioning publications in social 
sciences and humanities (14 percent).

Existing studies have provided substantial evidence of 
the diversity of Twitter users engaged in scholarly commu-
nication. Nevertheless, significant research gaps remain. 
Firstly, large-scale studies often employ broad user classifi-
cation schemes, potentially leading to an overestimation of 
the general public's presence. Secondly, due to the cost of 
manually labeling users, studies with precise classification 
schemes tend to have limited sample sizes. To address these 
challenges, it is critical to refine user categories within the 
context of scholarly communication on Twitter and automate 
the user classification process.
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Hence, this study proposes an adjusted user classification 
scheme that divides tweeters mentioning scientific publica-
tions into eleven categories (refer to Table 1). Research feeds 
are included to supplement the list of user categories, as 
they were observed to be prevalent in the context of Twitter 
altmetrics (Haustein et al. 2016). This classification scheme 
encompasses a wide range of participants in scholarly com-
munication on Twitter. For example, it could be remapped 
to align with user categories adopted by Altmetric.com: 
(1) Researchers, including academic and non-academic 
researchers and institutions; (2) Health Science Practition-
ers, covering health science professionals and institutions; 
(3) Science Communicators, such as academic publish-
ers and research feeds; (4) Members of the Public, which 
includes other user categories in the scheme. With more 
precise categories, it can offer a more comprehensive over-
view of tweeters involved in scholarly communication on 
Twitter. Though this classification scheme may not be fully 
compatible for Twitter altmetrics data outside of COVID-19 
or public health domains, it can be easily adapted to differ-
ent contexts.

2.2  Exploiting social network patterns in user 
classification task

Twitter users may provide limited information or leave their 
profiles empty, relying solely on textual information from 
user profiles may not be sufficient for user classification. In 
the study of Abhari et al. (2022), approximately 33.53 per-
cent of relevant tweets and likes came from tweeters without 

profile descriptions. In another study, nearly 10 percent of 
human accounts (n = 11,241) were found to have empty 
description fields, while this percentage was 47.6 percent 
among 11,768 bot accounts (Hayawi et al. 2022).

The social web, exemplified by platforms such as Twitter, 
has significantly reshaped scholarly communication, promot-
ing engagement and interactions within academia and with 
a broad range of audiences, including the general public. 
Considering that users' activities in scholarly communication 
on Twitter are influenced by their specific goals and fields of 
study (Holmberg and Thelwall 2014), they could exhibit dis-
tinct patterns of social networking. Hence, to provide a more 
holistic depiction of Twitter users one potential approach is 
to supplement their user profiles with social network infor-
mation. The benefits of incorporating social network pat-
terns as input features into user classification models have 
been widely established in the existing scholarship.

For instance, Marco and Popescu (2011) used gradient 
boosted decision trees (GBDTs) to predict tweeters' politi-
cal leanings based on their social circles of followship and 
interaction, achieving an 80 percent accuracy. Li et  al. 
(2019) inputted the "following" relationship among Weibo 
users in their user attribute classification tasks, and found 
that integrating text and social network features into neu-
ral networks improved the prediction of users' age, gender, 
and geographical location. Campbell et al. (2014) supplied 
various social graphs of Twitter user interactions, including 
mentions, retweets, and hashtag usage, into their account 
verification algorithm. By considering both social network 
information and Twitter content, their decision tree-based 

Table 1  Category of twitter users

Academic researchers and institutions Academic researchers and scientists (e.g., faculty members, lecturers, research fellows, and post-
graduate students) and academic institutions, such as universities, research labs, and researcher 
networks

Academic publishers Publishers that distribute academic research and scholarly works, as well as editors working in the 
academic publishing industry

Business Commercial organizations in non-health science domain
Civil society organizations Non-profit, voluntary groups, e.g., associations of patients, societies based on common interest, 

social media communities, churches, etc
Funding organizations Public agencies that allocate funding and resources to researchers and research organizations
Health science professionals and institutions Professionals that work in health science (physicians, pharmacists, and nurses) and related organi-

zations such as hospitals and clinics
Mass media Mass media organizations such as TV channels, magazines, and books, as well as personnel work-

ing in the industry, such as journalists, reporters, and talk show hosts
Non-academic researchers and institutions Researchers and scientists who are affiliated with non-academic institutes (e.g., research depart-

ments in industries or governments) and non-academic research institutes
Public authorities and politicians Public administration agencies (e.g., Ministry of Health, National Department of Statistics), inter-

national organizations (e.g., United Nation, World Health Organization), political parties, and 
affiliated individuals (e.g., ministers, advisors, and politicians)

Research feeds Feeds or alerts for scientific publications (e.g., automated or human-curated updates from aca-
demic databases)

Others Users from the general public who do not fall into any of the other categories
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model achieved an average area under the ROC curve (AUC) 
of 0.76, surpassing the baseline model that used only Twit-
ter content (AUC of 0.67). Jiang et al. (2022) developed 
network-based models by constructing retweet networks, 
combining Bidirectional Encoder Representations from 
Transformers (BERT) and GraphSAGE (a type of Graph 
Neural Networks or GNNs) to identify political leaning with 
over 90 percent accuracy.

It is also common among researchers to employ interac-
tion network features to detect social bots on Twitter, includ-
ing metrics like the number of nodes and edges, the size 
of the largest connected component, average degree, and 
the count of isolated nodes (Aljabri et al. 2023; Dehghan 
et al. 2023). In the realm of Twitter scholarly communica-
tion, Aljohani et al. (2020) utilized a graph convolutional 
neural network (GCN) model for their bot prediction task. 
Their model effectively captured social interaction patterns 
from the undirected user network of retweets and @men-
tions, achieving an impressive accuracy of 71 percent in 
distinguishing between humans and bots among a dataset 
of 16,264 users, including 64 labeled as bots.

Therefore, GNNs, a class of methods that represent social 
interactions and connections as graphs, could play a use-
ful role in developing an effective approach for classify-
ing diverse participant types within the context of Twitter 
metrics.

2.3  Related classification models

GNNs, which model social interactions and connections 
as graphs, can potentially capture tweeters' social network 
information and enhance the input features for user classifi-
cation models. This study proposes to classify user types in 
Twitter scholarly communication by combining the trans-
former-based text classification model (BERT) with GNNs.

2.3.1  The BERT model

The Bidirectional Encoder Representations from Transform-
ers (BERT) model stands as one of the most successful deep 
learning methods for text classification. BERT employs the 
Masked Language Model (MLM) to learn language repre-
sentations bidirectionally, both from left to right and right 
to left. It consists of a multi-layer, multi-head self-attention 
mechanism that harnesses transformers, allowing it to cap-
ture word relationships effectively and generate attention 
maps (Devlin et al. 2018; Lu et al. 2020). Vaswani et al. 
(2017) illustrated that the transformer-based encoder-
decoder structure comprises three key components: (1) a 
multi-head attention mechanism, (2) layer standardization 
and residual connections, and (3) position-wise feed-forward 
networks.

Researchers have applied BERT models to various text 
classification tasks on Twitter. These include classifying 
tweets into specific domains or topics, identifying tweets 
containing specific information, and categorizing user attrib-
utes based on their profiles (Basile et al. 2019; Dukic et al. 
2020; Müller et al. 2020). Hence, our Twitter user classifi-
cation task can also leverage BERT's capability to extract 
distinctive features from users' profiles.

2.3.2  Graph neural networks

Graph structures, which model data through nodes and 
edges, are widely used to capture relationships within vari-
ous data types, such as genome sequences, social networks, 
and image representations. Graph Neural Networks (GNNs) 
are deep learning methods that extend traditional neural net-
works into the realm of graphs. Unlike conventional machine 
learning approaches, which simplify graph structures into 
numerical vectors, GNNs retain the topological relationships 
between nodes when encoding graph structures. GNNs can 
be tailored for node-level, edge-level, and graph-level pre-
diction tasks (Scarselli et al. 2009; Wu et al. 2021; Zhou 
et al. 2020).

Zhou et al. (2020) identified three crucial components of 
GNN models. The first component is the propagation mod-
ule, which allows GNNs to capture underlying features and 
topological information within a given graph. It comprises 
three primary functions: (1) Message functions that trans-
form node features for transmission to adjacent nodes; (2) 
Aggregation functions, such as sum, mean, and max, which 
compile information received from neighboring nodes; and 
(3) Update functions that update a node's state by integrat-
ing the aggregated message with its previous state. GNNs 
define a target node based on its neighborhood. For example, 
as illustrated in Fig. 1, target node i can be represented by 
its neighbors j, k, l , as well as their respective neighbors. 
GNNs update the representation of node i through message 
passing, transmitting messages (i.e., embeddings) from i ’s 
neighbors and its neighbors to i along edges using specific 
aggregation functions.

The second component involves a sampling module, 
which can be helpful when working with large-scale graphs. 
These modules effectively mitigate the growth in neighbor 
nodes, which occurs as a result of multiple stacks in GNN 
layers. Various types of sampling, including node sampling, 
subgraph sampling, and layer sampling, can be applied at 
different levels.

The third component is the pooling module. A pooling 
layer is usually added after the convolutional layer in graph 
convolutional networks to summarize node representations 
and generate an abstract representation of high-level graphs 
or subgraphs.
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Therefore, GNNs could be a feasible method for improv-
ing user classification models in the context of Twitter schol-
arly communication, as they have the capability to represent 
not only the features of target tweeters but also their social 
networks by aggregating features of neighboring tweeters 
with whom they have interacted. This approach offers flex-
ibility in representing target tweeters at different levels. For 
instance, a tweeter can be chracterized by updated features 
that combine their own profile with information from their 
neighbors. We could also employ pooling modules to pro-
file target tweeters by summarized features of all neighbors 
within their Twitter interaction networks.

3  Methods

3.1  Data collection

First, we obtained a set of academic publications related to 
COVID-19 using the Scopus Search API, using the query 
string constructed by Kousha and Thelwall (2020). We 

refined the search results to include only English-written 
journal articles published in Q4 2021 (n = 39,487). We 
retrieved articles mentioned on Twitter through Altmetric.
com by querying journal identifiers (including ISSNs and 
e-ISSNs) of publications collected from Scopus as of Sep-
tember 17, 2022. This resulted in two data files: (1) a list of 
14,845 publications (37.58%) cited on Twitter and (2) a col-
lection of 1,172,349 tweets citing these publications. Subse-
quently, using the IDs of tweets that mentioned selected pub-
lications captured by Altmetric.com, we retrieved 871,611 
tweets from the Twitter API as of September 19, 2022. We 
further collected profiles of 393,030 tweeters, the creators of 
these tweets, from the Twitter API using their Twitter user 
IDs. It's worth noting that tweets may become inaccessible 
in various situations, such as when a tweet is removed by its 
creator or when the creator's account is suspended or set to 
private. We expanded the tweet dataset by tracing tweets that 
directly reacted to selected tweets and their sourced tweets 
(n = 968,820). Additionally, we included users who inter-
acted with the selected tweets, including through retweets, 
replies, or mentions, in our dataset (Fig. 2).

Fig. 1  Neighborhood aggrega-
tion in GNNs

Fig. 2  Data collection process
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3.2  Data sampling

In this study, we adopted a random sampling approach, 
aiming for a sample size of 10,000. As our primary focus 
was on users with profiles written in English, we initially 
selected 10,200 tweeters to ensure that we would have a 
sufficient number of samples even after excluding non-Eng-
lish profiles. To detect the language of each user profile, 
we employed the Python package Google Translate API. 
Subsequently, we manually removed non-English profiles 
from the pool of 10,200 selected tweeters, resulting in a final 
dataset comprising 10,048 sampled tweeters.

Model building and evaluation were carried out by split-
ting the labeled users into a training set (70 percent), a vali-
dation set (15 percent), and a test set (15 percent). Stratified 
random sampling was applied to ensure that the three sets of 
data had a consistent distribution of user types.

3.3  Data labeling

Three coders, including one of the authors, were recruited 
for the data labeling exercises. The other two coders con-
sisted of an engineering graduate with prior experience 
using Twitter and a postgraduate student from the Informa-
tion Studies program. They labeled 4894, 3814, and 3746 
tweeters, respectively. Table 2 presents Cohen's Kappa coef-
ficients, which were calculated based on labels for overlap-
ping tweeter profiles assessed by our coders. The Cohen's 
Kappa statistics (> 0.8) indicate acceptable intercoder 
reliability.

To tag a tweeter, our coders examined the Twitter user 
page to identify clues about their occupations and affilia-
tions, as exemplified in Table 1. They observed the tweet-
er's Twitter activities, including tweets, replies, likes, and 

posted media. When applicable, external profiles, such as 
scholarly or faculty profiles or LinkedIn profiles, were also 
accessed. The coders considered the following information 
for judgment: (1) Twitter user name and screen name, (2) 
description in the user profile and the URL of the personal 
page, (3) age of the account (as of 20 September, 2022); 
(4) numbers of followers and friends, (5) statuses count, 
(6) whether the Twitter account is verified, (7) location 
of the user, (8) the number of tweets that the user had 
created in our dataset, (9) the number of unique articles 
that the user had tweeted, and (10) the number of tweets 
per article.

A tweeter's profile can only be classified into a category 
that best describes its user type. Users with both academic 
and non-academic status will be labeled as academic users. 
Consistent with the study by Hayawi et al. (2022), approxi-
mately 10.39 percent of sampled users have empty descrip-
tions in their profiles. Figure 3 presents the demographics 
of labeled users, with roughly half of them categorized as 
others, likely representing members of the general public. 
Academic researchers and institutions account for 20.55 
percent, and health science practitioners make up 10.12 
percent. Academic publishers constitute 2.7 percent, while 
a notable presence of civil society organizations (4.44 per-
cent) and non-academic researchers & institutions (3.79 
percent) was also observed.

4  Preliminaries

This study characterizes Twitter users through two layers: 
(1) Textual Content: This primarily includes the name, 
description, and URLs found in their Twitter profiles. (2) 
Ego Graph of Twitter Interactions: We created social net-
work graphs based on Twitter interactions, encompassing 
retweets, replies, and @mentions, derived from the dataset 
of tweets (n = 968,820). An ego graph was utlized to illus-
trate a tweeter's social network patterns. It is a subgraph that 
centers on a node of the target tweeter, and the connections 
that it has with other neighbors. This section describes the 
process of transforming textual content into text embeddings 
and how ego graphs of tweeters were constructed (Fig. 4).

Table 2  Inter-coder reliability

Coder 1 Coder 2 Coder 3

Coder 1 0.84 (n = 718) 0.81 (n = 713)
Coder 2 0.84 (n = 718) 0.83(n = 718)
Coder 3 0.81(n = 713) 0.83 (n = 718)

Fig. 3  Demographics break-
down of labelled users
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4.1  Text embeddings

This study adopts both bag-of-words (BoW) and BERT 
embeddings to represent the textual content in tweeters' 
profiles. For non-English profiles, we employed the Python 
package google-cloud-translate 3.7.0 to translate them into 
English. Emojis within the text were decoded using the 
emoji 1.2.0 package.

4.1.1  BoW embeddings of nodes in GNNs

Text was preprocessed for the generation of embeddings 
through the following steps: (1) removal of English stop 
words using NLTK 3.6.2 packages, (2) removal of 'http://' 
and 'https://' from URLs, 3) tokenization using non-alpha-
numeric character separators. Based on the training data, a 
corpus dictionary (vocabulary size: 3884) was constructed, 
including word tokens that occurred three times or more.

Two approaches were used to represent the occurance of 
word: (1) Binary: The user profile of a user i was represented 
as a document vector ai ∈ {0or1}3884 , where a value of 1 
was assigned if the word occurred in the profile content, 
while a value of 0 indicated its absence. (2) TF-IDF: The 
Term Frequency-Inverse Document Frequency (TF-IDF) 
metric was calculated for each word appearing in the user's 
profile content. Accordingly, the user profile of a user i was 
represented as a document vector ai ∈ {t}3884 , t  refers to 
the normalized TF-IDF score of the word, ranging between 
0 and 1. The Inverse Document Frequency (IDF) was calcu-
lated based on the training data set.

4.1.2  Bert embeddings in BERT

This study adopts the tokenizer from the "BERT-Base, 
Uncased: 12-layer, 768-hidden, 12-heads, 110 M parame-
ters" and "BERT-Large, Uncased, 24-layer, 1024-hidden, 
16-heads, 340 M parameters" pre-trained models. A user 

profile is represented by a list of token IDs and associated 
attention masks. For a user i , the user profile toki can be 
denoted as 

(
toki[CLS] ,… , toki28 , toki[SEP]

)
 . tok[CLS] is a token 

positioned at the start of the text input and is meant for sen-
tence-level classification, while tok[SEP] is a separator token 
that marks the end of the sentence. Given that 99 percent of 
labeled users contained fewer than 31 tokens, the maximum 
sequence length was set to 30 tokens.

4.2  Graph construction

An ego graph is constructed for each tweeter with interac-
tions extracted from tweets they contributed to and related 
tweets, including tweets they reacted to and tweets that 
replied to them. We denote the ego graph Gi of the tweeter i , 
the ego node, as Gi = (Vi,Ei) , where Vi represents the tweeter 
and their neighbors, including direct neighbors. A directed 
link 

(
Vi,Vj

)
∈ Ei , is drawn if user i has ever retweeted, 

replied to, or @mentioned user j (see Fig. 5). The radius of 
the ego graph is set to 2. Social networks of isolated users, 
accounted for around 8 percent among sampled users, were 
represented by ego graphs containing only self-loops.

Gi can be represented by the adjacency matrix 
Ai ∈ ℝ

|Vi|×|Vi| , where |Vi| is the number of nodes in the ego 
graph. Self-connections were added to the graph, and Aiii

 was 
always set to 1. We let Xi be the nodes’ features of the ego 
graph. In the feature matrix Xi = (x1, x2, x3,… , x|Vi|) , each 
user ( e.g., x1 ) is represented as a one-hot vector, the BoW 
representation of the user profile.

Fig. 4  Representation of a 
tweeter

Fig. 5  Directions of user edges
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5  Methods

First, we examined models that use only textual information 
from tweeters' profiles as baseline models. Next, we tested 
GNNs that utilize social network information captured from 
user interactions. In the last section, we explored combined 
models that classify user types based on both text and social 
network information.

The model was developed using the framework of 
PyTorch 1.13.1 and PyTorch Geometric 2.0.4 on GPU. The 
BERT model was imported from Transformers 4.28.0. For 
BERT models, the pretrained model was adopted in accord-
ance with the tokenizer respectively. Table 3 describes the 
notations used in this article.

5.1  Text‑based models

We employed a linear model, referred to hereafter as the 
BoW model, and a fine-tuned BERT model to assess the 
capability of text content in predicting user backgrounds in 
the context of Twitter scholarly communication.

5.1.1  BoW

The BoW model is a two-layer neural network with one hid-
den layer containing 32 hidden units. This model captures 
correlations between input and output features through linear 
transformation functions (see Eq. 1). The BoW representation 
of a user i is represented by the input xi ∈ ℝ

3884 . Meanwhile, 
in the hidden layer, W1 ∈ ℝ

32×3884 is the weight matrix and 
b1 ∈ ℝ

32 is the bias vector. The output hi
1 ∈ ℝ

32 from the 
ReLU activation and dropout function moves to the output 
layer. W2 ∈ ℝ

11×32 is the weight matrix, and b2 ∈ ℝ
11 refers to 

the bias vector. The dropout probability p is set to 0.5. In later 
sections, we use Linear as the linear transformation function.

5.1.2  Fine‑tuned BERT

The model first converts the BERT representation of a user 
profile 

(
toki[CLS] ,… , toki28 , toki[SEP]

)
 to a matrix of input embed-

dings EMi = (emi[CLS]
,… , emi28

, emi[SEP]
) , EMi ∈ ℝ

30×768 . 
Each input embedding emin

∈ ℝ
768 combines position embed-

dings that interpret the position of the words within the sen-
tence and the token embeddings that explain the token vocabu-
lary. Next, the model learns the contextual word 
representations of input words and predicts user types based 
on the pooled output of the learned classifier token 
( ti[CLS] ∈ ℝ

768) . This process is followed by a dropout function 
with a p of 0.5. A linear transformation layer is then stacked 
on top of the BERT model to generate an output with a size of 
eleven.

(1a)h1
i
= dropout

(
ReLU

(
W1xi + b1

))

(1b)oi = W2h1
i
+ b2

(2a)opooledi = dropout
(
ti[CLS]

)

(2b)oi = Linear
(
opooledi

)

Table 3  Notations used in this 
article

Notation Description

xi Input vector of node i
oi Output vector of node i
ŷi Predicted output vector of node i
hl
i

Hidden state of node i in the lth hidden layer
Ni Neighborhood set of node i , inclusive of the self-loop
Gi Ego graph of a node i , Gi =

(
Vi,Ei

)
 , where Vi is the set of nodes and Ei is the set 

of edges among nodes within the ego graph
|Vi| Number of nodes in node i ’s ego graph Gi

|Ei| Number of edges in node i ’s ego graph Gi

dropout A dropout function with a default dropout probability of 0.5
GAP A global average pooling layer
ReLU Rectangular linear unit (ReLU) activation function
BatchNorm Layer-wise batch normalization function
OR OR operator
|| Vector concatenation
flow Flow direction of the message passing (ST: source to target, TS: target to source)



Social Network Analysis and Mining           (2024) 14:72  Page 9 of 17    72 

5.2  GNNs based on ego graphs of social interactions

We examined three popular convolutional GNNs to our 
user classification task: (1) GAT (Brody et al. 2021); (2) 
GraphSAGE (Hamilton et al. 2017), and (3) GIN models 
(Xu et al. 2018).

5.2.1  Propagation modules of selected models

5.2.1.1 GAT  GATv2Conv Is the implementation of the GAT 
approach of Brody et  al. (2021) in the PyTorch Geomet-
ric package. GATs attend each node to all other neighbor 
nodes with attention coefficients. A vector of attention coef-
ficients �i,j indicates the importance of the neighbor node j ’s 
features to node i (Veličković et al. 2017). W is the weight 
matrix associated with the linear transformation. GATs 
adopt a multi-layer attention strategy to update the repre-
sentation of node i by applying k number of independent 
attention head matrices. Through this process, GATs gener-
ate multiple hidden states, followed by a concatenation of 
the resulted features (see Eq. 3b). LeakyRELU was applied 
as the nonlinearity function �.

5.2.1.2 GraphSAGE SAGEConv In PyTorch Geometric 
packages was utilized to implement the GraphSAGE 
model. As the ego graphs in our study are generally small, 
we decided to skip the node sampling process described 
by Hamilton et al. (2017) when carrying out user classifi-
cation tasks. Equation 4 shows the propagation step used 
in GraphSAGE. W denotes a learnable weight matrix, 
and the features of i ’s neighbors are aggregated using the 
aggregation function, AGG , with a mean aggregator.

5.2.1.3 GIN This study adopts GINConv to implement 
GIN models. The propagation process is described in 
Eq. 5, with � serving as a learnable floating point value. 
Multi-layer perceptron (MLP) is used in the subsequent 
layer of the first iteration to aggregate features of i ’s 
neighbors j ∈ Ni.

(3a)𝛼i,j =

exp
�
a⊤𝜎

�
W
�
xi
���xj

���

∑
u∈Ni

exp
�
a⊤𝜎

�
W
�
xi
��xu

���

(3b)hl+1
i

= ||K
k=1

�

(
∑

j∈Ni

�
k
ij
Wkhl

j

)

(4)hl+1
i

= Wl+1
i

hl
i
+Wl+1

Ni
⋅ AGG

({
hl
j
,∀j ∈ Ni

})

5.2.2  Inputs of models

Our GNN models take ego graphs of target tweeters as 
inputs. The input of an ego graph with a target node i has 
two parts: (1) a feature matrix Xi containing BoW represen-
tations extracted from the user profiles of i and its neighbors 
within the ego graph Gi , Xi ∈ ℝ

|Vi|X3884 ; (2) an edge index Ei 
which reflects the directed links between nodes within the 
ego graph Gi , Ei ∈ ℝ

2X|Ei|.

5.2.3  Model building

Models were constructed with two GNN layers, which 
facilitate the transmission of messages among nodes 
located two steps away. For each model, we consid-
ered the effects of flow direction of message passing, 
flow ∈ {εsource-to-target", εtarget-to-source"} on the perfor-
mance of models. In addition to source-to-target (hereafter 
referred to as ST) and target-to-source (hereafter referred 
to as TS) approaches, we tested the bidirectional approach 
(hereafter referred to as BI), a combination of both ST and 
TS propagations.

With the GAT layer function GAT(⋅), we denoted GAT 
models in this study in Eq. 6. For any given target node 
i , feeding the input graph into the first GAT layer with 
eight attention heads (see Eq. 4) provides a hidden state 
H1

i
∈ ℝ

|Vi|×512 as an output. The second GAT layer, which 
has a single attention head, outputs updated user features, 
Xi

� ∈ ℝ|Vi|×11.

With the GraphSAGE layer function GS(⋅), Eq.  7 
depicts how node features in the input graph of a node i 
are updated. The first GraphSAGE layer leads to a hid-
den state H1

i
∈ ℝ

|Vi|×64 . After the hidden state is revealed, 
another GraphSAGE layer updates the features of nodes to 
Xi

� ∈ ℝ|Vi|×11.

(5)hl+1
i

= MLPl+1

(
(
1 + ∈l+1

)
hl
i
+

∑

j∈Ni

hl
j

)

(6a)
H1

i = dropout
(

ReLU
(

GAT
(

Xi,Ei, flow,K1
)))

,
where K1 = 8

(6b)X
′

i
= GAT

(
H1

i
, Ei, flow, K2

)
, where K2 = 1

(7a)H1
i
= dropout

(
ReLU

(
GS

(
Xi,Ei, flow

)))

(7b)X�

i
= GS

(
H1

i
,Ei, flow

)
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With the GIN layer function GIN(⋅), we computed the 
outputs of the GIN layers as expressed in Eq. 8. In our GIN 
models, the MLP is a block of sequential layers comprising 
two linear layers. A ReLU function is applied to the hid-
den state. With the hidden state H1

i
∈ ℝ|Vi|×64  generated 

from the 1st GIN layer, the features of nodes are updated as 
X�
i
∈ ℝ|Vi|×11.

Models adopting a bidirectional message passing 
approach fed the input graph GNN layers as described 
in Eqs. 6–8. Each layer was expected to generate a fea-
ture matrix XST i

� ∈ ℝ|Vi|×11 (from the ST approach) or 
XTSi

� ∈ ℝ|Vi|×11 (from the TS approach). The concatenation 
of XST i

′ and XTSi
′ will be inputted into a linear layer to gen-

erate the updated features of nodes Xi
� ∈ ℝ|Vi|×11.

Two approaches were considered for the target node rep-
resentation in the output layer.: 1) Target node approach 
(TN): The target nodei , namely the ego node of the extracted 
graph, is represented by its updated node features xi′ with-
drawn fromXi

�(i.e., oi = xi
�) , 2) Ego graph approach (EG): 

The updated features of nodes Xi
′ are connected to a global 

average pooling (GAP) layer to generate a representation of 
the ego graph Gi (see Eq. 10).

5.3  Combined models: BERT + GNN

The proposed combined models consisted of two major 
modules. Firstly, a fine-tuned BERT model processed the 
text information extracted from the target user's Twitter pro-
file. Simultaneously, we applied a GNN model, which was 
the best-performing GNN model from the above-mentioned 
experiments, to capture the characteristics of the target user 
using social network information.

In the fine-tuned BERT model, we computed the output 
vector oiBERT of a node i by applying Eqs. 2a and 2b. We set 
the output size of the linear transformation layer (Eq. 2b) 
to 32 to obtain oiBERT∈ ℝ

32 . For the GNN model, the out-
put vector oiGNN of a node i was generated using Eqs. 6–10, 
depending on the GNN algorithm selected.

We set the output of the second GNN layer to 32. This 
allowed us to obtain an output vector oiGNN∈ ℝ

32 for GNN 
models with a non-bidirectional approach, or oiGNN∈ ℝ

64 for 
models that followed a bidirectional approach.

(8a)H1
i
= dropout

(
ReLU

(
GIN

(
Xi,Ei, flow

)))

(8b)X�
i
= GIN

(
H1

i
,Ei, flow

)

(9)X�

i
= Linear

([
X�

STi
||X�

TSi

])

(10)oi = GAP
(
X�

i

)

Next, we concatenated both the outputs and a 
BatchNorm function was applied to them (Eq. 11a). We 
then inputted ocat to a linear transformation function to 
generate the output vector oi. Finally softmax is applied 
to oi to get final prediction outputs (Fig. 6).

5.4  Loss function

For all models, softmax outputs a vector of values ŷi ∈ ℝ
11 

(which have a sum of 1) that can be interpreted as the 
probability of membership for each user category.

The focal loss function was adopted to address the class 
imbalance in our dataset. Lin et al. (2017) denoted a focal 
loss function as shown in Eq. 13. This function focuses 
on hard misclassified targets by multiplying a modulat-
ing factor 

(
1 − pt

)� by a focusing parameter ( � ≥ 0 ) to the 
standard cross-entropy criterion log(pt) where pt ∈ [0, 1] 
is the model’s estimated probability for the class member-
ship. �t is a learnable weight vector. We set � to 2 in this 
study because this was the optimal value in the research-
ers’ previous experiments. The loss is computed based on 
the output vectors of target nodes.

5.5  Model training

To initiate comparisons at an early stage, we selected the 
same learning rate for all models, with the exception of 
the fine-tuned BERT. In our experiments, we tested learn-
ing rates of 1e−3, 5e−3, and 5e-4. The learning rate was 
defaulted to 5e−3, as it allowed selected models to achieve 
relatively good performance. For the BERT models, we 
set the learning rate to 2e−5 because it yielded better per-
formance compared to the rates of 5e−5 and 1e−5. The 
weight decay was set to 5e−4. The dropout probability 
defaulted to 0.5. The Adam optimizer was adopted in all 
experiments.

We conducted mini-batch training in all experiments, 
using a batch size of 32. For each training instance, the 
maximum number of epochs was set to 200. However, 
training was set to terminate if the validation loss increases 

(11a)
ocat = BatchNorm(

[
oiBERT ||oiGNN]

)
,whereocat ∈ ℝ

64 OR ocat ∈ ℝ
96

(11b)oi = Linear
(
ocat

)
,whereoi ∈ ℝ

11

(12)ŷi = softmax(oi)

(13)FL
(
pt
)
= −�t

(
1 − pt

)�
log

(
pt
)
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five consecutive times. We iterated training and testing pro-
cesses 10 times to increase the reliability of the performance 
evaluation.

5.6  Model evaluation

We used accuracy and F1-score (hereafter referred to as F1) 
as performance indicators. Among the samples, a size of ntotal , 
ncorrect refers to the number of samples in the test data that 
are correctly classified, whereas accuracy reflects the ratio 
between ncorrectandntotal. We provided a more comprehensive 
evaluation by computing F1 based on recall and precision. The 
number of classes or categories n was 11 in this study.

For any given category i , TPi referred to the number of 
correctly identified samples, and FPi referred to the number 
of incorrectly classified samples. Meanwhile, FNi denoted the 
number of samples that should have belonged to one category 
but were wrongly tagged as belonging to a different category. 
The average recall and precision scores were used to calculate 
F1 as depicted in Eq. 14.

(14a)Accuracy =
ncorrect

ntotal

6  Results

Table 4 presents the performance of the text-based models. 
The fine-tuned BERT (BERT-Base-Uncased) model exhib-
ited a significant advantage over the BoW-Binary model, 
with an average accuracy of 80.49 percent versus 79.61 per-
cent, t = 2.58, p < 0.01. We decided not to continue examin-
ing the BoW (TF-IDF) model due to its comparatively lower 
performance. While BERT (BERT-Large-Uncased) showed 

(14b)Recall =

∑n

i=1

�
TPi

TPi+FNi

�

n

(14c)precision =

∑n

i=1

�
TPi

TPi+FPi

�

n

(14d)F1 =
2 × Precision × Recall

Precision + Recall

Fig. 6  The combined model
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similar perfomrance to BERT (BERT-Base-Uncased), we 
opted for the latter as it is a more lightweight model.

As shown in Table 5, GNN models based on social net-
work information did not perform as well as text-based 
models solely. In other words, stand-alone GNN models, or 
social network information, may not be sufficient enough for 
user classification tasks in the context of Twitter metrics. It 
is worth noting that models adopting the TN (Target Node) 
approach achieved higher accuracies (M = 0.75, SD = 0.03) 
when compared to those with the EG (Ego Graph) approach 
(M = 0.73, SD = 0.03) on average, t = 4.28, p < 0.01. A pos-
sible reason is that graph representations of target users, 
involving features of various users, might generate noises 
for the classification tasks.

Additionally, the direction of message passing had a 
significant impact on predicting user types of tweeters. 
In general, models implemented with message passing 
from the target to the source (M = 0.76, SD = 0.02) outper-
formed those using the source-to-target approach (M = 0.71, 
SD = -0.04), t = 9.64, p < 0.01. They also tended to achieve 
better accuracies than models employing a bi-directional 
approach (M = 0.74, SD = 0.03), t = 4.74, p < 0.01. There-
fore, it can be assumed that tweeters of sourced tweets with 
whom a target user attempted to interact could better define 
their identities.

GAT-TS-TN is the best-performing model, with an accu-
racy of 78.77 percent. Among the GraphSAGE and GIN 
models, GraphSAGE-TS-TN and GIN-TS-TN achieved 
the highest accuracies of 77.74 percent and 74.63 percent, 
respectively. To finalize the integrated model of BERT and 

GNN, we combined the fine-tuned BERT model with GAT-
TS-TN, GraphSAGE-TS-TN, and GIN-TS-TN to evaluate 
their respective performances.

The final model combines GAT-TS-TN and the fine-tuned 
BERT model. It achieved an accuracy of 82.70 percent with 
an F1 score of 0.82 on average. This has 2.21 percent rela-
tive improvement when compared to the fine-tuned BERT 
model. The BERT-GIN-TS-TN model reached an accuracy 
of 80.96 percent with an average F1 score of 0.80, while 
BERT-GraphSAGE-TS-TN achieved an accuracy of 80.73 
percent and an average F1 score of 0.80.

BERT-GAT-TS-TN was further optimized by testing the 
hyperparameters of the sub-models, as listed in Table 6. The 
selected hyperparameters are highlighted in bold. The best-
performing model achieved an accuracy of 84.05 percent, 
with an F1 score of 0.83.

Table 7 presents the performance of the best models of 
BERT, GAT-TS-TN, and BERT-GAT-TS-TN approaches 
in accurately predicting each user type. Overall, the com-
bined model, BERT-GAT-TS-TN, achived higher accuracies 
in predicting the majority of user types (as highlighted in 
bold in Table 7).

This model is good at identifying academic research-
ers and institutions, academic publishers, research feeds, 
and health science professionals and institutions. However, 
due to the limited sample size of user types such as pub-
lic authorities & politicians and funding organizations, the 

Table 4  Results of experiments—text-based models

Model Accuracy (%) F1

BoW (binary) 79.61 0.77
BoW (TF-IDF) 69.56 0.63
BERT (BERT-base-uncased) 80.49 0.81
BERT (BERT-large-uncased) 80.33 0.81

Table 5  Results of 
experiments—social network-
based models

ST source-to-target message passing approach, TS target-to-source message passing approach, BI bidirec-
tional message passing approach, EG ego-graph node representation approach, TN Target node node repre-
sentation approach. For each model, the best-performing approach is highlighted in bold

GAT GraphSAGE GIN

Accuracy (%) F1 Accuracy (%) F1 Accuracy (%) F1

ST-EG 70.99 0.67 71.65 0.67 67.03 0.69
ST-TN 73.41 0.70 77.11 0.74 67.05 0.68
TS-EG 77.52 0.70 76.95 0.74 72.91 0.71
TS-TN 78.77 0.76 77.74 0.75 74.63 0.73
BI-EG 76.74 0.74 70.38 0.68 71.45 0.69
BI-TN 78.17 0.75 75.12 0.73 73.51 0.71

Table 6  Hyperparameters tested

Hyperparameters Sub models

Fine-tuned BERT GAT-TS-TN

Learning rate 2e−5 0.01, 1e−3, 
5e−3, 3e−3, 
5e−4

Dropout probability 0.3, 0.4, 0.5 0.3, 0.4, 0.5
The size of the last hidden layer 16, 32, 64 16, 32, 64
Weight decay 5e−4 5e−4
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accuracies of some categories' classification do not appear 
to be ideal.

7  Use cases

7.1  Demographic breakdown of sample users in our 
dataset

We used the best-performing model to predict unlabeled 
users in our dataset. Figure 7 displays the demographic 
breakdown of the 393,030 sample users who engaged in 
Twitter discussions about COVID-19 articles. According 
to the predicted results, scholarly communication on Twit-
ter is primarily led by academic researchers and institutions 
(12.48 percent) and health science practitioners (7.36 per-
cent). Interestingly, researchers in the industry or other non-
academic research institutions (3.07 percent) also partici-
pated in conversations about academic literature. Serving the 
role of science communicators, academic publishers (0.40 
percent) and research feeds (0.29 percent) also contributed 
to the relevant discussions. Given that COVID-19 is a public 
health issue, mass media (1.55 percent) was relatively active 
in disseminating relevant information. More than 71 percent 
of users fell under the category of others, likely representing 
members of the general public. Additionally, civil society 

organizations (2.04 percent) were observed to participate in 
discussions on relevant topics.

Regarding tweeting frequency, research feeds and aca-
demic publishers exhibited highly active tweeting behav-
ior related to COVID-19 articles (Table 8). This highlights 
their aggressive tweeting behavior, with an average of 6.91 
and 7.12 tweets, respectively. Moreover, they cited a greater 
number of articles on Twitter, with averages of 5.22 and 5.92 
articles, respectively, compared to others. Active participa-
tion of commercial businesses was observed, with each of 
them averaging 2.43 tweeted articles. Both academia and 
non-academic researchers, as well as institutions, were 
enthusiastically engaged in discussions about COVID-19 
publications on Twitter. Funding organizations may have 
also promoted relevant articles on Twitter. Health science 
professionals and institutions displayed enthusiasm for 
tweeting relevant articles, contributing an average of 2.34 
tweets per user. Additionally, COVID-19 publications gar-
nered attention from public authorities & politicians, civil 
society organizations, and other users, likely representing 
the general public.

7.2  Profiling audience of publications

Predicted user labels can facilitate audience profiling at vari-
ous levels. For instance, Fig. 8 illustrates the demographic 

Table 7  Accuracy (%) in 
predicting each category—
BERT versus GAT-TS-TN 
versus BERT-GAT-TS-TN

User type BERT GAT-TS-TN BERT-
GAT-TS-
TN

Academic researchers and institutions 82.93 80.48 90.24
Academic publishers 80.00 81.29 84.84
Business 20.00 10.00 40.00
Civil society organizations 65.67 40.30 70.14
Funding organizations 00.00 37.50 22.50
Health science professionals and institutions 72.54 48.37 73.85
Mass media 35.71 28.57 42.86
Non-academic researchers and institutions 46.56 17.24 56.90
Public authorities and politicians 13.33 6.67 20.00
Research feeds 78.57 78.57 85.71
Others 94.23 97.99 92.47

Fig. 7  Breakdown of demo-
graphics in sample dataset
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segmentation of Twitter users discussing three articles. 
Despite a similar volume of Twitter mentions, these articles 
attract different audiences. Article A, centered on proteog-
enomics, is predominantly popular among researchers from 
both academic and non-academic backgrounds, as well as 

health science professionals. In contrast, Article B, address-
ing COVID-19 vaccination, has garnered more interest from 
the general public and sparked discussions among civil soci-
ety organizations. Article C, which examines the impacts 
of COVID-19 lockdowns on cancer surgery operations, has 

Table 8  Frequency of tweeting User type Avg. no. of 
tweets

Avg. no. of 
articles

Avg. no. of 
tweets per 
article

Academic publishers 6.91 5.22 1.34
Academic researchers and institutions 2.34 1.93 1.17
Business 2.85 2.43 1.18
Civil society organizations 2.26 1.86 1.14
Funding organizations 2.83 2.40 1.25
Health science professionals and institutions 2.75 2.33 1.11
Mass media 2.18 1.90 1.09
Non-academic researchers and institutions 2.44 2.04 1.14
Public authorities and politicians 2.01 1.77 1.09
Research feeds 7.12 5.92 1.21
Others 2.07 1.74 1.15

Fig. 8  Audience profiles of two research articles
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primarily engaged health science professionals and related 
institutions.

Predicted labels of tweeters can also help investigate the 
preferences of various types of users. Figure 9 presents an 
example of demographic breakdowns of tweeters discussing 
publications in different subject areas. For instance, except 
in the domain of social sciences and humanities, over half 
of tweeters citing COVID-19 publications appear to be 
members of the general public. As indicated by the percent-
ages of tweeters, relevant Twitter scholarly communication 
was dominated by academic researchers & institutions and 
health science professionals & institutions in all five subject 
areas. Non-academic users have shown interest in publica-
tions from various areas. For example, over 5 percent of 
tweeters mentioning physical sciences and social sciences 
& humanities publications were non-academic researchers, 
whereas 4.1 percent of tweeters mentioning social sciences 
& humanities were civil society organizations.

8  Conclusion

Our study confirms that social network information can 
complement the text content from user profiles in identify-
ing user types in the context of Twitter scholarly communi-
cation. While GNN models with social interaction graphs 
alone may not be sufficient to identify user categories, our 

results highlight the effectiveness of models that combine 
BERT and GNN mechanisms. Our optimized models had 
better performance than a stand-alone fine-tuned BERT 
model, which represents the state-of-the-art mechanism 
in text classification tasks. Evaluating GNN models with 
various node representation methods and message passing 
flows, our study confirms the value of user interactions in 
identifying user categories within the context of Twitter 
metrics.

Utilizing the proposed model, we identified academic 
researchers & institutions and health science professionals 
& institutions as the most significant contributors to Twitter 
scholarly communication in terms of number of participants, 
excluding the general public. Additionally, we observed the 
active engagement of non-academic entities such as mass 
media, industry researchers, and civil society organizations 
in discussions about scientific publications. This suggests 
that Twitter metrics may have the potential to indicate the 
translational impact of research. However, it is worth not-
ing the aggressive tweeting behavior exhibited by academic 
publishers and research feeds. Their excessive tweets could 
compromise the reliability of Twitter metrics. Considering 
these findings, we recommend enhancing Twitter metrics by 
providing more granular demographic breakdowns to cater 
to the interests of diverse stakeholders. This approach would 
enable a comprehensive analysis of the impact of scholarly 
work from various perspectives.

Fig. 9  User profiles by ASJC subject areas
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One limitation of this study is that the classification model 
is trained solely on tweets mentioning COVID-19 articles, 
making its applicability primarily relevant to publications 
in similar domains, such as public health or medicine. To 
enhance the classification model's performance, researchers 
may consider incorporating additional user statistics related 
to tweeting behaviors such as the number of publications 
tweeted and the number of tweets, and metadata from users' 
profiles (i.e., the number of followers and friends, the num-
ber of statuses, the number of favorites, whether the account 
is verified) as input features. For studies focusing on online 
scholarly communication within academia, a more detailed 
classification scheme could be essential. It is beneficial to 
distinguish among various academic entities and individuals, 
such as higher education institutions, research institutes, aca-
demic associations, faculty members, research fellows, post-
graduate students, and others. Future studies could delve into 
topics such as understanding the motivations driving vari-
ous user categories to engage in tweeting about academic 
publications and investigating the dynamics of user interac-
tions (i.e., communities involved in scholarly discussions on 
Twitter, information flow through relevant user interactions) 
within the context of Twitter scholarly communication. Rel-
evant explorations would significantly contribute to advanc-
ing our comprehension of Twitter metrics.
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