
Vol.:(0123456789)

Social Network Analysis and Mining (2024) 14:54
https://doi.org/10.1007/s13278-024-01207-y

ORIGINAL ARTICLE

A two‑phase approach for enumeration of maximal (1,)‑cliques
of a temporal network

Suman Banerjee1 · Bithika Pal2

Received: 27 September 2023 / Revised: 6 January 2024 / Accepted: 19 January 2024
© The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2024

Abstract
A Temporal Network is often used to model a time-varying relationship among a group of agents. It is typically represented
as a collection of triplets of the form (u, v, t) that denote the interaction between the agents u and v at time t. For analyz-
ing structural patterns of such a network, the notion of (Δ, �)-cliques has been introduced in one of our previous studies. A
(Δ, �)-clique of a temporal network is a vertex subset–time interval pair such that there exist at least � links between every
pair of vertices of the vertex set in each Δ duration of the time interval. In this paper, we propose a two-phase approach for
enumerating maximal (Δ, �)-cliques present in a temporal network. The proposed methodology is broadly divided into two
phases. In the first phase, each temporal link is processed for constructing (Δ, �)-clique(s) with maximum duration. In the
second phase, these initial cliques are expanded by vertex addition to form the maximal cliques. By sequential arguments, we
show that the proposed methodology correctly enumerates all the maximal (Δ, �)-cliques. A comprehensive analysis of the
running time and space requirement of the proposed methodology has been carried out. From the experimentation performed
on 5 datasets, we observe that the proposed methodology enumerates all the maximal (Δ, �)-cliques efficiently, particularly
when the dataset is sparse. As a special case (� = 1), the proposed methodology is also able to enumerate (Δ, 1) ≡ Δ-cliques
in much less time compared to the existing methods.

Keywords Temporal network · Enumeration algorithm · (Δ, �)-clique

1 Introduction

A network (also called graph) is a mathematical object
which is used extensively to represent a binary relation
among a group of agents. Analyzing such networks for dif-
ferent structural patterns remains an active area of study in
different domains including Computational Biology (Hulo-
vatyy et al. 2015), Social Network Analysis, Computational

Epidemiology (Masuda and Holme 2017), Criminal Network
Analysis (Ficara et al. 2021), and many more. Among many,
one such structural pattern is the maximally connected sub-
graphs, which are popularly called cliques. Finding the max-
imum cardinality clique in a given network is a well-known
NP-Complete Problem (Garey and Johnson 2002). However,
in network analysis, perspective more general problem is not
finding the maximum size clique, but also to enumerate all
the maximal cliques present in the network. Bron and Ker-
bosch (1973) first proposed an enumeration algorithm for
maximal cliques in the network which forms the foundation
of study on this problem. Later, there were advancements
for this problem for different types of networks (Cheng et al.
2012; Eppstein et al. 2013).

Real-world networks from biological to social are
time-varying, which means that the existence of an edge
between any two agents changes with time. Temporal
networks (Holme and Saramäki 2012) (also known as
link streams or time-varying networks) are the mathe-
matical objects used to formally represent the time-var-
ying relationships. For these types of networks, a natural

Both the authors have contributed equally in this study. A small
part of this work has been previously published as Banerjee and Pal
(2021).

 * Suman Banerjee
 suman.banerjee@iitjammu.ac.in

 Bithika Pal
 bithikapal@iitkgp.ac.in

1 Department of Computer Science and Engineering, Indian
Institute of Technology Jammu, Jagti, India

2 Department of Computer Science and Engineering, Indian
Institute of Technology Kharagpur, Kharagpur, India

http://crossmark.crossref.org/dialog/?doi=10.1007/s13278-024-01207-y&domain=pdf

 Social Network Analysis and Mining (2024) 14:54 54 Page 2 of 16

supplement of clique is the temporal clique which consists
of two things: a subset of the vertices and a time interval.
In this direction, recently, Viard et al. (2016) put forward
the notion of Δ-clique, where a vertex subset along with
a time interval is said to be a Δ-clique if every vertex pair
from that set has at least a single edge in every Δ duration
within the time interval. Next, we report the existing stud-
ies on clique enumeration on networks.

As mentioned previously, a temporal network consists
of a set of agents and a time-varying relationship. Now, the
following questions are essential to understand the contact
pattern among them: which subset of agents comes in con-
tact very frequently among each other? Given a time dura-
tion, how many times do they contact each other? etc. The
frequency of communication also adds another dimension
of information to their relationship strength. Motivated by
such questions, recently, the notion of Δ-clique has been
extended to (Δ, �)-cliques, which is basically a vertex sub-
set and time interval pair in which each pair of vertices of
the subset has at least � interactions in every Δ duration
within the time interval. We propose a different approach
for listing out all the maximal (Δ, �)-cliques contained in
a temporal network. The main contributions of this paper
are as follows:

• In this paper, we propose a different approach for listing
out maximal (Δ, �)-cliques that are there in a temporal
network.

• By drawing sequential arguments, we prove the correct-
ness of the proposed methodology.

• A detailed analysis of the proposed methodology has
been done to understand its computational time and
space requirement.

• The proposed methodology has been implemented with
five publicly available temporal network datasets to bring
out nontrivial insights about contact patterns and com-
pare the efficiency of the proposed methodology with the
existing one.

• Also, a set of experiments has been conducted to show
that the proposed methodology of maximal (Δ, �)-clique
enumeration can also be efficiently used for enumerating
maximal Δ-clique as well (By putting � = 1).

The remaining portion of this article is arranged in the fol-
lowing way: Sect. 2 describes some relevant studies from the
literature. Section 3 discusses some preliminary concepts
regarding temporal networks and formally defines the maxi-
mal (Δ, �)-clique enumeration problem. Section 4 contains
the proposed enumeration technique with its detailed analy-
sis, proof of correctness, and an illustrative example. Sec-
tion 5 describes an experimental evaluation of the proposed
methodology. Finally, Sect. 6 concludes this study and gives
future directions.

2 Related work

In recent times, mining and analysis of temporal networks
have become an active area of research as most of the real-
world networks from social to biological are temporal in
nature (Rozenshtein and Gionis 2019). Several problems
including community analysis (Qin et al. 2020), finding
matching (Zschoche 2022), finding separators (Zschoche
et al. 2020), coloring (Mertzios et al. 2021), traversal
(Byun et al. 2019), etc., have been studied in the context
of temporal graphs. As per the title of the paper, here,
we discuss the literature related to clique enumeration of
static and followed by temporal graphs.

The problem of maximal clique enumeration is a clas-
sic computational problem on network algorithms and has
been extensively studied on static networks. Akkoyunlu
(1973) was the first to propose an algorithm for this prob-
lem. Later, Bron and Kerbosch (1973) introduced a recur-
sive approach for the maximal clique enumeration prob-
lem. These two studies are the foundations on maximal
clique enumeration and trigger a huge amount of research
due to many practical applications from computational
biology to spatial data analytics (Al-Naymat 2008) and
Bhowmick and Seah (2015). In the past two decades, sev-
eral methodologies have been developed for enumerating
maximal cliques in different computational paradigms,
and different kinds of networks, such as in sparse graphs
(Eppstein et al. 2013; Manoussakis 2019), in large net-
works (Cheng et al. 2010, 2011; Rossi et al. 2014), in map-
reduce framework (Hou et al. 2016; Xiang et al. 2013), in
uncertain graphs (Mukherjee et al. 2016; Zou et al. 2010;
Dai et al. 2022), in parallel computing framework (Chen
et al. (2016); Rossi et al. (2015); Schmidt et al. (2009)), in
signed networks (Chen et al. 2020), in temporal networks
(Banerjee and Pal 2022), and many more (Dai et al. 2023;
Manoussakis 2023).

Though there are many existing studies on maximal
clique enumeration on static networks, the literature on
temporal graphs is limited. Viard et al. (2015) proposed
an enumeration algorithm for the maximal Δ-clique of a
temporal network. They did a detailed analysis of contact
relationships among a group of students, based on their
introduced methodology. They were able to show that their
analysis draws deeper insights of their communication
pattern (Viard et al. 2015). Later, Himmel et al. (2016)
proposed a different approach for the maximal Δ-clique
enumeration problem. Their methodology is based on the
Bron–Kerbosch Algorithm for maximal clique enumera-
tion in static graphs. Their methodology is better in both
of the following aspects: theoretically (measured in terms
of worst case computational complexity analysis) as well
as practically (measured in terms of computational time

Social Network Analysis and Mining (2024) 14:54 Page 3 of 16 54

when the algorithm is implemented with real-world data-
sets). Molter et al. (2019) introduced the notion of isola-
tion in clique enumeration of a time-varying graph. They
developed fixed parameter enumeration algorithms based
on different notions of isolation employing the parameter
“degree of isolation." Viard et al. (2018) generalized the
notion to contact with duration and introduced the concept
of Δ-clique with duration. They also proposed an algo-
rithm for enumerating such cliques present in a temporal
network. Bentert et al. (2019) studied the maximal Δ-Plex
enumeration problem. Recently, Banerjee and Pal (2019)
proposed an enumeration algorithm for maximal (Δ, �)
-cliques present in a time-varying graph. The method ini-
tializes a clique for each link in the temporal network and
expands its duration and cardinality to find the maximal
cliques. In this work, we propose a two-phase approach
by generating the initial cliques as duration-wise maximal
cliques, which significantly reduces the number of inter-
mediate cliques generated in the enumeration process. As
far as we know, other than the last one, there is no other
work available which studies (Δ, �)-cliques.

3 Background and problem definition

In this section, we present some preliminary concepts to
understand the problem, that we work on this paper and
the proposed solution methodology. In a temporal network,
its edges are marked with the corresponding occurrence
timestamp(s). Formally, it is stated in Definition 1.

Definition 1 (Temporal Network) A temporal network
is defined as G(V ,E, T) , where V(G) is the set of vertices
of the network, and E(G) is the set of edges among them.
T is the mapping that maps each edge of the graph to its
occurrence time stamp(s), i.e., T ∶ E(G) ⟶ 2T⧵� where

T = {1, 2,… , �} is the set of discrete time stamps in which
the network is observed.

A temporal network can be represented in two ways.
One approach is to represent a temporal network using the
link stream model where we show the relationships among
the entities over the time horizon. The other approach is
the time stamp-wise snapshot graph representation. In this
approach, a temporal network is represented as a collection
of static graphs overtime stamps. Figures 1 and 2 show the
representation of the same temporal network in the form
of link stream model and snapshot graph representation
model, respectively. In the rest of the paper, we consider
that the temporal network is represented in the link stream
model.

As just mentioned, Fig. 1 shows a temporal graph with
five vertices and 29 edges, where edges are shown in the
time horizon. In temporal network analysis, it is assumed
that the network changes its topology in discrete time steps.
So, starting at time t, if the network is observed in every dt
t ime difference till t′ , the time instances are
� = {t, t + dt, t + 2dt,… , t

�

} . In the rest of our study, we
assume, t, t� ∈ ℤ

+ and dt = 1 . The difference between the
beginning and ending time stamp, i.e., t� − t is called as the
Lifetime of the Network. In the temporal network G , if there
is an edge between two vertices vi and vj at time t′′ , then it is
symbolized as (vi, vj, t

��

) , signifying that there is a contact
between u and v at time t′′ . For some t�� ∈ � if
(u, v, t

��

) ∈ E(G) , then we say that there exists a static edge
between vi and vj . The frequency of an edge is defined as how
many distinct time stamps t′′ are there in the time span � such
that (vi, vj, t

��

) ∈ E(G) and denoted as f(vivj) , i .e. ,
f(vivj) = |{t�� ∈ � ∶ (vi, vj, t) ∈ E(G)}| . If there does not exist
any t�� ∈ � such that (vi, vj, t

��

) ∉ E(G) , then we say that
f(vi,vj) = 0 . In the rest of our study, we work with undirected
temporal network, i.e., there is no difference between
(vi, vj, t

��

) and (vj, vi, t
��

).
In a static network, a subset of vertices, where every

pair is adjacent, is known as a clique. The size of the
clique is defined as the number of vertices it contains.
A clique is said to be maximal if it is not part of another
clique of larger size. In one of our recent studies, we
introduced the notion of (Δ, �)-clique by extending the
concept of Δ-clique and incorporating an additional

Fig. 1 Link stream representation of a temporal network

Fig. 2 Snapshot graph represen-
tation of the temporal network
shown in Figure 1

 Social Network Analysis and Mining (2024) 14:54 54 Page 4 of 16

parameter � as a frequency threshold. This is stated in
Definition 2.

Definition 2 ((Δ, �)-clique) (Banerjee and Pal 2019) Given
a temporal network G(V ,E, T) , time duration Δ , and a fre-
quency threshold � ∈ ℤ

+ , a (Δ, �)-clique of G is a tuple con-
sisting of vertex subset, and time interval, i.e., (X, [ta, tb])
where X ⊆ V(G) , |X| ≥ 2 , and [ta, tb] ⊆ � . Here ∀vi, vj ∈ X
and � ∈ [ta,max(tb − Δ, ta)] , there must exist at least � num-
ber of edges, i.e., (vi, vj, tij) ∈ E(G) and f(vivj) ≥ � with
tij ∈ [�,min(� + Δ, tb)] . Here, f(vivj) denotes the frequency of
the static edge (vi, vj).

In a static graph G(V, E), a maximal clique is formed
as S ⊂ V(G) , if for each v ∈ V(G)⧵S , S ∪ {v} is not a
clique. Now, as the (Δ, �)-clique is defined in the set-
ting of temporal networks, its maximality depends on two
parameters: One is the cardinality (referred to as inclu-
sion-wise maximality) and the other one is the time inter-
val (referred to as temporally maximal). We introduce
the maximality conditions for an arbitrary (Δ, �)-clique
in Definition 3 considering both the factors.

Definition 3 (Maximal (Δ, �)-clique) Given a tempo-
ral network G(V ,E, T) and a (Δ, �)-clique (X, [ta, tb]) of G ,
(X, [ta, tb]) will be maximal if none of the following is true.

– ∃v ∈ V(G) ⧵ X such that (X ∪ {v}, [ta, tb]) is a (Δ, �)
-clique.

– (X, [ta − 1, tb]) is a (Δ, �)-clique. This applies only if
ta − 1 ≥ t.

– (X, [ta, tb + 1]) is a (Δ, �)-clique. This applies only if
tb + 1 ≤ t

�.

In this paper, we study the problem of listing out all
the maximal (Δ, �)-cliques of a given temporal network,
which we call as the maximal (Δ, �)-clique enumeration
problem defined next.

Definition 4 (Maximal (Δ, �)-clique enumeration problem)
Given a temporal network G(V ,E, T) , Δ , and � the maximal
(Δ, �)-clique enumeration problem asks to list out all the
maximal (Δ, �)-cliques (as mentioned in Definition 3) pre-
sent in G.

Table 1 lists out all the symbols and notations used in
this paper along with their interpretation. Next, we pro-
ceed to describe the proposed enumeration methodology
for maximal (Δ, �)-cliques.

4 Proposed enumeration technique

As stated earlier, the proposed methodology is broadly
divided into two steps, and each of them is described in the
following two subsections. The broad idea of the proposed
enumeration process is as follows: Given all the links with
time duration of the temporal network, initially, we find out
the maximal cliques of cardinality two. Next, taking these
duration-wise maximal cliques, we add vertices into the
clique without violating the definition of (Δ, �)-cliques.

4.1 Stretching phase (initialization)

Algorithm 1 describes the initialization process of the proposed
methodology. For a given temporal network G , initially, we con-
struct the dictionary De with the static edges as the keys, and
correspondingly, the occurrence time stamps are the values.
By the definition of (Δ, �)-clique, if the end vertices of an edge
are part of the same clique, then the edge has to occur at least
� times in the link stream. Hence, for each static edge (u, v)
of G , if its frequency is at least � , it is processed further. The
occurrence time stamps of (u, v) are fed into the list T(u,v) . A
temporary list, Temp, is created to store each current processing
timestamp from T(u,v) with its previous occurrences, till it has
maintained (Δ, �)-clique property. Now, the for loop from Lines
8–32 computes all the (Δ, �)-cliques with maximum duration
where {u, v} is the vertex set. During the processing of T(u,v) ,
any one of the following two cases can happen. In the first

Table 1 Symbols and notations used in this paper

Symbol Interpretation

G(V ,E, T) A temporal network
V(G),E(G) Vertex set and link set of G
�

n, m Number of vertices and links of G
(vi, vj, t

��

) Any arbitrary link of G
f(vi ,vj) The frequency of the edge (vi, vj)
(X, [ta, tb]) An arbitrary (Δ, �)-clique of G
tf , tl First and last occurrence of the edge under consideration
ti i-th occurrence of the edge under consideration
f � , l� Last �-th occurrence of the edge under consideration
G(V ,E

�

) Static graph of the temporal network
V(G), E(G) Vertex set and edge set of G
NG(X) Neighborhood of the vertex set X in the graph G
fmax Maximum frequency among all edges of G
D,DTemp Dictionaries used in Algorithm 1 and
T(u,v) Time stamps of the edge (u, v)
CI
T
, CT1 , CT2 Different lists used in Algorithm 1 and

CT The maximal (Δ, �)-clique set of G
len(CT) Length of the list CT
ℤ

+ The set of positive integers

Social Network Analysis and Mining (2024) 14:54 Page 5 of 16 54

case, if the current length of Temp is less than � , the difference
between the current timestamp from T(u,v) and the first entry of
Temp is checked (Line 10). Now, if the difference is less than or
equal to Δ , current timestamp is appended in Temp. Otherwise,
all the previous timestamps that have occurred within past Δ
duration from the current timestamp are added in Temp (Line
14). This process basically checks Δ timestamps backward from
each occurrence times of the static edge (u, v). In the second
case, when the current length of Temp is greater than or equal

to � , it is checked whether the current processing time from
T(u,v) falls within the interval of (last �-th occurrence time +
1) to (last �-th occurrence time + 1 + Δ). Now, if it is true,
the current timestamp is appended in Temp. It can be easily
observed that this appending is done if at least the consecutive
� occurrences are within each Δ duration. Otherwise, the clique
is added in CI

T
 with the vertex set {u, v} and time interval [ta, tb]

(Line 22), where ta is the Δ ahead timestamp from the first �-th
entry in Temp, and tb is the Δ onwards timestamp from the last
�-th entry in Temp. Next, all the previous timestamps that have
occurred within past Δ duration from the current timestamp
are added in Temp as before (Line 24). It allows to consider
overlapping cliques. Now, this may happen when we process
the last occurrence from T(u,v) , it is added in Temp. However,
no clique can be added by the condition of 9–26 if the length
of Temp is greater than or equal to � . This situation is handled
by Lines 27–31. This process is iterated for each key from the
dictionary De . Now, we present lemmas that together they will
help to argue the correctness of the proposed methodology.
An illustrative example of Algorithm 1 for one link is shown
in Fig. 3.

Algorithm 1 Stretching phase of the (Δ, �)-clique enumeration

Fig. 3 An illustrative example of algorithm 1 using the temporal net-
work of Fig. 1, for the link (v1, v2) with Δ = 4 and � = 2 . All the tem-
porally maximal (Δ, �)-cliques of the vertex pair {v1, v2} are kept in
the initialized clique set, CI

T
 , marked in gray color

 Social Network Analysis and Mining (2024) 14:54 54 Page 6 of 16

Lemma 1 For a link (u, v), if there exist any consecutive �
occurrences within Δ duration, then it has to be in “Temp”
at some stage, in Algorithm 1.

Proof Follows from the description of Algorithm 1. ◻

Lemma 2 In any arbitrary iteration of the “for loop” at Line
8 in Algorithm 1, each consecutive � occurrences of “Temp”
will be within Δ duration.

Proof Initially, Temp contains the first occurrence of a link.
Now, when the length of Temp is less than � (Line 9), next
occurrence times are added in Temp (Line 11) if the differ-
ence from initial to current occurrence time lies within Δ
(Line 10), else the times at which the links have occurred in
previous Δ duration from the current time are added (Line
13, 14). This shows that all the entries in Temp are within Δ
duration when the length of Temp is less than �.

When the length of Temp is greater than or equal to � ,
without loss of generality, let us take any arbitrary � occur-
rences of Temp as t1, t2,… t(�−1), t� , which are not within a
Δ duration, i.e., t𝛾 − t1 > Δ . Let us also assume that from
t(�−1) , all the previous occurrences in Temp follow the state-
ment of this lemma. Now, from our assumptions, we have
the following conditions:

Now, let us assume the previous occurrence of the link
from t1 in Temp is t0 , and our goal is to infer the possi-
ble positions of t0 in the time horizon. From the defini-
tion of (Δ, �)-clique, there will be � occurrences from
t1 − Δ to t1 . If the first (� − 1) links have occurred in con-
secutive times, then t0 = t1 − Δ + � − 2 . This is the mini-
mum value for t0 . From Eq. 3, the maximum value for
t0 is t1 − 1 . Hence, t0 + 1 ≤ t1 ≤ t0 + Δ + 2 − � . Now,
from Eq. 2, we have t0 + Δ + 1 < t𝛾 , when t1 = t0 + 1
and replacing t1 with t0 + Δ + 2 − � in Eq. 2, we get
t0 + Δ + 1 + (Δ + 1 − 𝛾) < t𝛾 ⟹ t0 + Δ + 1 < t𝛾 a s
Δ + 1 ≥ � . This violates the condition imposed in Line 17.
Hence, t� cannot be added in Temp. So, we reach a contradic-
tion and this completes the proof. ◻

Lemma 3 Let, tf and tl be the first and last occurrence in
Temp. In the interval [tf , tl] , Temp contains at least � links
in each Δ duration.

Proof When the length of Temp is less than � , Lines 9–15 in
Algorithm 1 ensure the statement of the lemma by adding

(1)t0 + Δ ≥ t𝛾−1 ⟹ t1 + Δ > t(𝛾−1)

(2)t1 + Δ < t𝛾

(3)t1 ≥ t0 + 1

consecutive � occurrences in Δ duration. So, it is trivial that
we need to prove the statement when the length of Temp is
greater than � . Let us assume that the occurrence times of
the first � + 1 entries of Temp are t1, t2,… , t� , t(�+1) , where
t1 = tf and t(�+1) ≤ tl.

Now, by Lemma 2, t� − t1 ≤ Δ and t(�+1) − t2 ≤ Δ . With-
out loss of generality, we want to show that there exist at
least � links from t1 + 1 to t1 + 1 + Δ . As t� − t1 ≤ Δ , the
maximum difference between t1 and t2 can be (Δ − � + 2) ,
and this case will arise when all the � − 1 links appear in
each consecutive timestamp from t1 + Δ toward t1 (shown
in Fig. 3). Now, as t(�+1) − t2 ≤ Δ , we have to show
t(�+1) = t� + 1 . This extreme case will intuitively prove the
rest of the cases. So, we can infer the following conclusion
from Lemma 2 and the assumption t2 = t1 + Δ − � + 2 .
Now,

Again, from the condition imposed at Line 17 in Algo-
rithm 1, we also have t(�+1) ≤ t1 + Δ + 1 . Now, as
per our assumption of extreme case t� = t1 + Δ . So,
t(�+1) ≤ t� + 1 ⟹ t(�+1) = t� + 1.

Now, as t(�+1) ≤ t1 + Δ + 1 , we can argue t(𝛾+1) < t + Δ ,
for all t ∈ (t1 + 1, t2] . Moreover, from Lemma 2, there are
� links within [t2, t(�+1)] , which concludes the existence of
at least � links from t to t + Δ . Now, for any ti ∈ [tf , tl − Δ] ,
there will be at least � links in Temp from ti to ti + Δ . This
completes the proof of the claimed statement. ◻

Lemma 4 In Algorithm 1, the contents of CI
T
 are (Δ, �)

-cliques of size 2.

Proof We are processing each static edge of the temporal
network G in its time horizon and add the (Δ, �)-clique(s)
formed by the end vertices of the edge into CI

T
 . Hence, the

cliques in CI
T
 are of size 2. Now, in Algorithm 1, the cliques

are added into CI
T
 in Lines 22 and 30. In both the cases,

cliques are added if the current length of the Temp is greater
than or equal to � . As per Lemma 3, Temp at least � links in
each Δ duration. While adding the duration of the clique, ta
is obtained by subtracting Δ duration from first �-th occur-
rence time, and tb is obtained by adding Δ duration from last
�-th occurrence time in Temp. This ensures the existence of
at least � occurrences of the link in each Δ duration between
ta to tb . ◻

Lemma 5 All the cliques returned by Algorithm 1 and con-
tained in CI

T
 are duration-wise maximal.

t(�+1) − t2 ≤ Δ

t(�+1) − t1 − Δ + � − 2 ≤ Δ

t(�+1) ≤ t1 + Δ + 1 + {(Δ + 1) − �}

Social Network Analysis and Mining (2024) 14:54 Page 7 of 16 54

Proof We prove the duration-wise maximality of each
clique in CI

T
 by contradiction. Let us assume, a clique

({u, v}, [ta, tb]) ∈ CI
T
 is not duration-wise maximal. Then,

there exists a t′
a
 with t′

a
< ta such that ({u, v}, [t�

a
, tb]) is a

(Δ, �)-clique or a t′
b
 with t′

b
> tb such that ({u, v}, [ta, t

�

b
]) is

a (Δ, �)-clique.
Now, if ({u, v}, [t�

a
, tb]) is a (Δ, �)-clique, then its first �

occurrences will be in Temp at some stage as per Lemma
1. Later, this Temp is expanded till tb either by Line 11 or
18 in Algorithm 1. Hence, ({u, v}, [t�

a
, tb]) will be added in

CI
T
 , instead of ({u, v}, [ta, tb]) . So, the assumption that there

exists a t′
a
 with t′

a
< ta is false.

Now, by Lemma 4, as ({u, v}, [ta, tb]) is a (Δ, �)-clique,
in each Δ duration within ta to tb , there will be at least �
links between u and v. Let us assume, that l� and l(�−1)
are the last �-th and (� − 1)-th occurrence time of (u, v),
respectively. From the definition of (Δ, �)-clique, l� + Δ ≥ tb ,
hence, l(𝛾−1) + Δ > tb . Now, let {u, v} be a (Δ, �)-clique in
the interval [ta, l(�−1) + Δ] , there must be at least one link
between u and v in the interval [tb, l(�−1) + Δ] . If there exists
such links, it indicates the presence of � or more links in
the interval [l(�−1), l(�−1) + Δ] . This case is handled by
Algorithm 1 either in Line 11 or 18, and ({u, v}, [ta, tb]) will
not be added to CI

T
 . So, there cannot exist any t′

b
 which is

greater than tb.
Hence, all the cliques of CI

T
 returned by Algorithm 1 are

duration-wise maximal. ◻

Lemma 6 All the duration-wise maximal (Δ, �)-cliques of
size 2 are contained in CI

T
.

Proof In Lemmas 4 and 5, we have already shown that each
(Δ, �)-clique of CI

T
 is of size 2 and duration-wise maximal,

respectively. Hence, in this lemma, we have to prove that
none of such cliques are missed out in the final CI

T
 . As each

edge is processed independently by Algorithm 1, it is suf-
ficient to prove that all the duration-wise maximal (Δ, �)
-cliques for a particular vertex pair (corresponding to an
edge) are contained in CI

T
.

Let, ({u, v}, [ta, tb]) be a duration-wise maximal (Δ, �)
-clique and not present in CI

T
 . Now, as ({u, v}, [ta, tb]) is a

(Δ, �)-clique, so there exist at least � links in each Δ dura-
tion from ta to tb . Let f � and l� are the first �-th and last �
-th occurrence time of the link (u, v) between ta to tb . We
denote the occurrence timestamps for the static edge (u, v)
as t1, t2,… , tf(u,v) , and f(u,v) ≥ � . Now, there can be one of the
following cases for the values of ta and tb .

1. ta = t1+�−1 − Δ and tb ≤ tf(u,v)−�+1 + Δ : The clique is
formed at the beginning of the occurrence stream of
(u, v). According to Lemma 1, all the occurrence time
will be in Temp. Now, if tb = tf(u,v)−�+1 + Δ , it will be

added in CI
T
 by Line 30 of Algorithm 1. Otherwise,

∃tk ∶ tk > l𝛾 + 1 + Δ and tk−1 ≤ tb . Hence, it breaks the
if condition at Line 17, and the clique will be added in
CI
T
 by Line 22.

2. ta ≥ t1+�−1 − Δ and tb = tf(u,v)−�+1 + Δ : The clique
is formed at the end of the occurrence stream
of (u, v). If ta = t1+�−1 − Δ , it follows from the
above case. For the else part, we need to show that
ta = f 𝛾 + Δ > t1+𝛾−1 − Δ is handled by the Algorithm 1.
Here, ∃tk ∶ tk < f 𝛾 − 1 − Δ and tk−1 ≥ ta . Along with
Lemma 1 and 2, the Lines 14 and 24 are responsible to
have all the timestamps within [ta, tb] must be Temp. So,
the clique will be added in CI

T
 by Line 30.

3. ta > t1+𝛾−1 − Δ and tb < tf(u,v)−𝛾+1 + Δ : The clique is
formed in the middle of the occurrence stream of (u, v).
Both the scenarios of ta and tb values are shown in the
above two cases, so the clique will be added in CI

T
 by

Line 22.

 ◻

Lemma 7 The running time of finding all the duration-wise
maximal (Δ, �)-cliques of size 2 in Algorithm 1 is of O(�m).

Proof Preparing the dictionary De at Line 1 in Algorithm 1
will take O(

∑
(u,v,t

��
)∈E(G) f(u,v)) . Assuming the frequency

of each static edge is at least � , we evaluate the running
time for processing a static edge. It will be identical for the
rest of the edges. During the processing, all the operations
from Line 8 to 32 take O(1) times, except the appending at
Lines 14 and 24. Now, the appending of previous occur-
rences within past Δ duration can lead to copying of at
most � − 2 previous entries in Temp, which take O(�) times.
Now, the worst case may occur when in every iteration of
the for loop at Line 8, � − 2 previous occurrences are cop-
ied in Temp (at Line 24), and this case may occur at most
f(u,v) − � + 1 times. In this case, the running time of the for
loop from Line 8 to 32 is (� − 2)(f(u,v) − � + 1) ≈ O(�f(u,v))
for a particular static edge. Now, for all the static edges,
the for loop at Line 3 will run with O(

∑
(u,v,t

��
)∈E(G) �f(u,v))

times. Now, the total running time of Algorithm 1 is
(

∑

(u,v,t′′)∈E() f(u,v) + �
∑

(u,v,t′′)∈E() f(u,v)) = (�
∑

(u,v,t′′)∈E() f(u,v)) . Here,
summing up all the frequencies of the static edges gives
the total number of links of the temporal network, i.e.,
m =

∑
(u,v,t

��
)∈E(G) f(u,v) . So, the time complexity of the ini-

tialization is of O(�m) . ◻

We have provided a weak upper bound on running time
of the initialization process (Algorithm 1) in Lemma 7.
Now, we focus on space requirement of Algorithm 1. Stor-
ing the Dictionary De in Line Number 1 requires O(m)
space. In the worst case, space requirement by the list Tuv
is of O(m) . The size of Temp can go up to the maximum

 Social Network Analysis and Mining (2024) 14:54 54 Page 8 of 16

number of times that any static edge has occurred consecu-
tively more than gamma times in each delta duration, and
in the worst case, it may take O(m) space. As all the initial
cliques are of size 2, hence space requirement due to CI

T

is of O(n2.fmax) , where fmax is the highest frequency of the
initial cliques. So, the total space requirement by Algo-
rithm 1 is of O(m + n2.fmax) = O(n2.fmax) . Hence, Lemma
8 holds.

Lemma 8 The space requirement of Algorithm 1 is of
O(n2.fmax).

Now for the temporal network shown in Fig. 1, the ini-
tial cliques with Δ = 3 and � = 2 , in CI

T
 are ({v1, v2}, [1, 7]) ,

({v1, v2}, [7, 13]) , ({v1, v3}, [2, 7]) , ({v1, v3}, [8, 14]) ,
({v2, v3}, [2, 6]) , ({v2, v3}, [7, 11]) , ({v2, v3}, [5, 8]) ,
({v2, v4}, [4, 12]) , ({v3, v4}, [1, 9]) , ({v3, v5}, [5, 10]) ,
({v4, v5}, [4, 8]).

4.2 Shrink and bulk phase (enumeration)

Algorithm 2 describes the enumeration strategy of our
proposed methodology. For the given temporal network G ,
we construct a static graph G where V(G) is the vertex set
of G , and each link of G induces the corresponding edge in
E(G) without the time component, which we call as a static
edge. Next, the dictionary D is built from the initial clique
set CI

T
 of Algorithm 1, where the vertex set of the clique is

the key, and corresponding occurrence time intervals are
the values. This data structure is also updated in the inter-
mediate steps of Algorithm 2. Now, two sets CT1 and CT2 are
maintained during the enumeration process. At any i-th
iteration of the while loop at Line 5, CT1 maintains the cur-
rent set of cliques which is yet to be processed for vertex
addition and CT2 stores the new cliques formed in that i-th
iteration. At the beginning, all the initial cliques from CI

T

are copied into CT1 . A clique (X, [ta, tb]) is taken out from
CT1 which is duration-wise maximal, and the IS_MAX flag
is set to TRUE for indicating the current clique as maximal
(Δ, �)-clique. For vertex addition, it is trivial to convince

oneself that only for the neighboring vertices of X
(v ∈ NG(X)) , there is a possibility of (X ∪ {v}, [t

�

a
, t

�

b
]) to be

a (Δ, �)-clique. If the new vertex set X ∪ {v} is found in D
with one of its value as [ta, tb] , the IS_MAX flag is set to
FALSE, signifying that the processing clique (X, [ta, tb]) is
not maximal. Otherwise, if X ∪ {v} is not present in D , all
the possible time intervals in which X ∪ {v} can form a
(Δ, �)-clique are computed from Line 16 to 37. This pro-
cess is iterated for all the neighboring vertices of X (Lines
10–38). Now, we describe the statements from Line 17 to
36 in detail. As mentioned earlier, to form a (Δ, �)-clique
with the new vertex set X ∪ {v} , all the possible combina-
tions from X ∪ {v} of size |X| , (represented as
C (X ∪ {v},X)), have to be a (Δ, �)-clique. Now, for all z ∈
C (X ∪ {v},X)), if z is present in D.keys() , it signifies the
possibility of forming a new clique with the vertex set
X ∪ {v} (Line 17). Now, all the entries of these combina-
tions are taken into a temporary data structure DTemp from
D . For the clarity of presentation, we describe the opera-
tions from Line 19 to 35 for one vertex addition, i.e.,
X ∪ {v} with the help of an example shown in Fig. 4. Now,
let the entries of DTemp be z1, z2,… zn , i.e., all zi ∈
C (X ∪ {v},X) , and the length of the corresponding entries
in DTemp be l1, l2,… ln , respectively. So, one sample from
z1 ⊗ z2 ⊗⋯⊗ zn is taken as timeSet in Line 19 of Algo-
rithm 2. One possible value of timeSet is [t11, t21,… , tn1] .
For this value, the resultant interval [t�

a
, t

�

b
] is computed as

t11 ∩ t21⋯ ∩ tn11 = [max(ta1z1 , t
a1
z2
,… , ta1zn), min(t

b1
z1
, tb1z2 ,… , tb1zn)]

 . If the differ-
ence between t′

b
 and t′

a
 is more than or equal to Δ , then the

newly formed (Δ, �)-clique, (X ∪ {v}, [t
�

a
, t

�

b
]) , is added in

CT2and D . Also, if [t�
a
, t

�

b
] matches with the current interval

of X , then the flag IS_MAX is set to FALSE, i.e., (X, [ta, tb])
is not maximal. Now, this step is repeated for all the sam-
ples from z1 ⊗ z2 ⊗⋯⊗ zn from Line 19 to 35. This
ensures that all the intervals in which X ∪ {v} forms (Δ, �)
-clique are added in D . Now, if none of the vertices from
NG(X)⧵X is possible to add in X , (X, [ta, tb]) becomes a
maximal (Δ, �)-clique and added into final maximal clique
set CL at Line 40. Vertex addition checking is performed
for all the cliques of CT1 in the while loop from Line 7 to
42. When CT1 is exhausted and CT2 is not empty, the con-
tents of CT2 are copied back into CT1 for further processing,
signifying that all the maximal cliques have not been found
yet. This is controlled using the flag ALL_MAXIMAL in the
while loop at Line 5. If no clique is added into CT2 , the flag
ALL_MAXIMAL is set to TRUE so that in the next itera-
tion, the condition of the while loop at Line 5 will be false,
and finally, Algorithm 2 terminates. At the end, for the
temporal network G , CT contains all the maximal (Δ, �)
-cliques of it. One illustrative example of the enumeration
algorithm is given in Fig. 5.

Fig. 4 The entries of DTemp and zi ∈ DTemp.keys()

Social Network Analysis and Mining (2024) 14:54 Page 9 of 16 54

Algorithm 2 Shrinking and bulking phase of the maximal (Δ, �)-clique enumeration

Now, from the description of the enumeration process
of our proposed methodology, we have the following
claims:

Claim 1 For any arbitrary clique (X, [ta, tb]) ∈ CT1 and
v ∈ NG(X)⧵X , all the time intervals in the whole lifespan of
the linked stream L , at which X ∪ {v} forms a (Δ, �)-clique,
are added in D.

Claim 2 In any arbitrary iteration i of the while loop at
Line 5, the cliques of CT1 and CT2 are of size i + 1 and i + 2 ,
respectively.

Lemma 9 In Algorithm 2, the elements of CT are (Δ, �)-
cliques.

Proof All the cliques are added in CT , only from CT1 at Line
40 in Algorithm 2. Now, initially CT1 contains the elements
from CI

T
 , which are (Δ, �)-cliques from Lemma 4, and later,

it is updated with the entries of CT2 . So, if we show that
the elements of CT2 are (Δ, �)-cliques, the statement will be
proved. Now, all the cliques of CT2 are of at least Δ duration,
from the condition at Line 28. Also, from the description of
the Algorithm 2, it is easy to verify that in each iteration of

 Social Network Analysis and Mining (2024) 14:54 54 Page 10 of 16

vertex, addition to a clique of CT1 can only be made, if all the
possible combinations of vertices form (Δ, �)-cliques. This
ensures that all the vertex pairs of the clique in CT2 are linked
at least � times in each Δ duration within the intersected time
interval of all the combinations. Hence, the elements of CT
are (Δ, �)-cliques.

 ◻

Lemma 10 In Algorithm 2, all the intermediate cliques are
duration-wise maximal.

Proof From the proof of Lemma 9, it is sufficient to show
that the contents of CT1 are duration-wise maximal. We prove
the statement by induction. From Lemma 5, the contents of
initial clique set are duration-wise maximal. Let us assume
that in the i-th iteration of the while loop at Line 5, the con-
tents of CT1 are duration-wise maximal. We need to show
that the same will hold in the (i + 1)-th iteration also. After
adding a vertex to an existing clique obtained in i-th itera-
tion for possible expansion, the new vertex set is considered
to be a (Δ, �)-clique within the intersected interval of all
(i + 2)-combinations, if the length of the intersected inter-
val is more than Δ (Lines 17–36 in Algorithm 2). Now, it
can be observed that the latest first �-th occurrence time
(f

�

i+1
) of the resultant clique must be same with the latest

first �-th occurrence time (f �
i
) of the constituting clique from

which ta is coming. Similarly, the earliest last �-th occur-
rence time (l�

i+1
) of the resultant clique must be same with

the earliest last �-th occurrence time (l�
i
) of the constituting

clique from which tb is coming. When both the ta and tb
are coming from the same constituting clique, the original
clique is not maximal as vertex addition is possible. Now,
for the resultant clique, the beginning time ta can not be
extended to ta − 1 as in the i-th iteration, the constituting
clique is also duration-wise maximal from the assumption,
i.e., f �

i
− Δ = ta ⟹ f

�

i+1
− Δ = ta . Similarly, tb can not be

extended to tb + 1 as in the i-th iteration, the constituting
clique is also duration-wise maximal from the assumption,
i.e., l�

i
+ Δ = tb ⟹ l

�

i+1
+ Δ = tb . So, the resultant clique

at (i + 1)-th iteration is also duration-wise maximal. This is
true for all the cliques generated in each iteration. Hence, all
the intermediate cliques in Algorithm 2 are duration-wise
maximal. ◻

Lemma 11 In Algorithm 2, at the begining of any i-th itera-
tion, CT1 holds all the duration-wise maximal (Δ, �)-cliques
of size i + 1.

Proof For i = 1 , CT1 holds all the duration-wise maximal
(Δ, �)-cliques of size 2 from Lemma 6. Let, CT1

i−1
 and CT1

i
 are

the clique sets at the beginning of the iteration i − 1 and i,
respectively, and CT1

i−1
 holds all the duration-wise maximal

(Δ, �)-cliques of size i. Then, we have to show that during
the construction of CT1

i
 from CT1

i−1
 , the clique set CT1

i
 remains

exhaustive. For a clique from CT1
i−1

 , we check for all the pos-
sible i + 1 vertex combinations in Line 17 of Algorithm 2,
which does not leave any possible vertex addition to the
clique. Next, for each added vertex, all the possible time
interval combinations are generated and checked from Line
19 to 35. Now, for each possible time combination, the (Δ, �)
-clique is generated from the maximum possible common
interval of them. This guarantees that all the possible cliques
are generated during this process. Again, from Lemma 10, in
the i-th iteration, all the generated cliques are also duration-
wise maximal, which are now in CT1

i
 . So, the same can be

proved in the clique building from i-th to i + 1-th iteration.
Hence, for any value of i, the claimed statement is true.
 ◻

Lemma 12 All the (Δ, �)-cliques returned by Algorithm 2
and contained in CT are maximal.

Proof We prove this statement by contradiction. Assume
that Ci = (X, [ta, tb]) be an element of CI

T
 , which is not max-

imal. In Algorithm 2, the cliques are added in CI
T
 from CT1 ,

and all the cliques in CT1 are duration-wise maximal (Δ, �)
-cliques from Lemma 10. If, Ci is not maximal, then the only
thing that can happen is that one or more vertex addition
is possible to make Ci maximal. Now, let us assume that
∃v ∈ NG(X) , such that (X ∪ {v}, [ta, tb]) is a (Δ, �)-clique.
From the enumaration process described in Algorithm 2, if a
clique is added to CL , it has to be in CT1 in any previous itera-
tion. As (X ∪ {v}, [ta, tb]) is a (Δ, �)-clique, the IS_MAX flag
becomes FALSE so that it is not going to be added in CL but
in CT2 . Hence, the assumption Ci ∈ CL is a contradiction. So,
all the elements of CL returned by Algorithm 2 are maximal
(Δ, �)-cliques. ◻

Theorem 1 All the maximal (Δ, �)-cliques of G are contained
in CT.

As mentioned previously, m denotes the temporal links
in the time-varying graph G . At Line Number 2, computing
the static graph from the given time-varying graph requires
O(m) time. Time requirement for creating the dictionary
D will be of O(|CT |.f) time, where fmax denotes the high-
est number of times a clique appeared. Copying the cliques
from the list O(CT) to CT1 requires O(|CT |) time. Setting the
ALL_MAXIMAL flag to FALSE in Line Number 4 requires
O(1) time. So, from Line Number 1 to 4, the time require-
ment is of O(m + |CI

T
|.f) . Now, it is easy to verify that the

instructions in Line Numbers 6, 8, and 9 require O(1) time.
The for loop in Line Number 10 can run at most O(n)
time. Adding the vertex v to the existing clique X to form

Social Network Analysis and Mining (2024) 14:54 Page 11 of 16 54

Xnew in Line Number 11 requires O(1) time. The maximum
number of comparisons in the condition of the if statement
in Line Number 12 will be O(|CT |) . In the worst case, each
comparison can take at most O(n2) time. Hence, the total
time requirement for Line Number 12 requires O(|CT |.n2)
time. Number of comparisons in the conditional statement
in Line Number 13 requires at most O(f) time. Setting the
IS_MAX flag to “False” in Line Number 14 requires O(1)
time. Now, in the if statement of Line Number 17, the num-
ber of combinations can be O(n) in the worst case. Hence,
the number of comparisons for checking the existence in
the dictionary D is of O(n|CT |) . As mentioned previously,
each individual comparison requires O(n2) time. Hence,
total execution time for Line 17 is of O(n3.|CT |) time. Now,
copying the newly generated combinations from the diction-
ary D to DTemp requires O(nfmax) . It can be verified from
the description of the Algorithm 2 that the number of pos-
sible combinations among the time duration is of O(f n

max
) .

Hence, the for loop in Line Number 19 will execute O(f n
max

)
times. Line Numbers 20 and 21 take O(1) time. Executing
the for loop from Line Number 22 to 25 requires O(n) time.
Computing the maximum and minimum value among the
elements of the list max_ta and min_tb requires O(n) time.
It is easy to verify that execution of Line Number 28 to
34, 39 to 41, 43 to 45 and 46 requires O(1) time. Copying
the cliques from in Line Number 44 can take O(|CT |) time.
Now, we need to wrap up the computational time require-
ment for the looping structures to obtain the total time
requirement of Algorithm 2. From the previous analysis, it
can be verified that the time requirement for executing the
for loop from Line Number 19 to 35 will be of O(f n

max
.n) .

The for loop from Line Number 10 to 38 will execute at
max O(n) times. Hence, the running time from 10 to 38 is

o f O(n(n2.|CT |.fmax + n3.|CT | + n.fmax + f n
max

.n)) = O(n3.

|CT |.fmax + n4.|CT | + n2.fmax + f n
max

.n2) = O(n3.|CT |.fmax + n4.

|CT | + f n
max

.n2) . The while loop from Line Number 7 to 42 can
execute at most O(|CT |) times. Hence, execution time of this
while loop is of O(n3.|CT |2.fmax + n4.|CT |2 + |CT |.f nmax.n

2) .
Also, the number of times the while loop from Line Num-
ber 5 to 48 can execute is at most O(n) times. Hence,
time requirement for execution of Line Numbers 5–48 is
O(n(n3.|CT |2.fmax + n4.|CT |2 + |CT |.f nmax.n

2 + |CT |)) = O(n4.

|CT |2.fmax + n5.|CT |2 + |CT |.f nmax.n
3 + n.|CT |) = O(n4.|CT |2.

fmax + n5.|CT |2 + |CT |.f nmax.n
3) . As already derived that run-

ning time from Line Number 1 to 4 is of O(m + |CI
T
|.fmax) ,

hence, the total time requirement for Algorithm 2 is of
O(n4.|CT |2.fmax + n5.|CT |2 + |CT |.f nmax.n

3 + m + |CI
T
|.fmax) =

O(n4.|CT |2.fmax + n5.|CT |2 + |CT |.f nmax.n
3) . Maximum num-

ber of cliques could be at {{{\text{max}}}}max 2n . Hence,
plugging the worst case value of |CT | , we have the running
time of Algorithm 2, is O(n4.22n.fmax + n5.22n + 2n.f n

max
.n3).

Additional space requirement of the Algorithm 2 is
due to the “static graph” G, which requires O(m) space;
dictionary D , which requires O(|CI

T
|.fmax) space; dic-

tionary DTemp which requires O(n.fmax) space, the list
Xnew which requires O(n) space, the lists CT1 , CT2 , and CT
which in the worst case these may require O(n2n) space;
and the lists max_ta and min_tb which require O(|CT |)
space. Hence, total space requirement of Algorithm 2 is of
O(m + |CI

T
|.fmax + n.fmax + n + n.2n + 2n) = O(m + |CI

T
|.fmax

+n.fmax + n.2n) . Hence, Lemma 13 holds.

Lemma 13 The running time and space requirement of Algo-
rithm 2 are of O(n4 ⋅ 22n ⋅ fmax + n5 ⋅ 22n + 2n ⋅ f n

max
⋅ n3) and

O(m + |CI
T
| ⋅ fmax + n ⋅ fmax + n ⋅ 2n) , respectively.

Fig. 5 Illustrative example of
the proposed maximal (Δ, �)
-clique enumeration algorithm,
a input temporal graph with
Δ = 4 and � = 2 , b output of
the Algorithm 1—stretching
phase, and c and d the content
of CT1 at different iterations of
Algorithm 2. The cliques in red
are duration-wise maximal but
not w.r.t. cardinality

 Social Network Analysis and Mining (2024) 14:54 54 Page 12 of 16

As mentioned previously, Algorithm 1 and 2 together
constitute the proposed enumeration strategy for maxi-
mal (Δ, �)-cliques of a temporal network. It has been
shown in Lemma 7 that the time requirement of Algo-
rithm 1 is of O(� .m) . Hence, the total time requirement
of the proposed methodology (i.e., Algorithm 1 and 2)
is of O(n4.22n.fmax + n5.22n + 2n.f n

max
.n3 + � .m) . As men-

tioned in Lemma 8, the space requirement is of O(n2.fmax) .
Hence, total space requirement of the proposed methodol-
ogy is of O(m + |CI

T
|.fmax + n.fmax + n.2n + n2.fmax) = O(m

O(m + |CI
T
|.fmax + n.fmax + n.2n + n2.fmax) = O(m . Now, the

Theorem 2 states regarding the time and space requirement
of the proposed methodology.

Theorem 2 The computational time and space
requirement of the proposed methodology are of
O(n4 ⋅ 22n ⋅ fmax + n5 ⋅ 22n + 2n ⋅ f n

max
⋅ n3 + � ⋅ m) a n d

O(m + |CI
T
| ⋅ fmax + n ⋅ 2n + n2 ⋅ fmax) , respectively.

5 Experimental evaluation

In this section, we present the experimental evaluation of
the proposed methodology and compare its efficacy with
the existing methods from the literature. First, we outline the
background of the used datasets, followed by the objectives,
comparing algorithm description, and discussion on results.

5.1 Description of the datasets

In our experiments, we have used the following datasets:
(1) Hypertext 2009 dynamic contact network (Hypertext)
(Isella et al. 2011): This dataset was collected during the
ACM Hypertext 2009 conference, where the attendees vol-
unteered to wear radio badges that monitored their face-to-
face proximity. The dataset represents the dynamical network
of face-to-face proximity of 110 conference attendees over
about 2.5 days. (2) College Message Temporal Network (Col-
lege Message) (Panzarasa et al. 2009): This dataset contains
the interaction information among a group of students from
the University of California, Irvine. (3) Bitcoin OTC Trust
Weighted Signed Network (Bitcoin)1 (Kumar et al. 2016,
2018): This is a who-trusts-whom network of people who
trade using Bitcoin on a platform called Bitcoin OTC. Mem-
bers of Bitcoin OTC rate other members on a scale of -10
(total distrust) to +10 (total trust) in steps of 1. This is a
weighted, signed, and directed network. However, as per our
requirement, we do not consider the direction and weight. As

trust of a person changes over time, it is a temporal network.
(4) Infectious SocioPatterns Dynamic Contact Network I &
II (Infectious I & II) (Isella et al. 2011): The datasets are
collected during the Infectious SocioPatterns event that took
place in Dublin, Ireland, during the art science exhibition
INFECTIOUS: STAY AWAY. The dataset contains the set of
tuples of the form (t, u, v), where u and v are the anonymous
ids of the person who are in contact for at least 20 s. Basic
statistics of the datasets are given in Table 2.

5.2 Setup of the experimentation

The only parameters involved in our study are Δ and � . For
analyzing a temporal network dataset, one intuitive question
will be just to find out the frequently connected groups for
a given time duration, which is comparable with the life-
time of the network. For this reason, we select the Δ value
based on the network lifetime only. For “Hypertext” and
“Infectious II” datasets, we start with the Δ value of 1 min
and keep on increasing it by 1 min till it reaches 10 min.
Whereas it is increased in multiplicative order of 10 start-
ing from 1 and 2 min to 100 and 200 min in the “Infectious
I” dataset, due to its larger lifetime. For “College Message”
and “Bitcoin” datasets, we choose the Δ value as 1, 12, 64,
72, and 168 h.

For Δ-clique enumeration in all the datasets, we have to
set � value as 1. Now, for enumerating (Δ, �)-clique, in case
of the “Hypertext” and “Infectious II,” we start with the
� value as 2, keep on increasing it by 1 till the maximal
clique set becomes empty. In case of “Infectious I” data-
set for initial Δ values (e.g., 60, 120), we start that � value
is chosen similarly with that of the “Infectious II” dataset.
However, for larger Δ values (e.g., 6000, 12000), we start
with a � value of 5, and then 10; next incremented by 10
till it reaches 30, and subsequently incremented by 30 till
it reaches 330. For the “Bitcoin” dataset, for every Δ value,
if we increase the � value beyond 2, the maximal clique set
becomes null, due to very small links per static edges ratio,
compared to the lifespan of the temporal network. In case of
“College Message” dataset, as the chosen Δ value is larger,
the � value is incremented by 5 till it goes to 20 and then by
10 till the maximal clique set becomes empty. The goals of
the experiments are to analyze, how the number of maximal

Table 2 Basic statistics of the datasets

Datasets #Nodes #Links #Static edges Lifetime

Hypertext 113 20,818 2196 2.5 days
Infectious II 410 17,298 2765 8 h
College message 1899 59,835 20,296 193 days
Bitcoin 5881 35,592 21,492 5.21 years
Infectious I 10,972 415,843 44,516 80 days

1 https:// snap. stanf ord. edu/ data/ soc- sign- bitco in- otc. html.

https://snap.stanford.edu/data/soc-sign-bitcoin-otc.html

Social Network Analysis and Mining (2024) 14:54 Page 13 of 16 54

cliques, maximum cardinality, maximum duration, compu-
tational time, and space change with Δ and � , and compare
the results with the existing algorithms.

5.3 Algorithms compared

In our experiments, we compare the performance of the
proposed methodology with the following methods from
the literature. (1) Virad et al.’s method (Viard et al. 2016):
This is the first method proposed to enumerate maxi-
mal Δ-cliques of a temporal network. (2) Himmel et al.’s
method (Himmel et al. 2017): This method incorporates
the famous Born–Kerbosch algorithm to improve Virad
et al.’s method. (3) Banerjee & Pal’s method (Banerjee and
Pal 2019): This is the existing maximal (Δ, �)-clique pro-
posed by us in one of our previous studies. We obtain the
source code of the first two methodologies as implemented

by the respective authors. The proposed methodology is
developed in Python 3.4 along with NetworkX 2.0. All the
experiments have been carried out on a high-performance
computing cluster having 5 nodes, and each of them having
40 cores and 160 GB of RAM. Implementations of the algo-
rithms are available at https:// github. com/ BITHI KA1992/
Delta- gamma- Clique- Update.

5.4 Experimental results with discussions

Results for Δ-clique enumeration: First, we focus on Δ
-clique, which is equivalent to (Δ, �)-clique with � = 1 . This
result is shown in Table 3. In all the datasets, the maximal
clique count(N) decreases with the increment of Δ . This
quantity increases for a large Δ when there exist some user
pairs who contact each other very frequently for a long dura-
tion. This generates many maximal cliques with cardinality 2

Fig. 6 Plots for the change in Clique Count (denoted as CC), Maxi-
mum Cardinality (denoted as MC), Maximum Duration (denoted as
MD), Computational Time (denoted as CT), and Space Requirement
(denoted as SR) with the change of Δ and � for different datasets; a–e

Hypertext; f–j College Message; k–o Infectious I; and p–t Infectious
II; the computational time and space of Banerjee & Pal’s (Banerjee
and Pal 2019) marked in red

https://github.com/BITHIKA1992/Delta-gamma-Clique-Update
https://github.com/BITHIKA1992/Delta-gamma-Clique-Update

 Social Network Analysis and Mining (2024) 14:54 54 Page 14 of 16

and different [ta, tb] for bitcoin and infectious. The maximum
cardinality(C) identifies if there is a large group, and the
maximum duration(D) signifies maximum how long users
contacted each other. Both C and D are non-decreasing with
the growth in Δ , in all the datasets except “Hypertext.” It is
observed that the proposed methodology is the fastest one
compared to the existing methods. The computational time
increases with Δ in Viard et al. (2016), as the algorithm
starts with the clique(link) with duration=1, and expands
in both right and left by Δ and creates more intermediate

cliques. Whereas, the processing time depends on the
maximal clique count in both (Himmel et al. 2017) and
the proposed method. The computational space is mainly
dependent on the size of the intermediate clique set, and
it gets penalized more in Virad et al.’s method due to the
same reason as discussed. The effect can be seen in “Infec-
tious I” for Δ = 6000 and 12000 . The system’s memory
becomes insufficient to compute for these two Δ values. For
all the datasets, the proposed method beats Virad et al.’s
method, both in terms of space and time. Comparing with

Table 3 Results for the Maximal Clique Count (N), Maximum Cardinality (C), Maximum Duration (D), Computational Time (in Secs.) / Space
(in MB) for maximal Δ-clique ((Δ, �)-clique with � = 1) enumeration for different datasets

Dataset Δ N C D Algorithm

 Viard et al. (2016) Himmel et al. (2017) Proposed

Hypertext 60 7897 7 7640 16.02 / 208 6.14 / 104 53.9 / 109
120 6859 7 8140 18.11 / 221 4.48 / 103 26.14 / 108.42
180 6453 7 11,520 20.17 / 237 3.8 / 103 16.35 / 108.37
240 6232 7 11,640 21.73 / 247 3.73 / 103 11.76 / 108.27
300 6106 7 11,760 23.11 / 256 3.62 / 103 9.73 / 108.4
360 6025 7 11,880 24.02 / 268 3.31 / 102.85 8.55 / 108.49
420 5980 7 12,000 25.54 / 281 3.41 / 102.8 7.76 / 108.47
480 5952 7 12,120 26.61 / 291 3.28 / 102.78 7.27 / 108.54
540 5930 7 17,600 28.61 / 308 3.23 / 102.74 6.6 / 108.61
600 5913 7 17,720 29.83 / 318 3.08 / 102.72 6.12 / 108.68

College message 3600 33,933 4 21,761 35.25 / 372 41 / 140 19.84 / 148
43,200 25,635 5 403,018 43.02 / 546 31.38 / 133 4.19 / 142
88,640 22,701 5 896,134 52.29 / 727 28.56 / 131 2.28 / 140
259,200 21,019 5 2,322,612 84.05 / 1281 27.61 / 128 1.41 / 136
604,800 21,658 6 6,334,253 133.53 / 2427 25.85 / 128 1.19 / 139

Bitcoin 3600 26,577 7 10,791 18.31 / 142.97 196.49 / 221 2.36 / 157
43,200 26,091 8 129,422 19.58 / 142.71 193.74 / 235 2.41 / 158
88,640 25,970 8 265,798 20.69 / 142.57 190.93 / 250 2.3 / 159
259,200 26,290 8 777,572 22.6 / 142.73 191.49 / 288 2.36 / 160
604,800 27,149 8 1,814,344 29.69 / 143.39 193.52 / 367 2.34 / 162

Infectious I 60 161,066 6 3760 274.13 / 2591 1025.01 / 286 80.75 / 357
120 138,662 7 5180 405.84 / 3915 998.53 / 266 46.88 / 354
600 128,392 10 11,200 2659.82 / 18117 1043.46 / 262 30.87 / 523
1200 139,684 13 12,400 9824.58 / 72628 1062.69 / 278 84.13 / 1017
6000 152,121 16 22,740 NA 1238.75 / 293 108.34 / 3076
12,000 152,198 16 34,740 NA 1266.8 / 293 108.03 / 3097

Infectious II 60 9776 5 1860 10.77 / 197 4.71 / 106 4.41 / 111.1
120 9397 6 2900 17.36 / 266 4.12 / 105.8 2.39 / 112.25
180 9565 7 4280 26.41 / 339 4.04 / 105.82 1.7 / 113.76
240 9849 7 5160 37.74 / 429 3.97 / 106 1.81 / 115.39
300 10,192 8 5280 51.8 / 540 4.13 / 106 1.76 / 117.7
360 10,734 8 6480 68.27 / 661 4.34 / 106.65 1.88 / 120.96
420 11,287 8 6600 92.06 / 815 4.68 / 107.14 2.21 / 124.43
480 11,571 9 8540 122.26 / 1013 5.12 / 107.52 2.85 / 130
540 11,781 9 9580 159.73 / 1245 5.45 / 107.77 2.75 / 133.17
600 12,123 10 9700 201.34 / 1498 5.96 / 108.17 3.5 / 137.44

Social Network Analysis and Mining (2024) 14:54 Page 15 of 16 54

the Himmel et al.’s method with the proposed method, the
trade-off between time and space can be observed for the
dense datasets.

Results for (Δ, �)-clique enumeration: The results
for 𝛾 > 1 are shown in Fig. 6. As the maximal clique
set becomes null for 𝛾 > 2 in Bitcoin, we do not show
the plots for it. For a fixed Δ , the maximal clique count
decreases exponentially with the increase in � (refer to
Fig. 6 [a,f,k,p]), which, in turn, reduces the computational
time and space as well. Maximum cardinality and the dura-
tion also reduce with the increment in � . For fixed � , the
same observation of � = 1 is found. While comparing with
the only existing method (Banerjee and Pal 2019), it can
be observed that the improvement is more significant for
larger value of Δ and the small value of � (Refer to Fig. 6
[d,e,i,j,n,o,s,t]). Lastly, we can conclude for both Δ and
(Δ, �)-clique enumeration, the proposed methodology is
better when the input dataset is sparse. Among all the data-
sets, hypertext and Infectious II are comparatively more
dense than others, in terms of static graph density and
number of links per timestamp. Hypertext dataset is the
most dense network with density 34.7% (3.2% for Infec-
tious II), and a node in the hypertext dataset is involved
in three links at a time (5 for Infectious II). The same for
other datasets are in the order of ∼ 10−3 , which are much
lower. Now, from Table 3, it can be seen that Himmel
et al. perform much better than the proposed method, and
the difference is more for a small value of Δ in hypertext
data. It has a very high ratio of MaxDuration/Δ , which
signifies that the network is dense, and there is frequent
communication among many of the nodes within a small
span of time interval. This results in many more duration-
wise maximal clique generation and their correspond-
ing vertex expansion. The Himmel et al.’s method grows
based on neighborhood creation at specific time intervals
for each node, and as the number of nodes is less in the
dense network, this boosts up the performance. Again,
when the number of initial cliques is more (like in Infec-
tious I), Virad et al. fails to proceed even if the dataset is
sparse. The significant improvement in Δ-clique enumera-
tion is seen in the performance for other datasets which
are sparse. The scenario for sparse cases is more evident
for the (Δ, �)-clique enumeration case in Fig. 5. It can be
seen if the Δ is increased for small � , the improvement is
more in the proposed method from the existing method of
Banerjee & Pal. In the increased Δ , the initial duration-
wise maximal clique set reduces the intermediate clique
count, and the neighborhood in that large Δ also becomes
smaller due to the sparse nature of the problem instance.
Hence, we conclude that the proposed methodology sig-
nificantly improves when the graph is sparse.

6 Conclusion and future directions

In this paper, we have proposed a methodology to enumer-
ate all the maximal (Δ, �)-cliques present in a temporal net-
work. The proposed methodology has been analyzed for time
and space requirements, and also, its correctness has been
shown. To highlight its effectiveness, we have compared the
execution time of the proposed methodology on five real-
world publicly available datasets over the existing methods.
As in many real-world applications, links are probabilistic
in nature, so extending this study for such scenarios may be
one possible future direction.

References

Akkoyunlu EA (1973) The enumeration of maximal cliques of large
graphs. SIAM J Comput 2(1):1–6

Al-Naymat G (2008) Enumeration of maximal clique for mining spatial
co-location patterns. In: 2008 IEEE/ACS International conference
on computer systems and applications. IEEE, pp 126–133

Banerjee S, Pal B (2019) On the enumeration of maximal (Δ , �)-cliques
of a temporal network. In: Proceedings of the ACM India joint
international conference on data science and management of
data, COMAD/CODS 2019, Kolkata, India, January 3–5, 2019,
pp 112–120

Banerjee S, Pal B (2021) A two-phase approach for enumeration
of maximal (�, �)-cliques of a temporal network. In: Interna-
tional conference on database and expert systems applications.
Springer, pp 346–357

Banerjee S, Pal B (2022) An efficient updation approach for enumer-
ating maximal (� , �)-cliques of a temporal network. J Complex
Netw 10(5):cnac027

Bentert M, Himmel AS, Molter H, Morik M, Niedermeier R, Sait-
enmacher R (2019) Listing all maximal k-Plexes in temporal
graphs. J Exp Algorithmics (JEA) 24:1–27

Bhowmick SS, Seah BS (2015) Clustering and summarizing protein-
protein interaction networks: a survey. IEEE Trans Knowl Data
Eng 28(3):638–658

Bron C, Kerbosch J (1973) Algorithm 457: finding all cliques of an
undirected graph. Commun ACM 16(9):575–577

Byun J, Woo S, Kim D (2019) Chronograph: enabling temporal graph
traversals for efficient information diffusion analysis over time.
IEEE Trans Knowl Data Eng 32(3):424–437

Chen Q, Fang C, Wang Z, Suo B, Li Z, Ives ZG (2016) Parallelizing
maximal clique enumeration over graph data. In: International
conference on database systems for advanced applications.
Springer, pp 249–264

Chen Z, Yuan L, Lin X, Qin L, Yang J (2020) Efficient maximal bal-
anced clique enumeration in signed networks. In: Proceedings of
the web conference 2020:339–349

Cheng J, Ke Y, Fu AWC, Yu JX, Zhu L (2010) Finding maximal
cliques in massive networks by h*-graph. In: Proceedings of the
2010 ACM SIGMOD international conference on management of
data. ACM, pp 447–458

Cheng J, Ke Y, Fu AWC, Yu JX, Zhu L (2011) Finding maximal cliques
in massive networks. ACM Trans Database Syst (TODS) 36(4):21

Cheng J, Zhu L, Ke Y, Chu S (2012) Fast algorithms for maximal
clique enumeration with limited memory. In: Proceedings of the
18th ACM SIGKDD international conference on Knowledge dis-
covery and data mining. ACM, pp 1240–1248

 Social Network Analysis and Mining (2024) 14:54 54 Page 16 of 16

Dai Q, Li RH, Liao M, Chen H, Wang G (2022) Fast maximal clique
enumeration on uncertain graphs: A pivot-based approach. In:
Proceedings of the 2022 international conference on management
of data, pp 2034–2047

Dai Q, Li RH, Liao M, Wang G (2023) Maximal defective clique enu-
meration. Proc ACM Manag Data 1(1):1–26

Eppstein D, Löffler M, Strash D (2013) Listing all maximal cliques in
large sparse real-world graphs. J Exp Algorithmics (JEA) 18:3

Ficara A, Cavallaro L, Curreri F, Fiumara G, De Meo P, Bagdasar
O, Song W, Liotta A (2021) Criminal networks analysis in
missing data scenarios through graph distances. PLoS ONE
16(8):e0255067

Garey MR, Johnson DS (2002) Computers and intractability, vol 29.
W. H. Freeman, New York

Himmel AS, Molter H, Niedermeier R, Sorge M (2016) Enumerating
maximal cliques in temporal graphs. In: Advances in social net-
works analysis and mining (ASONAM), 2016 IEEE/ACM inter-
national conference on. IEEE, pp 337–344

Himmel AS, Molter H, Niedermeier R, Sorge M (2017) Adapting the
Bron–Kerbosch algorithm for enumerating maximal cliques in
temporal graphs. Soc Netw Anal Min 7(1):35

Holme P, Saramäki J (2012) Temporal networks. Phys Rep
519(3):97–125

Hou B, Wang Z, Chen Q, Suo B, Fang C, Li Z, Ives ZG (2016) Effi-
cient maximal clique enumeration over graph data. Data Sci Eng
1(4):219–230

Hulovatyy Y, Chen H, Milenković T (2015) Exploring the structure
and function of temporal networks with dynamic graphlets. Bio-
informatics 31(12):i171–i180

Isella L, Stehlé J, Barrat A, Cattuto C, Pinton JF, Van den Broeck W
(2011) What’s in a crowd? Analysis of face-to-face behavioral
networks. J Theor Biol 271(1):166–180

Kumar S, Spezzano F, Subrahmanian V, Faloutsos C (2016) Edge
weight prediction in weighted signed networks. In: Data mining
(ICDM), 2016 IEEE 16th international conference on. IEEE, pp
221–230

Kumar S, Hooi B, Makhija D, Kumar M, Faloutsos C, Subrahmanian
V (2018) Rev2: fraudulent user prediction in rating platforms. In:
Proceedings of the eleventh ACM international conference on web
search and data mining. ACM, pp 333–341

Manoussakis G (2019) A new decomposition technique for maxi-
mal clique enumeration for sparse graphs. Theor Comput Sci
770:25–33

Manoussakis G (2023) Efficient maximal cliques enumeration in
weakly closed graphs. arXiv preprint arXiv: 2303. 02390

Masuda N, Holme P (2017) Temporal network epidemiology. Springer,
Berlin

Mertzios GB, Molter H, Zamaraev V (2021) Sliding window temporal
graph coloring. J Comput Syst Sci 120:97–115

Molter H, Niedermeier R, Renken M (2019) Enumerating isolated
cliques in temporal networks. In: International conference on
complex networks and their applications. Springer, pp 519–531

Mukherjee AP, Xu P, Tirthapura S (2016) Enumeration of maximal
cliques from an uncertain graph. IEEE Trans Knowl Data Eng
29(3):543–555

Panzarasa P, Opsahl T, Carley KM (2009) Patterns and dynamics of
users’ behavior and interaction: network analysis of an online
community. J Am Soc Inf Sci 60(5):911–932

Qin H, Li R, Yuan Y, Wang G, Yang W, Qin L (2020) Periodic com-
munities mining in temporal networks: concepts and algorithms.
IEEE Trans Knowl Data Eng 34:3927–3945

Rossi RA, Gleich DF, Gebremedhin AH, Patwary MMA (2014) Fast
maximum clique algorithms for large graphs. In: Proceedings of
the 23rd international conference on World Wide Web. ACM,
pp 365–366

Rossi RA, Gleich DF, Gebremedhin AH (2015) Parallel maximum
clique algorithms with applications to network analysis. SIAM J
Sci Comput 37(5):C589–C616

Rozenshtein P, Gionis A (2019) Mining temporal networks. In: Pro-
ceedings of the 25th ACM SIGKDD international conference on
knowledge discovery & data Mining, pp 3225–3226

Schmidt MC, Samatova NF, Thomas K, Park BH (2009) A scalable,
parallel algorithm for maximal clique enumeration. J Parallel Dis-
trib Comput 69(4):417–428

Viard J, Latapy M, Magnien C (2015) Revealing contact patterns
among high-school students using maximal cliques in link
streams. In: Proceedings of the 2015 IEEE/ACM international
conference on advances in social networks analysis and mining
2015. ACM, pp 1517–1522

Viard T, Latapy M, Magnien C (2016) Computing maximal cliques in
link streams. Theor Comput Sci 609:245–252

Viard T, Magnien C, Latapy M (2018) Enumerating maximal cliques in
link streams with durations. Inf Process Lett 133:44–48

Xiang J, Guo C, Aboulnaga A (2013) Scalable maximum clique com-
putation using mapreduce. In: 2013 IEEE 29th International con-
ference on data engineering (ICDE). IEEE, pp 74–85

Zou Z, Li J, Gao H, Zhang S (2010) Finding top-k maximal cliques in
an uncertain graph. In: 2010 IEEE 26th International conference
on data engineering (ICDE 2010). IEEE, pp 649–652

Zschoche P (2022) A faster parameterized algorithm for temporal
matching. Inf Process Lett 174:106181

Zschoche P, Fluschnik T, Molter H, Niedermeier R (2020) The com-
plexity of finding small separators in temporal graphs. J Comput
Syst Sci 107:72–92

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of
such publishing agreement and applicable law.

http://arxiv.org/abs/2303.02390

	A two-phase approach for enumeration of maximal -cliques of a temporal network
	Abstract
	1 Introduction
	2 Related work
	3 Background and problem definition
	4 Proposed enumeration technique
	4.1 Stretching phase (initialization)
	4.2 Shrink and bulk phase (enumeration)

	5 Experimental evaluation
	5.1 Description of the datasets
	5.2 Setup of the experimentation
	5.3 Algorithms compared
	5.4 Experimental results with discussions

	6 Conclusion and future directions
	References

