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Abstract
A Temporal Network is often used to model a time-varying relationship among a group of agents. It is typically represented 
as a collection of triplets of the form (u, v, t) that denote the interaction between the agents u and v at time t. For analyz-
ing structural patterns of such a network, the notion of (Δ, �)-cliques has been introduced in one of our previous studies. A 
(Δ, �)-clique of a temporal network is a vertex subset–time interval pair such that there exist at least � links between every 
pair of vertices of the vertex set in each Δ duration of the time interval. In this paper, we propose a two-phase approach for 
enumerating maximal (Δ, �)-cliques present in a temporal network. The proposed methodology is broadly divided into two 
phases. In the first phase, each temporal link is processed for constructing (Δ, �)-clique(s) with maximum duration. In the 
second phase, these initial cliques are expanded by vertex addition to form the maximal cliques. By sequential arguments, we 
show that the proposed methodology correctly enumerates all the maximal (Δ, �)-cliques. A comprehensive analysis of the 
running time and space requirement of the proposed methodology has been carried out. From the experimentation performed 
on 5 datasets, we observe that the proposed methodology enumerates all the maximal (Δ, �)-cliques efficiently, particularly 
when the dataset is sparse. As a special case ( � = 1 ), the proposed methodology is also able to enumerate (Δ, 1) ≡ Δ-cliques 
in much less time compared to the existing methods.

Keywords Temporal network · Enumeration algorithm · (Δ, �)-clique

1 Introduction

A network (also called graph) is a mathematical object 
which is used extensively to represent a binary relation 
among a group of agents. Analyzing such networks for dif-
ferent structural patterns remains an active area of study in 
different domains including Computational Biology (Hulo-
vatyy et al. 2015), Social Network Analysis, Computational 

Epidemiology (Masuda and Holme 2017), Criminal Network 
Analysis (Ficara et al. 2021), and many more. Among many, 
one such structural pattern is the maximally connected sub-
graphs, which are popularly called cliques. Finding the max-
imum cardinality clique in a given network is a well-known 
NP-Complete Problem (Garey and Johnson 2002). However, 
in network analysis, perspective more general problem is not 
finding the maximum size clique, but also to enumerate all 
the maximal cliques present in the network. Bron and Ker-
bosch (1973) first proposed an enumeration algorithm for 
maximal cliques in the network which forms the foundation 
of study on this problem. Later, there were advancements 
for this problem for different types of networks (Cheng et al. 
2012; Eppstein et al. 2013).

Real-world networks from biological to social are 
time-varying, which means that the existence of an edge 
between any two agents changes with time. Temporal 
networks (Holme and Saramäki 2012) (also known as 
link streams or time-varying networks) are the mathe-
matical objects used to formally represent the time-var-
ying relationships. For these types of networks, a natural 
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supplement of clique is the temporal clique which consists 
of two things: a subset of the vertices and a time interval. 
In this direction, recently, Viard et al. (2016) put forward 
the notion of Δ-clique, where a vertex subset along with 
a time interval is said to be a Δ-clique if every vertex pair 
from that set has at least a single edge in every Δ duration 
within the time interval. Next, we report the existing stud-
ies on clique enumeration on networks.

As mentioned previously, a temporal network consists 
of a set of agents and a time-varying relationship. Now, the 
following questions are essential to understand the contact 
pattern among them: which subset of agents comes in con-
tact very frequently among each other? Given a time dura-
tion, how many times do they contact each other? etc. The 
frequency of communication also adds another dimension 
of information to their relationship strength. Motivated by 
such questions, recently, the notion of Δ-clique has been 
extended to (Δ, �)-cliques, which is basically a vertex sub-
set and time interval pair in which each pair of vertices of 
the subset has at least � interactions in every Δ duration 
within the time interval. We propose a different approach 
for listing out all the maximal (Δ, �)-cliques contained in 
a temporal network. The main contributions of this paper 
are as follows:

• In this paper, we propose a different approach for listing 
out maximal (Δ, �)-cliques that are there in a temporal 
network.

• By drawing sequential arguments, we prove the correct-
ness of the proposed methodology.

• A detailed analysis of the proposed methodology has 
been done to understand its computational time and 
space requirement.

• The proposed methodology has been implemented with 
five publicly available temporal network datasets to bring 
out nontrivial insights about contact patterns and com-
pare the efficiency of the proposed methodology with the 
existing one.

• Also, a set of experiments has been conducted to show 
that the proposed methodology of maximal (Δ, �)-clique 
enumeration can also be efficiently used for enumerating 
maximal Δ-clique as well (By putting � = 1).

The remaining portion of this article is arranged in the fol-
lowing way: Sect. 2 describes some relevant studies from the 
literature. Section 3 discusses some preliminary concepts 
regarding temporal networks and formally defines the maxi-
mal (Δ, �)-clique enumeration problem. Section 4 contains 
the proposed enumeration technique with its detailed analy-
sis, proof of correctness, and an illustrative example. Sec-
tion 5 describes an experimental evaluation of the proposed 
methodology. Finally, Sect. 6 concludes this study and gives 
future directions.

2  Related work

In recent times, mining and analysis of temporal networks 
have become an active area of research as most of the real-
world networks from social to biological are temporal in 
nature (Rozenshtein and Gionis 2019). Several problems 
including community analysis (Qin et al. 2020), finding 
matching (Zschoche 2022), finding separators (Zschoche 
et  al. 2020), coloring (Mertzios et  al. 2021), traversal 
(Byun et al. 2019), etc., have been studied in the context 
of temporal graphs. As per the title of the paper, here, 
we discuss the literature related to clique enumeration of 
static and followed by temporal graphs.

The problem of maximal clique enumeration is a clas-
sic computational problem on network algorithms and has 
been extensively studied on static networks. Akkoyunlu 
(1973) was the first to propose an algorithm for this prob-
lem. Later, Bron and Kerbosch (1973) introduced a recur-
sive approach for the maximal clique enumeration prob-
lem. These two studies are the foundations on maximal 
clique enumeration and trigger a huge amount of research 
due to many practical applications from computational 
biology to spatial data analytics (Al-Naymat 2008) and 
Bhowmick and Seah (2015). In the past two decades, sev-
eral methodologies have been developed for enumerating 
maximal cliques in different computational paradigms, 
and different kinds of networks, such as in sparse graphs 
(Eppstein et al. 2013; Manoussakis 2019), in large net-
works (Cheng et al. 2010, 2011; Rossi et al. 2014), in map-
reduce framework (Hou et al. 2016; Xiang et al. 2013), in 
uncertain graphs (Mukherjee et al. 2016; Zou et al. 2010; 
Dai et al. 2022), in parallel computing framework (Chen 
et al. (2016); Rossi et al. (2015); Schmidt et al. (2009)), in 
signed networks (Chen et al. 2020), in temporal networks 
(Banerjee and Pal 2022), and many more (Dai et al. 2023; 
Manoussakis 2023).

Though there are many existing studies on maximal 
clique enumeration on static networks, the literature on 
temporal graphs is limited. Viard et al. (2015) proposed 
an enumeration algorithm for the maximal Δ-clique of a 
temporal network. They did a detailed analysis of contact 
relationships among a group of students, based on their 
introduced methodology. They were able to show that their 
analysis draws deeper insights of their communication 
pattern (Viard et al. 2015). Later, Himmel et al. (2016) 
proposed a different approach for the maximal Δ-clique 
enumeration problem. Their methodology is based on the 
Bron–Kerbosch Algorithm for maximal clique enumera-
tion in static graphs. Their methodology is better in both 
of the following aspects: theoretically (measured in terms 
of worst case computational complexity analysis) as well 
as practically (measured in terms of computational time 
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when the algorithm is implemented with real-world data-
sets). Molter et al. (2019) introduced the notion of isola-
tion in clique enumeration of a time-varying graph. They 
developed fixed parameter enumeration algorithms based 
on different notions of isolation employing the parameter 
“degree of isolation." Viard et al. (2018) generalized the 
notion to contact with duration and introduced the concept 
of Δ-clique with duration. They also proposed an algo-
rithm for enumerating such cliques present in a temporal 
network. Bentert et al. (2019) studied the maximal Δ-Plex 
enumeration problem. Recently, Banerjee and Pal (2019) 
proposed an enumeration algorithm for maximal (Δ, �)
-cliques present in a time-varying graph. The method ini-
tializes a clique for each link in the temporal network and 
expands its duration and cardinality to find the maximal 
cliques. In this work, we propose a two-phase approach 
by generating the initial cliques as duration-wise maximal 
cliques, which significantly reduces the number of inter-
mediate cliques generated in the enumeration process. As 
far as we know, other than the last one, there is no other 
work available which studies (Δ, �)-cliques.

3  Background and problem definition

In this section, we present some preliminary concepts to 
understand the problem, that we work on this paper and 
the proposed solution methodology. In a temporal network, 
its edges are marked with the corresponding occurrence 
timestamp(s). Formally, it is stated in Definition 1.

Definition 1 (Temporal Network) A temporal network 
is defined as G(V ,E, T) , where V(G) is the set of vertices 
of the network, and E(G) is the set of edges among them. 
T  is the mapping that maps each edge of the graph to its 
occurrence time stamp(s), i.e., T ∶ E(G) ⟶ 2T⧵� where 

T = {1, 2,… , �} is the set of discrete time stamps in which 
the network is observed.

A temporal network can be represented in two ways. 
One approach is to represent a temporal network using the 
link stream model where we show the relationships among 
the entities over the time horizon. The other approach is 
the time stamp-wise snapshot graph representation. In this 
approach, a temporal network is represented as a collection 
of static graphs overtime stamps. Figures 1 and 2 show the 
representation of the same temporal network in the form 
of link stream model and snapshot graph representation 
model, respectively. In the rest of the paper, we consider 
that the temporal network is represented in the link stream 
model.

As just mentioned, Fig. 1 shows a temporal graph with 
five vertices and 29 edges, where edges are shown in the 
time horizon. In temporal network analysis, it is assumed 
that the network changes its topology in discrete time steps. 
So, starting at time t, if the network is observed in every dt 
t ime difference till  t′ ,  the time instances are 
� = {t, t + dt, t + 2dt,… , t

�

} . In the rest of our study, we 
assume, t, t� ∈ ℤ

+ and dt = 1 . The difference between the 
beginning and ending time stamp, i.e., t� − t is called as the 
Lifetime of the Network. In the temporal network G , if there 
is an edge between two vertices vi and vj at time t′′ , then it is 
symbolized as (vi, vj, t

��

) , signifying that there is a contact 
between u and v at time t′′ . For some t�� ∈ �  if 
(u, v, t

��

) ∈ E(G) , then we say that there exists a static edge 
between vi and vj . The frequency of an edge is defined as how 
many distinct time stamps t′′ are there in the time span �  such 
that (vi, vj, t

��

) ∈ E(G) and denoted as f(vivj) ,  i .e. , 
f(vivj) = |{t�� ∈ � ∶ (vi, vj, t) ∈ E(G)}| . If there does not exist 
any t�� ∈ �  such that (vi, vj, t

��

) ∉ E(G) , then we say that 
f(vi,vj) = 0 . In the rest of our study, we work with undirected 
temporal network, i.e., there is no difference between 
(vi, vj, t

��

) and (vj, vi, t
��

).
In a static network, a subset of vertices, where every 

pair is adjacent, is known as a clique. The size of the 
clique is defined as the number of vertices it contains. 
A clique is said to be maximal if it is not part of another 
clique of larger size. In one of our recent studies, we 
introduced the notion of (Δ, �)-clique by extending the 
concept of Δ-clique and incorporating an additional 

Fig. 1  Link stream representation of a temporal network

Fig. 2  Snapshot graph represen-
tation of the temporal network 
shown in Figure 1
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parameter � as a frequency threshold. This is stated in 
Definition 2.

Definition 2 ((Δ, �)-clique) (Banerjee and Pal 2019) Given 
a temporal network G(V ,E, T) , time duration Δ , and a fre-
quency threshold � ∈ ℤ

+ , a (Δ, �)-clique of G is a tuple con-
sisting of vertex subset, and time interval, i.e., (X, [ta, tb]) 
where X ⊆ V(G) , |X| ≥ 2 , and [ta, tb] ⊆ �  . Here ∀vi, vj ∈ X  
and � ∈ [ta,max(tb − Δ, ta)] , there must exist at least � num-
ber of edges, i.e., (vi, vj, tij) ∈ E(G) and f(vivj) ≥ � with 
tij ∈ [�,min(� + Δ, tb)] . Here, f(vivj) denotes the frequency of 
the static edge (vi, vj).

In a static graph G(V, E), a maximal clique is formed 
as S ⊂ V(G) , if for each v ∈ V(G)⧵S  , S ∪ {v} is not a 
clique. Now, as the (Δ, �)-clique is defined in the set-
ting of temporal networks, its maximality depends on two 
parameters: One is the cardinality (referred to as inclu-
sion-wise maximality) and the other one is the time inter-
val (referred to as temporally maximal). We introduce 
the maximality conditions for an arbitrary (Δ, �)-clique 
in Definition 3 considering both the factors.

Definition 3 (Maximal (Δ, �)-clique) Given a tempo-
ral network G(V ,E, T) and a (Δ, �)-clique (X, [ta, tb]) of G , 
(X, [ta, tb]) will be maximal if none of the following is true.

– ∃v ∈ V(G) ⧵ X  such that (X ∪ {v}, [ta, tb]) is a (Δ, �)
-clique.

– (X, [ta − 1, tb]) is a (Δ, �)-clique. This applies only if 
ta − 1 ≥ t.

– (X, [ta, tb + 1]) is a (Δ, �)-clique. This applies only if 
tb + 1 ≤ t

�.

In this paper, we study the problem of listing out all 
the maximal (Δ, �)-cliques of a given temporal network, 
which we call as the maximal (Δ, �)-clique enumeration 
problem defined next.

Definition 4 (Maximal (Δ, �)-clique enumeration problem) 
Given a temporal network G(V ,E, T) , Δ , and � the maximal 
(Δ, �)-clique enumeration problem asks to list out all the 
maximal (Δ, �)-cliques (as mentioned in Definition 3) pre-
sent in G.

Table 1 lists out all the symbols and notations used in 
this paper along with their interpretation. Next, we pro-
ceed to describe the proposed enumeration methodology 
for maximal (Δ, �)-cliques.

4  Proposed enumeration technique

As stated earlier, the proposed methodology is broadly 
divided into two steps, and each of them is described in the 
following two subsections. The broad idea of the proposed 
enumeration process is as follows: Given all the links with 
time duration of the temporal network, initially, we find out 
the maximal cliques of cardinality two. Next, taking these 
duration-wise maximal cliques, we add vertices into the 
clique without violating the definition of (Δ, �)-cliques.

4.1  Stretching phase (initialization)

Algorithm 1 describes the initialization process of the proposed 
methodology. For a given temporal network G , initially, we con-
struct the dictionary De with the static edges as the keys, and 
correspondingly, the occurrence time stamps are the values. 
By the definition of (Δ, �)-clique, if the end vertices of an edge 
are part of the same clique, then the edge has to occur at least 
� times in the link stream. Hence, for each static edge (u, v) 
of G , if its frequency is at least � , it is processed further. The 
occurrence time stamps of (u, v) are fed into the list T(u,v) . A 
temporary list, Temp, is created to store each current processing 
timestamp from T(u,v) with its previous occurrences, till it has 
maintained (Δ, �)-clique property. Now, the for loop from Lines 
8–32 computes all the (Δ, �)-cliques with maximum duration 
where {u, v} is the vertex set. During the processing of T(u,v) , 
any one of the following two cases can happen. In the first 

Table 1  Symbols and notations used in this paper

Symbol Interpretation

G(V ,E, T) A temporal network
V(G),E(G) Vertex set and link set of G
�

n, m Number of vertices and links of G
(vi, vj, t

��

) Any arbitrary link of G
f(vi ,vj) The frequency of the edge (vi, vj)
(X, [ta, tb]) An arbitrary (Δ, �)-clique of G
tf , tl First and last occurrence of the edge under consideration
ti i-th occurrence of the edge under consideration
f � , l� Last �-th occurrence of the edge under consideration
G(V ,E

�

) Static graph of the temporal network
V(G), E(G) Vertex set and edge set of G
NG(X) Neighborhood of the vertex set X  in the graph G
fmax Maximum frequency among all edges of G
D,DTemp Dictionaries used in Algorithm 1 and
T(u,v) Time stamps of the edge (u, v)
CI
T
, CT1 , CT2 Different lists used in Algorithm 1 and

CT The maximal (Δ, �)-clique set of G
len(CT ) Length of the list CT
ℤ

+ The set of positive integers
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case, if the current length of Temp is less than � , the difference 
between the current timestamp from T(u,v) and the first entry of 
Temp is checked (Line 10). Now, if the difference is less than or 
equal to Δ , current timestamp is appended in Temp. Otherwise, 
all the previous timestamps that have occurred within past Δ 
duration from the current timestamp are added in Temp (Line 
14). This process basically checks Δ timestamps backward from 
each occurrence times of the static edge (u, v). In the second 
case, when the current length of Temp is greater than or equal 

to � , it is checked whether the current processing time from 
T(u,v) falls within the interval of (last �-th occurrence time + 
1) to (last �-th occurrence time + 1 + Δ ). Now, if it is true, 
the current timestamp is appended in Temp. It can be easily 
observed that this appending is done if at least the consecutive 
� occurrences are within each Δ duration. Otherwise, the clique 
is added in CI

T
 with the vertex set {u, v} and time interval [ta, tb] 

(Line 22), where ta is the Δ ahead timestamp from the first �-th 
entry in Temp, and tb is the Δ onwards timestamp from the last 
�-th entry in Temp. Next, all the previous timestamps that have 
occurred within past Δ duration from the current timestamp 
are added in Temp as before (Line 24). It allows to consider 
overlapping cliques. Now, this may happen when we process 
the last occurrence from T(u,v) , it is added in Temp. However, 
no clique can be added by the condition of 9–26 if the length 
of Temp is greater than or equal to � . This situation is handled 
by Lines 27–31. This process is iterated for each key from the 
dictionary De . Now, we present lemmas that together they will 
help to argue the correctness of the proposed methodology. 
An illustrative example of Algorithm 1 for one link is shown 
in Fig. 3.

Algorithm 1  Stretching phase of the (Δ, �)-clique enumeration

Fig. 3  An illustrative example of algorithm 1 using the temporal net-
work of Fig. 1, for the link (v1, v2) with Δ = 4 and � = 2 . All the tem-
porally maximal (Δ, �)-cliques of the vertex pair {v1, v2} are kept in 
the initialized clique set, CI

T
 , marked in gray color



 Social Network Analysis and Mining           (2024) 14:54    54  Page 6 of 16

Lemma 1 For a link (u, v), if there exist any consecutive � 
occurrences within Δ duration, then it has to be in “Temp” 
at some stage, in Algorithm 1.

Proof Follows from the description of Algorithm 1.   ◻

Lemma 2 In any arbitrary iteration of the “for loop” at Line 
8 in Algorithm 1, each consecutive � occurrences of “Temp” 
will be within Δ duration.

Proof Initially, Temp contains the first occurrence of a link. 
Now, when the length of Temp is less than � (Line 9), next 
occurrence times are added in Temp (Line 11) if the differ-
ence from initial to current occurrence time lies within Δ 
(Line 10), else the times at which the links have occurred in 
previous Δ duration from the current time are added (Line 
13, 14). This shows that all the entries in Temp are within Δ 
duration when the length of Temp is less than �.

When the length of Temp is greater than or equal to � , 
without loss of generality, let us take any arbitrary � occur-
rences of Temp as t1, t2,… t(�−1), t� , which are not within a 
Δ duration, i.e., t𝛾 − t1 > Δ . Let us also assume that from 
t(�−1) , all the previous occurrences in Temp follow the state-
ment of this lemma. Now, from our assumptions, we have 
the following conditions:

Now, let us assume the previous occurrence of the link 
from t1 in Temp is t0 , and our goal is to infer the possi-
ble positions of t0 in the time horizon. From the defini-
tion of (Δ, �)-clique, there will be � occurrences from 
t1 − Δ to t1 . If the first (� − 1) links have occurred in con-
secutive times, then t0 = t1 − Δ + � − 2 . This is the mini-
mum value for t0 . From Eq.  3, the maximum value for 
t0 is t1 − 1 . Hence, t0 + 1 ≤ t1 ≤ t0 + Δ + 2 − �  . Now, 
from Eq.  2, we have t0 + Δ + 1 < t𝛾 , when t1 = t0 + 1 
and replacing t1 with t0 + Δ + 2 − � in Eq.  2, we get 
t0 + Δ + 1 + (Δ + 1 − 𝛾) < t𝛾 ⟹ t0 + Δ + 1 < t𝛾  a s 
Δ + 1 ≥ � . This violates the condition imposed in Line 17. 
Hence, t� cannot be added in Temp. So, we reach a contradic-
tion and this completes the proof.   ◻

Lemma 3 Let, tf  and tl be the first and last occurrence in 
Temp. In the interval [tf , tl] , Temp contains at least � links 
in each Δ duration.

Proof When the length of Temp is less than � , Lines 9–15 in 
Algorithm 1 ensure the statement of the lemma by adding 

(1)t0 + Δ ≥ t𝛾−1 ⟹ t1 + Δ > t(𝛾−1)

(2)t1 + Δ < t𝛾

(3)t1 ≥ t0 + 1

consecutive � occurrences in Δ duration. So, it is trivial that 
we need to prove the statement when the length of Temp is 
greater than � . Let us assume that the occurrence times of 
the first � + 1 entries of Temp are t1, t2,… , t� , t(�+1) , where 
t1 = tf  and t(�+1) ≤ tl.

Now, by Lemma 2, t� − t1 ≤ Δ and t(�+1) − t2 ≤ Δ . With-
out loss of generality, we want to show that there exist at 
least � links from t1 + 1 to t1 + 1 + Δ . As t� − t1 ≤ Δ , the 
maximum difference between t1 and t2 can be (Δ − � + 2) , 
and this case will arise when all the � − 1 links appear in 
each consecutive timestamp from t1 + Δ toward t1 (shown 
in Fig.  3). Now, as t(�+1) − t2 ≤ Δ , we have to show 
t(�+1) = t� + 1 . This extreme case will intuitively prove the 
rest of the cases. So, we can infer the following conclusion 
from Lemma 2 and the assumption t2 = t1 + Δ − � + 2 . 
Now,

Again, from the condition imposed at Line 17 in Algo-
rithm  1, we also have t(�+1) ≤ t1 + Δ + 1 . Now, as 
per our assumption of extreme case t� = t1 + Δ . So, 
t(�+1) ≤ t� + 1 ⟹ t(�+1) = t� + 1.

Now, as t(�+1) ≤ t1 + Δ + 1 , we can argue t(𝛾+1) < t + Δ , 
for all t ∈ (t1 + 1, t2] . Moreover, from Lemma 2, there are 
� links within [t2, t(�+1)] , which concludes the existence of 
at least � links from t to t + Δ . Now, for any ti ∈ [tf , tl − Δ] , 
there will be at least � links in Temp from ti to ti + Δ . This 
completes the proof of the claimed statement.   ◻

Lemma 4 In Algorithm  1, the contents of CI
T
 are (Δ, �)

-cliques of size 2.

Proof We are processing each static edge of the temporal 
network G in its time horizon and add the (Δ, �)-clique(s) 
formed by the end vertices of the edge into CI

T
 . Hence, the 

cliques in CI
T
 are of size 2. Now, in Algorithm 1, the cliques 

are added into CI
T
 in Lines 22 and 30. In both the cases, 

cliques are added if the current length of the Temp is greater 
than or equal to � . As per Lemma 3, Temp at least � links in 
each Δ duration. While adding the duration of the clique, ta 
is obtained by subtracting Δ duration from first �-th occur-
rence time, and tb is obtained by adding Δ duration from last 
�-th occurrence time in Temp. This ensures the existence of 
at least � occurrences of the link in each Δ duration between 
ta to tb .   ◻

Lemma 5 All the cliques returned by Algorithm 1 and con-
tained in CI

T
 are duration-wise maximal.

t(�+1) − t2 ≤ Δ

t(�+1) − t1 − Δ + � − 2 ≤ Δ

t(�+1) ≤ t1 + Δ + 1 + {(Δ + 1) − �}
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Proof We prove the duration-wise maximality of each 
clique in CI

T
 by contradiction. Let us assume, a clique 

({u, v}, [ta, tb]) ∈ CI
T
 is not duration-wise maximal. Then, 

there exists a t′
a
 with t′

a
< ta such that ({u, v}, [t�

a
, tb]) is a 

(Δ, �)-clique or a t′
b
 with t′

b
> tb such that ({u, v}, [ta, t

�

b
]) is 

a (Δ, �)-clique.
Now, if ({u, v}, [t�

a
, tb]) is a (Δ, �)-clique, then its first � 

occurrences will be in Temp at some stage as per Lemma 
1. Later, this Temp is expanded till tb either by Line 11 or 
18 in Algorithm 1. Hence, ({u, v}, [t�

a
, tb]) will be added in 

CI
T
 , instead of ({u, v}, [ta, tb]) . So, the assumption that there 

exists a t′
a
 with t′

a
< ta is false.

Now, by Lemma 4, as ({u, v}, [ta, tb]) is a (Δ, �)-clique, 
in each Δ duration within ta to tb , there will be at least � 
links between u and v. Let us assume, that l� and l(�−1) 
are the last �-th and (� − 1)-th occurrence time of (u, v), 
respectively. From the definition of (Δ, �)-clique, l� + Δ ≥ tb , 
hence, l(𝛾−1) + Δ > tb . Now, let {u, v} be a (Δ, �)-clique in 
the interval [ta, l(�−1) + Δ] , there must be at least one link 
between u and v in the interval [tb, l(�−1) + Δ] . If there exists 
such links, it indicates the presence of � or more links in 
the interval [l(�−1), l(�−1) + Δ] . This case is handled by 
Algorithm 1 either in Line 11 or 18, and ({u, v}, [ta, tb]) will 
not be added to CI

T
 . So, there cannot exist any t′

b
 which is 

greater than tb.
Hence, all the cliques of CI

T
 returned by Algorithm 1 are 

duration-wise maximal.   ◻

Lemma 6 All the duration-wise maximal (Δ, �)-cliques of 
size 2 are contained in CI

T
.

Proof In Lemmas 4 and 5, we have already shown that each 
(Δ, �)-clique of CI

T
 is of size 2 and duration-wise maximal, 

respectively. Hence, in this lemma, we have to prove that 
none of such cliques are missed out in the final CI

T
 . As each 

edge is processed independently by Algorithm 1, it is suf-
ficient to prove that all the duration-wise maximal (Δ, �)
-cliques for a particular vertex pair (corresponding to an 
edge) are contained in CI

T
.

Let, ({u, v}, [ta, tb]) be a duration-wise maximal (Δ, �)
-clique and not present in CI

T
 . Now, as ({u, v}, [ta, tb]) is a 

(Δ, �)-clique, so there exist at least � links in each Δ dura-
tion from ta to tb . Let f � and l� are the first �-th and last �
-th occurrence time of the link (u, v) between ta to tb . We 
denote the occurrence timestamps for the static edge (u, v) 
as t1, t2,… , tf(u,v) , and f(u,v) ≥ � . Now, there can be one of the 
following cases for the values of ta and tb . 

1. ta = t1+�−1 − Δ and tb ≤ tf(u,v)−�+1 + Δ : The clique is 
formed at the beginning of the occurrence stream of 
(u, v). According to Lemma 1, all the occurrence time 
will be in Temp. Now, if tb = tf(u,v)−�+1 + Δ , it will be 

added in CI
T
 by Line 30 of Algorithm 1. Otherwise, 

∃tk ∶ tk > l𝛾 + 1 + Δ and tk−1 ≤ tb . Hence, it breaks the 
if condition at Line 17, and the clique will be added in 
CI
T
 by Line 22.

2. ta ≥ t1+�−1 − Δ and tb = tf(u,v)−�+1 + Δ : The clique 
is formed at the end of the occurrence stream 
of (u,  v). If ta = t1+�−1 − Δ , it follows from the 
above case. For the else part, we need to show that 
ta = f 𝛾 + Δ > t1+𝛾−1 − Δ is handled by the Algorithm 1. 
Here, ∃tk ∶ tk < f 𝛾 − 1 − Δ and tk−1 ≥ ta . Along with 
Lemma 1 and 2, the Lines 14 and 24 are responsible to 
have all the timestamps within [ta, tb] must be Temp. So, 
the clique will be added in CI

T
 by Line 30.

3. ta > t1+𝛾−1 − Δ and tb < tf(u,v)−𝛾+1 + Δ : The clique is 
formed in the middle of the occurrence stream of (u, v). 
Both the scenarios of ta and tb values are shown in the 
above two cases, so the clique will be added in CI

T
 by 

Line 22.

  ◻

Lemma 7 The running time of finding all the duration-wise 
maximal (Δ, �)-cliques of size 2 in Algorithm 1 is of O(�m).

Proof Preparing the dictionary De at Line 1 in Algorithm 1 
will take O(

∑
(u,v,t

��
)∈E(G) f(u,v)) . Assuming the frequency 

of each static edge is at least � , we evaluate the running 
time for processing a static edge. It will be identical for the 
rest of the edges. During the processing, all the operations 
from Line 8 to 32 take O(1) times, except the appending at 
Lines 14 and 24. Now, the appending of previous occur-
rences within past Δ duration can lead to copying of at 
most � − 2 previous entries in Temp, which take O(�) times. 
Now, the worst case may occur when in every iteration of 
the for loop at Line 8, � − 2 previous occurrences are cop-
ied in Temp (at Line 24), and this case may occur at most 
f(u,v) − � + 1 times. In this case, the running time of the for 
loop from Line 8 to 32 is (� − 2)(f(u,v) − � + 1) ≈ O(�f(u,v)) 
for a particular static edge. Now, for all the static edges, 
the for loop at Line 3 will run with O(

∑
(u,v,t

��
)∈E(G) �f(u,v)) 

times. Now, the total running time of Algorithm  1 is 
(

∑

(u,v,t′′ )∈E() f(u,v) + �
∑

(u,v,t′′ )∈E() f(u,v)) = (�
∑

(u,v,t′′ )∈E() f(u,v))  .  Here, 
summing up all the frequencies of the static edges gives 
the total number of links of the temporal network, i.e., 
m =

∑
(u,v,t

��
)∈E(G) f(u,v) . So, the time complexity of the ini-

tialization is of O(�m) .   ◻

We have provided a weak upper bound on running time 
of the initialization process (Algorithm 1) in Lemma 7. 
Now, we focus on space requirement of Algorithm 1. Stor-
ing the Dictionary De in Line Number 1 requires O(m) 
space. In the worst case, space requirement by the list Tuv 
is of O(m) . The size of Temp can go up to the maximum 
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number of times that any static edge has occurred consecu-
tively more than gamma times in each delta duration, and 
in the worst case, it may take O(m) space. As all the initial 
cliques are of size 2, hence space requirement due to CI

T
 

is of O(n2.fmax) , where fmax is the highest frequency of the 
initial cliques. So, the total space requirement by Algo-
rithm 1 is of O(m + n2.fmax) = O(n2.fmax) . Hence, Lemma 
8 holds.

Lemma 8 The space requirement of Algorithm  1 is of 
O(n2.fmax).

Now for the temporal network shown in Fig. 1, the ini-
tial cliques with Δ = 3 and � = 2 , in CI

T
 are ({v1, v2}, [1, 7]) , 

({v1, v2}, [7, 13])  ,  ({v1, v3}, [2, 7])  ,  ({v1, v3}, [8, 14])  , 
({v2, v3}, [2, 6])  ,  ({v2, v3}, [7, 11])  ,  ({v2, v3}, [5, 8])  , 
({v2, v4}, [4, 12])  ,  ({v3, v4}, [1, 9])  ,  ({v3, v5}, [5, 10])  , 
({v4, v5}, [4, 8]).

4.2  Shrink and bulk phase (enumeration)

Algorithm 2 describes the enumeration strategy of our 
proposed methodology. For the given temporal network G , 
we construct a static graph G where V(G) is the vertex set 
of G , and each link of G induces the corresponding edge in 
E(G) without the time component, which we call as a static 
edge. Next, the dictionary D is built from the initial clique 
set CI

T
 of Algorithm 1, where the vertex set of the clique is 

the key, and corresponding occurrence time intervals are 
the values. This data structure is also updated in the inter-
mediate steps of Algorithm 2. Now, two sets CT1 and CT2 are 
maintained during the enumeration process. At any i-th 
iteration of the while loop at Line 5, CT1 maintains the cur-
rent set of cliques which is yet to be processed for vertex 
addition and CT2 stores the new cliques formed in that i-th 
iteration. At the beginning, all the initial cliques from CI

T
 

are copied into CT1 . A clique (X, [ta, tb]) is taken out from 
CT1 which is duration-wise maximal, and the IS_MAX flag 
is set to TRUE for indicating the current clique as maximal 
(Δ, �)-clique. For vertex addition, it is trivial to convince 

oneself that only for the neighboring vertices of X  
(v ∈ NG(X)) , there is a possibility of (X ∪ {v}, [t

�

a
, t

�

b
]) to be 

a (Δ, �)-clique. If the new vertex set X ∪ {v} is found in D 
with one of its value as [ta, tb] , the IS_MAX flag is set to 
FALSE, signifying that the processing clique (X, [ta, tb]) is 
not maximal. Otherwise, if X ∪ {v} is not present in D , all 
the possible time intervals in which X ∪ {v} can form a 
(Δ, �)-clique are computed from Line 16 to 37. This pro-
cess is iterated for all the neighboring vertices of X  (Lines 
10–38). Now, we describe the statements from Line 17 to 
36 in detail. As mentioned earlier, to form a (Δ, �)-clique 
with the new vertex set X ∪ {v} , all the possible combina-
tions from X ∪ {v} of size |X| ,  (represented as 
C (X ∪ {v},X) ), have to be a (Δ, �)-clique. Now, for all z ∈ 
C (X ∪ {v},X) ), if z is present in D.keys() , it signifies the 
possibility of forming a new clique with the vertex set 
X ∪ {v} (Line 17). Now, all the entries of these combina-
tions are taken into a temporary data structure DTemp from 
D . For the clarity of presentation, we describe the opera-
tions from Line 19 to 35 for one vertex addition, i.e., 
X ∪ {v} with the help of an example shown in Fig. 4. Now, 
let the entries of DTemp be z1, z2,… zn , i.e., all zi ∈ 
C (X ∪ {v},X) , and the length of the corresponding entries 
in DTemp be l1, l2,… ln , respectively. So, one sample from 
z1 ⊗ z2 ⊗⋯⊗ zn is taken as timeSet in Line 19 of Algo-
rithm 2. One possible value of timeSet is [t11, t21,… , tn1] . 
For this value, the resultant interval [t�

a
, t

�

b
] is computed as 

t11 ∩ t21⋯ ∩ tn11 = [max(ta1z1 , t
a1
z2
,… , ta1zn ), min(t

b1
z1
, tb1z2 ,… , tb1zn )]

 . If the differ-
ence between t′

b
 and t′

a
 is more than or equal to Δ , then the 

newly formed (Δ, �)-clique, (X ∪ {v}, [t
�

a
, t

�

b
]) , is added in 

CT2and D . Also, if [t�
a
, t

�

b
] matches with the current interval 

of X  , then the flag IS_MAX is set to FALSE, i.e., (X, [ta, tb]) 
is not maximal. Now, this step is repeated for all the sam-
ples from z1 ⊗ z2 ⊗⋯⊗ zn from Line 19 to 35. This 
ensures that all the intervals in which X ∪ {v} forms (Δ, �)
-clique are added in D . Now, if none of the vertices from 
NG(X)⧵X  is possible to add in X  , (X, [ta, tb]) becomes a 
maximal (Δ, �)-clique and added into final maximal clique 
set CL at Line 40. Vertex addition checking is performed 
for all the cliques of CT1 in the while loop from Line 7 to 
42. When CT1 is exhausted and CT2 is not empty, the con-
tents of CT2 are copied back into CT1 for further processing, 
signifying that all the maximal cliques have not been found 
yet. This is controlled using the flag ALL_MAXIMAL in the 
while loop at Line 5. If no clique is added into CT2 , the flag 
ALL_MAXIMAL is set to TRUE so that in the next itera-
tion, the condition of the while loop at Line 5 will be false, 
and finally, Algorithm 2 terminates. At the end, for the 
temporal network G , CT  contains all the maximal (Δ, �)
-cliques of it. One illustrative example of the enumeration 
algorithm is given in Fig. 5. 

Fig. 4  The entries of DTemp and zi ∈ DTemp.keys()
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Algorithm 2  Shrinking and bulking phase of the maximal (Δ, �)-clique enumeration

Now, from the description of the enumeration process 
of our proposed methodology, we have the following 
claims:

Claim 1 For any arbitrary clique (X, [ta, tb]) ∈ CT1 and 
v ∈ NG(X)⧵X  , all the time intervals in the whole lifespan of 
the linked stream L , at which X ∪ {v} forms a (Δ, �)-clique, 
are added in D.

Claim 2 In any arbitrary iteration i of the while loop at 
Line 5, the cliques of CT1 and CT2 are of size i + 1 and i + 2 , 
respectively.

Lemma 9 In Algorithm 2, the elements of CT  are (Δ, �)- 
cliques.

Proof All the cliques are added in CT , only from CT1 at Line 
40 in Algorithm 2. Now, initially CT1 contains the elements 
from CI

T
 , which are (Δ, �)-cliques from Lemma 4, and later, 

it is updated with the entries of CT2 . So, if we show that 
the elements of CT2 are (Δ, �)-cliques, the statement will be 
proved. Now, all the cliques of CT2 are of at least Δ duration, 
from the condition at Line 28. Also, from the description of 
the Algorithm 2, it is easy to verify that in each iteration of 



 Social Network Analysis and Mining           (2024) 14:54    54  Page 10 of 16

vertex, addition to a clique of CT1 can only be made, if all the 
possible combinations of vertices form (Δ, �)-cliques. This 
ensures that all the vertex pairs of the clique in CT2 are linked 
at least � times in each Δ duration within the intersected time 
interval of all the combinations. Hence, the elements of CT 
are (Δ, �)-cliques.

  ◻

Lemma 10 In Algorithm 2, all the intermediate cliques are 
duration-wise maximal.

Proof From the proof of Lemma 9, it is sufficient to show 
that the contents of CT1 are duration-wise maximal. We prove 
the statement by induction. From Lemma 5, the contents of 
initial clique set are duration-wise maximal. Let us assume 
that in the i-th iteration of the while loop at Line 5, the con-
tents of CT1 are duration-wise maximal. We need to show 
that the same will hold in the (i + 1)-th iteration also. After 
adding a vertex to an existing clique obtained in i-th itera-
tion for possible expansion, the new vertex set is considered 
to be a (Δ, �)-clique within the intersected interval of all 
(i + 2)-combinations, if the length of the intersected inter-
val is more than Δ (Lines 17–36 in Algorithm 2). Now, it 
can be observed that the latest first �-th occurrence time 
(f

�

i+1
) of the resultant clique must be same with the latest 

first �-th occurrence time (f �
i
) of the constituting clique from 

which ta is coming. Similarly, the earliest last �-th occur-
rence time (l�

i+1
) of the resultant clique must be same with 

the earliest last �-th occurrence time (l�
i
) of the constituting 

clique from which tb is coming. When both the ta and tb 
are coming from the same constituting clique, the original 
clique is not maximal as vertex addition is possible. Now, 
for the resultant clique, the beginning time ta can not be 
extended to ta − 1 as in the i-th iteration, the constituting 
clique is also duration-wise maximal from the assumption, 
i.e., f �

i
− Δ = ta ⟹ f

�

i+1
− Δ = ta . Similarly, tb can not be 

extended to tb + 1 as in the i-th iteration, the constituting 
clique is also duration-wise maximal from the assumption, 
i.e., l�

i
+ Δ = tb ⟹ l

�

i+1
+ Δ = tb . So, the resultant clique 

at (i + 1)-th iteration is also duration-wise maximal. This is 
true for all the cliques generated in each iteration. Hence, all 
the intermediate cliques in Algorithm 2 are duration-wise 
maximal.   ◻

Lemma 11 In Algorithm 2, at the begining of any i-th itera-
tion, CT1 holds all the duration-wise maximal (Δ, �)-cliques 
of size i + 1.

Proof For i = 1 , CT1 holds all the duration-wise maximal 
(Δ, �)-cliques of size 2 from Lemma 6. Let, CT1

i−1
 and CT1

i
 are 

the clique sets at the beginning of the iteration i − 1 and i, 
respectively, and CT1

i−1
 holds all the duration-wise maximal 

(Δ, �)-cliques of size i. Then, we have to show that during 
the construction of CT1

i
 from CT1

i−1
 , the clique set CT1

i
 remains 

exhaustive. For a clique from CT1
i−1

 , we check for all the pos-
sible i + 1 vertex combinations in Line 17 of Algorithm 2, 
which does not leave any possible vertex addition to the 
clique. Next, for each added vertex, all the possible time 
interval combinations are generated and checked from Line 
19 to 35. Now, for each possible time combination, the (Δ, �)
-clique is generated from the maximum possible common 
interval of them. This guarantees that all the possible cliques 
are generated during this process. Again, from Lemma 10, in 
the i-th iteration, all the generated cliques are also duration-
wise maximal, which are now in CT1

i
 . So, the same can be 

proved in the clique building from i-th to i + 1-th iteration. 
Hence, for any value of i, the claimed statement is true.  
 ◻

Lemma 12 All the (Δ, �)-cliques returned by Algorithm 2 
and contained in CT are maximal.

Proof We prove this statement by contradiction. Assume 
that Ci = (X, [ta, tb]) be an element of CI

T
 , which is not max-

imal. In Algorithm 2, the cliques are added in CI
T
 from CT1 , 

and all the cliques in CT1 are duration-wise maximal (Δ, �)
-cliques from Lemma 10. If, Ci is not maximal, then the only 
thing that can happen is that one or more vertex addition 
is possible to make Ci maximal. Now, let us assume that 
∃v ∈ NG(X) , such that (X ∪ {v}, [ta, tb]) is a (Δ, �)-clique. 
From the enumaration process described in Algorithm 2, if a 
clique is added to CL , it has to be in CT1 in any previous itera-
tion. As (X ∪ {v}, [ta, tb]) is a (Δ, �)-clique, the IS_MAX flag 
becomes FALSE so that it is not going to be added in CL but 
in CT2 . Hence, the assumption Ci ∈ CL is a contradiction. So, 
all the elements of CL returned by Algorithm 2 are maximal 
(Δ, �)-cliques.   ◻

Theorem 1 All the maximal (Δ, �)-cliques of G are contained 
in CT.

As mentioned previously, m denotes the temporal links 
in the time-varying graph G . At Line Number 2, computing 
the static graph from the given time-varying graph requires 
O(m) time. Time requirement for creating the dictionary 
D will be of O(|CT |.f) time, where fmax denotes the high-
est number of times a clique appeared. Copying the cliques 
from the list O(CT ) to CT1 requires O(|CT |) time. Setting the 
ALL_MAXIMAL flag to FALSE in Line Number 4 requires 
O(1) time. So, from Line Number 1 to 4, the time require-
ment is of O(m + |CI

T
|.f) . Now, it is easy to verify that the 

instructions in Line Numbers 6, 8, and 9 require O(1) time. 
The for loop in Line Number 10 can run at most O(n) 
time. Adding the vertex v to the existing clique X  to form 
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Xnew in Line Number 11 requires O(1) time. The maximum 
number of comparisons in the condition of the if statement 
in Line Number 12 will be O(|CT |) . In the worst case, each 
comparison can take at most O(n2) time. Hence, the total 
time requirement for Line Number 12 requires O(|CT |.n2) 
time. Number of comparisons in the conditional statement 
in Line Number 13 requires at most O(f) time. Setting the 
IS_MAX flag to “False” in Line Number 14 requires O(1) 
time. Now, in the if statement of Line Number 17, the num-
ber of combinations can be O(n) in the worst case. Hence, 
the number of comparisons for checking the existence in 
the dictionary D is of O(n|CT |) . As mentioned previously, 
each individual comparison requires O(n2) time. Hence, 
total execution time for Line 17 is of O(n3.|CT |) time. Now, 
copying the newly generated combinations from the diction-
ary D to DTemp requires O(nfmax) . It can be verified from 
the description of the Algorithm 2 that the number of pos-
sible combinations among the time duration is of O(f n

max
) . 

Hence, the for loop in Line Number 19 will execute O(f n
max

) 
times. Line Numbers 20 and 21 take O(1) time. Executing 
the for loop from Line Number 22 to 25 requires O(n) time. 
Computing the maximum and minimum value among the 
elements of the list max_ta and min_tb requires O(n) time. 
It is easy to verify that execution of Line Number 28 to 
34, 39 to 41, 43 to 45 and 46 requires O(1) time. Copying 
the cliques from in Line Number 44 can take O(|CT |) time. 
Now, we need to wrap up the computational time require-
ment for the looping structures to obtain the total time 
requirement of Algorithm 2. From the previous analysis, it 
can be verified that the time requirement for executing the 
for loop from Line Number 19 to 35 will be of O(f n

max
.n) . 

The for loop from Line Number 10 to 38 will execute at 
max O(n) times. Hence, the running time from 10 to 38 is 

o f  O(n(n2.|CT |.fmax + n3.|CT | + n.fmax + f n
max

.n)) = O(n3.

|CT |.fmax + n4.|CT | + n2.fmax + f n
max

.n2) = O(n3.|CT |.fmax + n4.

|CT | + f n
max

.n2) . The while loop from Line Number 7 to 42 can 
execute at most O(|CT |) times. Hence, execution time of this 
while loop is of O(n3.|CT |2.fmax + n4.|CT |2 + |CT |.f nmax.n

2) . 
Also, the number of times the while loop from Line Num-
ber 5 to 48 can execute is at most O(n) times. Hence, 
time requirement for execution of Line Numbers 5–48 is 
O(n(n3.|CT |2.fmax + n4.|CT |2 + |CT |.f nmax.n

2 + |CT |)) = O(n4.

|CT |2.fmax + n5.|CT |2 + |CT |.f nmax.n
3 + n.|CT |) = O(n4.|CT |2.

fmax + n5.|CT |2 + |CT |.f nmax.n
3) . As already derived that run-

ning time from Line Number 1 to 4 is of O(m + |CI
T
|.fmax) , 

hence, the total time requirement for Algorithm 2 is of 
O(n4.|CT |2.fmax + n5.|CT |2 + |CT |.f nmax.n

3 + m + |CI
T
|.fmax) =

O(n4.|CT |2.fmax + n5.|CT |2 + |CT |.f nmax.n
3) . Maximum num-

ber of cliques could be at {{{\text{max}}}}max 2n . Hence, 
plugging the worst case value of |CT | , we have the running 
time of Algorithm 2, is O(n4.22n.fmax + n5.22n + 2n.f n

max
.n3).

Additional space requirement of the Algorithm  2 is 
due to the “static graph” G, which requires O(m) space; 
dictionary D , which requires O(|CI

T
|.fmax) space; dic-

tionary DTemp which requires O(n.fmax) space, the list 
Xnew which requires O(n) space, the lists CT1 , CT2 , and CT 
which in the worst case these may require O(n2n) space; 
and the lists max_ta and min_tb which require O(|CT |) 
space. Hence, total space requirement of Algorithm 2 is of 
O(m + |CI

T
|.fmax + n.fmax + n + n.2n + 2n) = O(m + |CI

T
|.fmax

+n.fmax + n.2n) . Hence, Lemma 13 holds.

Lemma 13 The running time and space requirement of Algo-
rithm 2 are of O(n4 ⋅ 22n ⋅ fmax + n5 ⋅ 22n + 2n ⋅ f n

max
⋅ n3) and 

O(m + |CI
T
| ⋅ fmax + n ⋅ fmax + n ⋅ 2n) , respectively.

Fig. 5  Illustrative example of 
the proposed maximal (Δ, �)
-clique enumeration algorithm, 
a input temporal graph with 
Δ = 4 and � = 2 , b output of 
the Algorithm 1—stretching 
phase, and c and d the content 
of CT1 at different iterations of 
Algorithm 2. The cliques in red 
are duration-wise maximal but 
not w.r.t. cardinality
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As mentioned previously, Algorithm 1 and 2 together 
constitute the proposed enumeration strategy for maxi-
mal (Δ, �)-cliques of a temporal network. It has been 
shown in Lemma 7 that the time requirement of Algo-
rithm 1 is of O(� .m) . Hence, the total time requirement 
of the proposed methodology (i.e., Algorithm 1 and 2) 
is of O(n4.22n.fmax + n5.22n + 2n.f n

max
.n3 + � .m) . As men-

tioned in Lemma 8, the space requirement is of O(n2.fmax) . 
Hence, total space requirement of the proposed methodol-
ogy is of O(m + |CI

T
|.fmax + n.fmax + n.2n + n2.fmax) = O(m

O(m + |CI
T
|.fmax + n.fmax + n.2n + n2.fmax) = O(m . Now, the 

Theorem 2 states regarding the time and space requirement 
of the proposed methodology.

Theorem  2 The computational time and space 
requirement of the proposed methodology are of 
O(n4 ⋅ 22n ⋅ fmax + n5 ⋅ 22n + 2n ⋅ f n

max
⋅ n3 + � ⋅ m)  a n d 

O(m + |CI
T
| ⋅ fmax + n ⋅ 2n + n2 ⋅ fmax) , respectively.

5  Experimental evaluation

In this section, we present the experimental evaluation of 
the proposed methodology and compare its efficacy with 
the existing methods from the literature. First, we outline the 
background of the used datasets, followed by the objectives, 
comparing algorithm description, and discussion on results.

5.1  Description of the datasets

In our experiments, we have used the following datasets: 
(1) Hypertext 2009 dynamic contact network (Hypertext) 
(Isella et al. 2011): This dataset was collected during the 
ACM Hypertext 2009 conference, where the attendees vol-
unteered to wear radio badges that monitored their face-to-
face proximity. The dataset represents the dynamical network 
of face-to-face proximity of 110 conference attendees over 
about 2.5 days. (2) College Message Temporal Network (Col-
lege Message) (Panzarasa et al. 2009): This dataset contains 
the interaction information among a group of students from 
the University of California, Irvine. (3) Bitcoin OTC Trust 
Weighted Signed Network (Bitcoin)1 (Kumar et al. 2016, 
2018): This is a who-trusts-whom network of people who 
trade using Bitcoin on a platform called Bitcoin OTC. Mem-
bers of Bitcoin OTC rate other members on a scale of -10 
(total distrust) to +10 (total trust) in steps of 1. This is a 
weighted, signed, and directed network. However, as per our 
requirement, we do not consider the direction and weight. As 

trust of a person changes over time, it is a temporal network. 
(4) Infectious SocioPatterns Dynamic Contact Network I & 
II (Infectious I &  II) (Isella et al. 2011): The datasets are 
collected during the Infectious SocioPatterns event that took 
place in Dublin, Ireland, during the art science exhibition 
INFECTIOUS: STAY AWAY. The dataset contains the set of 
tuples of the form (t, u, v), where u and v are the anonymous 
ids of the person who are in contact for at least 20 s. Basic 
statistics of the datasets are given in Table 2.

5.2  Setup of the experimentation

The only parameters involved in our study are Δ and � . For 
analyzing a temporal network dataset, one intuitive question 
will be just to find out the frequently connected groups for 
a given time duration, which is comparable with the life-
time of the network. For this reason, we select the Δ value 
based on the network lifetime only. For “Hypertext” and 
“Infectious II” datasets, we start with the Δ value of 1 min 
and keep on increasing it by 1 min till it reaches 10 min. 
Whereas it is increased in multiplicative order of 10 start-
ing from 1 and 2 min to 100 and 200 min in the “Infectious 
I” dataset, due to its larger lifetime. For “College Message” 
and “Bitcoin” datasets, we choose the Δ value as 1, 12, 64, 
72, and 168 h.

For Δ-clique enumeration in all the datasets, we have to 
set � value as 1. Now, for enumerating (Δ, �)-clique, in case 
of the “Hypertext” and “Infectious II,” we start with the 
� value as 2, keep on increasing it by 1 till the maximal 
clique set becomes empty. In case of “Infectious I” data-
set for initial Δ values (e.g., 60, 120), we start that � value 
is chosen similarly with that of the “Infectious II” dataset. 
However, for larger Δ values (e.g., 6000, 12000), we start 
with a � value of 5, and then 10; next incremented by 10 
till it reaches 30, and subsequently incremented by 30 till 
it reaches 330. For the “Bitcoin” dataset, for every Δ value, 
if we increase the � value beyond 2, the maximal clique set 
becomes null, due to very small links per static edges ratio, 
compared to the lifespan of the temporal network. In case of 
“College Message” dataset, as the chosen Δ value is larger, 
the � value is incremented by 5 till it goes to 20 and then by 
10 till the maximal clique set becomes empty. The goals of 
the experiments are to analyze, how the number of maximal 

Table 2  Basic statistics of the datasets

Datasets #Nodes #Links #Static edges Lifetime

Hypertext 113 20,818 2196 2.5 days
Infectious II 410 17,298 2765 8 h
College message 1899 59,835 20,296 193 days
Bitcoin 5881 35,592 21,492 5.21 years
Infectious I 10,972 415,843 44,516 80 days

1 https:// snap. stanf ord. edu/ data/ soc- sign- bitco in- otc. html.

https://snap.stanford.edu/data/soc-sign-bitcoin-otc.html
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cliques, maximum cardinality, maximum duration, compu-
tational time, and space change with Δ and � , and compare 
the results with the existing algorithms.

5.3  Algorithms compared

In our experiments, we compare the performance of the 
proposed methodology with the following methods from 
the literature. (1) Virad et al.’s method (Viard et al. 2016): 
This is the first method proposed to enumerate maxi-
mal Δ-cliques of a temporal network. (2) Himmel et al.’s 
method (Himmel et al. 2017): This method incorporates 
the famous Born–Kerbosch algorithm to improve Virad 
et al.’s method. (3) Banerjee & Pal’s method (Banerjee and 
Pal 2019): This is the existing maximal (Δ, �)-clique pro-
posed by us in one of our previous studies. We obtain the 
source code of the first two methodologies as implemented 

by the respective authors. The proposed methodology is 
developed in Python 3.4 along with NetworkX 2.0. All the 
experiments have been carried out on a high-performance 
computing cluster having 5 nodes, and each of them having 
40 cores and 160 GB of RAM. Implementations of the algo-
rithms are available at https:// github. com/ BITHI KA1992/ 
Delta- gamma- Clique- Update.

5.4  Experimental results with discussions

Results for Δ-clique enumeration: First, we focus on Δ
-clique, which is equivalent to (Δ, �)-clique with � = 1 . This 
result is shown in Table 3. In all the datasets, the maximal 
clique count(N) decreases with the increment of Δ . This 
quantity increases for a large Δ when there exist some user 
pairs who contact each other very frequently for a long dura-
tion. This generates many maximal cliques with cardinality 2 

Fig. 6  Plots for the change in Clique Count (denoted as CC), Maxi-
mum Cardinality (denoted as MC), Maximum Duration (denoted as 
MD), Computational Time (denoted as CT), and Space Requirement 
(denoted as SR) with the change of Δ and � for different datasets; a–e 

Hypertext; f–j College Message; k–o Infectious I; and p–t Infectious 
II; the computational time and space of Banerjee & Pal’s (Banerjee 
and Pal 2019) marked in red

https://github.com/BITHIKA1992/Delta-gamma-Clique-Update
https://github.com/BITHIKA1992/Delta-gamma-Clique-Update
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and different [ta, tb] for bitcoin and infectious. The maximum 
cardinality(C) identifies if there is a large group, and the 
maximum duration(D) signifies maximum how long users 
contacted each other. Both C and D are non-decreasing with 
the growth in Δ , in all the datasets except “Hypertext.” It is 
observed that the proposed methodology is the fastest one 
compared to the existing methods. The computational time 
increases with Δ in Viard et al. (2016), as the algorithm 
starts with the clique(link) with duration=1, and expands 
in both right and left by Δ and creates more intermediate 

cliques. Whereas, the processing time depends on the 
maximal clique count in both (Himmel et al. 2017) and 
the proposed method. The computational space is mainly 
dependent on the size of the intermediate clique set, and 
it gets penalized more in Virad et al.’s method due to the 
same reason as discussed. The effect can be seen in “Infec-
tious I” for Δ = 6000 and 12000 . The system’s memory 
becomes insufficient to compute for these two Δ values. For 
all the datasets, the proposed method beats Virad et al.’s 
method, both in terms of space and time. Comparing with 

Table 3  Results for the Maximal Clique Count (N), Maximum Cardinality (C), Maximum Duration (D), Computational Time (in Secs.) / Space 
(in MB) for maximal Δ-clique ( (Δ, �)-clique with � = 1 ) enumeration for different datasets

Dataset Δ N C D Algorithm

 Viard et al. (2016) Himmel et al. (2017) Proposed

Hypertext 60 7897 7 7640 16.02 / 208 6.14 / 104 53.9 / 109
120 6859 7 8140 18.11 / 221 4.48 / 103 26.14 / 108.42
180 6453 7 11,520 20.17 / 237 3.8 / 103 16.35 / 108.37
240 6232 7 11,640 21.73 / 247 3.73 / 103 11.76 / 108.27
300 6106 7 11,760 23.11 / 256 3.62 / 103 9.73 / 108.4
360 6025 7 11,880 24.02 / 268 3.31 / 102.85 8.55 / 108.49
420 5980 7 12,000 25.54 / 281 3.41 / 102.8 7.76 / 108.47
480 5952 7 12,120 26.61 / 291 3.28 / 102.78 7.27 / 108.54
540 5930 7 17,600 28.61 / 308 3.23 / 102.74 6.6 / 108.61
600 5913 7 17,720 29.83 / 318 3.08 / 102.72 6.12 / 108.68

College  message 3600 33,933 4 21,761 35.25 / 372 41 / 140 19.84 / 148
43,200 25,635 5 403,018 43.02 / 546 31.38 / 133 4.19 / 142
88,640 22,701 5 896,134 52.29 / 727 28.56 / 131 2.28 / 140
259,200 21,019 5 2,322,612 84.05 / 1281 27.61 / 128 1.41 / 136
604,800 21,658 6 6,334,253 133.53 / 2427 25.85 / 128 1.19 / 139

Bitcoin 3600 26,577 7 10,791 18.31 / 142.97 196.49 / 221 2.36 / 157
43,200 26,091 8 129,422 19.58 / 142.71 193.74 / 235 2.41 / 158
88,640 25,970 8 265,798 20.69 / 142.57 190.93 / 250 2.3 / 159
259,200 26,290 8 777,572 22.6 / 142.73 191.49 / 288 2.36 / 160
604,800 27,149 8 1,814,344 29.69 / 143.39 193.52 / 367 2.34 / 162

Infectious I 60 161,066 6 3760 274.13 / 2591 1025.01 / 286 80.75 / 357
120 138,662 7 5180 405.84 / 3915 998.53 / 266 46.88 / 354
600 128,392 10 11,200 2659.82 / 18117 1043.46 / 262 30.87 / 523
1200 139,684 13 12,400 9824.58 / 72628 1062.69 / 278 84.13 / 1017
6000 152,121 16 22,740 NA 1238.75 / 293 108.34 / 3076
12,000 152,198 16 34,740 NA 1266.8 / 293 108.03 / 3097

Infectious II 60 9776 5 1860 10.77 / 197 4.71 / 106 4.41 / 111.1
120 9397 6 2900 17.36 / 266 4.12 / 105.8 2.39 / 112.25
180 9565 7 4280 26.41 / 339 4.04 / 105.82 1.7 / 113.76
240 9849 7 5160 37.74 / 429 3.97 / 106 1.81 / 115.39
300 10,192 8 5280 51.8 / 540 4.13 / 106 1.76 / 117.7
360 10,734 8 6480 68.27 / 661 4.34 / 106.65 1.88 / 120.96
420 11,287 8 6600 92.06 / 815 4.68 / 107.14 2.21 / 124.43
480 11,571 9 8540 122.26 / 1013 5.12 / 107.52 2.85 / 130
540 11,781 9 9580 159.73 / 1245 5.45 / 107.77 2.75 / 133.17
600 12,123 10 9700 201.34 / 1498 5.96 / 108.17 3.5 / 137.44
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the Himmel et al.’s method with the proposed method, the 
trade-off between time and space can be observed for the 
dense datasets.

Results for (Δ, �)-clique enumeration: The results 
for 𝛾 > 1 are shown in Fig.  6. As the maximal clique 
set becomes null for 𝛾 > 2 in Bitcoin, we do not show 
the plots for it. For a fixed Δ , the maximal clique count 
decreases exponentially with the increase in � (refer to 
Fig. 6 [a,f,k,p]), which, in turn, reduces the computational 
time and space as well. Maximum cardinality and the dura-
tion also reduce with the increment in � . For fixed � , the 
same observation of � = 1 is found. While comparing with 
the only existing method (Banerjee and Pal 2019), it can 
be observed that the improvement is more significant for 
larger value of Δ and the small value of � (Refer to Fig. 6 
[d,e,i,j,n,o,s,t]). Lastly, we can conclude for both Δ and 
(Δ, �)-clique enumeration, the proposed methodology is 
better when the input dataset is sparse. Among all the data-
sets, hypertext and Infectious II are comparatively more 
dense than others, in terms of static graph density and 
number of links per timestamp. Hypertext dataset is the 
most dense network with density 34.7% (3.2% for Infec-
tious II), and a node in the hypertext dataset is involved 
in three links at a time (5 for Infectious II). The same for 
other datasets are in the order of ∼ 10−3 , which are much 
lower. Now, from Table 3, it can be seen that Himmel 
et al. perform much better than the proposed method, and 
the difference is more for a small value of Δ in hypertext 
data. It has a very high ratio of MaxDuration/Δ , which 
signifies that the network is dense, and there is frequent 
communication among many of the nodes within a small 
span of time interval. This results in many more duration-
wise maximal clique generation and their correspond-
ing vertex expansion. The Himmel et al.’s method grows 
based on neighborhood creation at specific time intervals 
for each node, and as the number of nodes is less in the 
dense network, this boosts up the performance. Again, 
when the number of initial cliques is more (like in Infec-
tious I), Virad et al. fails to proceed even if the dataset is 
sparse. The significant improvement in Δ-clique enumera-
tion is seen in the performance for other datasets which 
are sparse. The scenario for sparse cases is more evident 
for the (Δ, �)-clique enumeration case in Fig. 5. It can be 
seen if the Δ is increased for small � , the improvement is 
more in the proposed method from the existing method of 
Banerjee & Pal. In the increased Δ , the initial duration-
wise maximal clique set reduces the intermediate clique 
count, and the neighborhood in that large Δ also becomes 
smaller due to the sparse nature of the problem instance. 
Hence, we conclude that the proposed methodology sig-
nificantly improves when the graph is sparse.

6  Conclusion and future directions

In this paper, we have proposed a methodology to enumer-
ate all the maximal (Δ, �)-cliques present in a temporal net-
work. The proposed methodology has been analyzed for time 
and space requirements, and also, its correctness has been 
shown. To highlight its effectiveness, we have compared the 
execution time of the proposed methodology on five real-
world publicly available datasets over the existing methods. 
As in many real-world applications, links are probabilistic 
in nature, so extending this study for such scenarios may be 
one possible future direction.
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