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Abstract
People worldwide have suffered tremendously in terms of their mental health due to years of exposure to stress, anxiety, 
and the pressures of today's fast-paced lifestyles. The digitization of the data made possible by advances in health-care 
technology worldwide has allowed for a more precise mapping of the many variations of human biology than was possible 
before. People's methods of interaction with one another are evolving due to the rapid development of technology. Twitter, 
Facebook, Telegram, and Instagram have all risen to prominence as platforms where users can openly discuss their innermost 
thoughts, psyche, and feelings with one another. Texts are put through a psychological analysis process to pull out relevant 
details, characteristics, and user feedback. Psychological analysts rely on social media for the early identification of depres-
sive symptoms and patterns of behavior. Machine learning has been recognized as a powerful method for sifting through the 
vast quantities of data in the health-care industry. Predicting the likelihood of mental diseases and executing likely treatment 
outcomes is a common application of ML techniques in mental health. This paper compiles a list of different mental health 
disorders along with the methods used in detecting and diagnosing mental health-related issues using online social media.

Keywords Mental health disorders · Machine learning · Natural language processing · Online social media · Text analytics · 
Text mining · Review · Survey

1 Introduction

With the emergence of online social media, exchanging 
information on these platforms has become significantly 
more popular. These social media platforms have become 
important facilitators in various areas, such as identify-
ing the sentiments of people regarding a product, public 
opinions about various events, sharing daily life events, 
and discussion forums regarding diseases and medications 
(Dolezal et al. 2022 and Marsch 2021). There is a tsunami 
of posts by users on these social media platforms, and 

this user-generated content on social media has provided 
researchers with opportunities for exploring and categoriz-
ing this content in domains such as marketing, politics, and 
health. Social media platforms such as Facebook, Twitter, 
and Reddit turned out to be the safest space for people to 
post their emotions, feelings, thoughts, etc. (Yoo et al. 2019). 
With users being open about their mental states on such plat-
forms by continuously posting about how they are feeling or 
tackling their mental disorders, their content has provided a 
rapid method for researchers to train classification models 
for detecting users with mental health disorders (Saha and 
Munmun 2021).

In the past decade, mental health has become a global 
health concern. From 2005 to 2015, the number of people 
having depression globally elevated by 18.4% [WHO, 1]. 
Mental health disorders can impair an individual emotion-
ally and physically with common diseases such as stroke, 
heart disease, etc. People with mental health disorders also 
experience sleep disorders, low energy, helpless feeling, less 
interest in daily activities, suicidal thoughts, and intense 
concentration levels (Cohen et al. 2022). The World Health 
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Organization published a study in 2020 in which 264 mil-
lion people were affected by depression (Depression 2021). 
In England, the treatment for mental health at work reached 
105 billion British pounds (Health Matters, 2022).

Mental health disorders are treated using traditional 
approaches in which the patient interacts with the therapist 
in one-to-one interaction. These are reactive approaches in 
the form of one-to-one interviews, questionnaires, and sur-
veys which makes it time-consuming and expensive (Bathina 
et al. 2021). These approaches are not that effective as they 
are dependent on factors such as the mood of the patient, 
the bond between the patient and the therapist, and the past 
experiences of the patient (Karcher et al. 2021). With the 
stigma attached to mental health disorders and the lack of 
awareness, patients hardly recognize their mental health in 
their initial stages and generally approach the clinician in the 
later stage of the disease. A study found that 70% of people 
do not understand their mental health until the symptoms 
are worse, and then in the severe stage, they approach the 
clinician (Shen et al. 2017).

1.1  Need for using AI for mental disorder detection

Limited mental health-care services with ineffective tech-
niques have hampered the physician’s time. Mental health 
practitioners need unique skills to provide personalized 
treatments to mental health patients to stimulate therapeutic 
support and medications to the patient and their family mem-
bers, as every individual has a unique personality (Mendu 
et al. 2020). The current applications and techniques of arti-
ficial intelligence added a lot of support in the detection and 
diagnosis of mental health care. These techniques are widely 
used to draw insights from different data sources, fostering 
a better recognition of mental illnesses among the popu-
lation by uncovering the factors leading to risk (Shrestha 
and Spezzano et al. 2019). AI algorithms also enable online 
therapeutic sittings along with the provision of self-assess-
ment to patients who lack access to these services in certain 
areas. People do not generally consult doctors during their 
initial days of mental illness. Doctors cannot monitor all 
the patients simultaneously, so there should be a procedure 
that could help the doctors deal with the patients. The AI 
approaches have changed the treatment game by enabling a 
healthy clinician–patient relationship (Kiong 2022).

The public, private, and institutional stigma associated 
with mental health have made treating mental health more 
difficult. The prejudice related to mental health is because 
of the lack of understanding and the fear of losing live-
lihoods and social acceptance associated with it. Online 
platforms let an individual hide their identity, which gives 
an individual the confidence to share about their mental 
well-being (Hu 2022). These platforms allow users to post 
about their well-being in the form of either text or image, 

or video. Most of the data is available in text form on dif-
ferent social media platforms. This text can be analyzed 
with the help of text mining and sentiment analysis. Natu-
ral language processing (NLP) is the subfield of text min-
ing that combines the power of linguistics, and computer 
science to make programs to analyze natural language data 
involving speech and text. The most common NLP tasks 
are speech recognition, natural language understanding, 
language translation, information extraction, and natural 
language generation. NLP studies the rules and structure 
of the language with the help of lexical, syntax, seman-
tics and pragmatics, and morphology. NLP comes in 
handy when studying online social media, as the majority 
of the data available is in the form of text. Even, mental 
health procedures are highly dependent on NLP as there 
is an enumerable amount of raw textual data, i.e., clinical 
notes, and counseling sessions between the therapist and 
the patient (Ranjana et al. 2022). A basic application of 
NLP is encountered while using Gmail, where each mail 
is automatically classified as primary, social, promotion, 
and spam (Diniz et al. 2022). This is possible with the 
help of the keyword extraction technique of NLP. NLP is 
combined with computational linguistics, machine, and 
deep learning to empower the systems to investigate the 
human language in the form of speech to draw complete 
conclusions and intent (Ricard et al. 2018).

Existing research spanned a wide variety of methods for 
identifying mental states. Nonetheless, we think that our 
assessment is suitable for the use of computational tech-
niques considering the rising popularity of using online 
social media to seek help and guidance for mental health 
disorders. The purpose of this review is to carefully examine 
the usefulness of extracting and analyzing information from 
online social media with NLP and ML approaches for indi-
viduals experiencing mental health-related issues.

In this research, we discuss about the multiple mental 
health disorders on online social media in which the fea-
tures are taken from online textual cues and combined with 
machine learning, deep learning, and ensemble approaches 
to detect signs of mental episodes.

For health informatics in general and computational strat-
egies in mental health diagnosis in particular, we believe 
that this review can be useful to researchers performing 
experiments with social media text data. In conclusion, our 
review's most significant findings are as follows:

1. The goal of this study is to conduct a literature analysis 
and methodology comparison on mental health detection 
and identification in online social media using computa-
tional methods.

2. Evaluation of current methods, as well as discussion of 
these methods, for text analytics in social media plat-
forms online.
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3. To share knowledge about the most pressing unanswered 
questions and viable computational solutions in the field 
of health-related textual information research.

4. The limitations of using online social media for research 
purposes.

The remaining paper is structured as follows: First of 
all, we discuss the previous review studies that have been 
published by various researchers in this field, and how our 
review is different from others. In the next section, we dis-
cuss the objectives of this study, and how the studies were 
selected and included in this work. After that, we discuss 
how the review studies are classified for our work. After that, 
we discuss the limitations of this review. Then, in the con-
clusion part, we compare and describe the current state of 
the art in natural language processing and machine learning 
methods for identifying mental health disorders on online 
social media. Finally, we provide a list of outstanding issues 
in the discussion section, outlining productive avenues for 
future study in this area.

2  Previous review studies

The proliferation of online social media has made it a topic 
of discussion among researchers. Researchers use online 
social media for multiple purposes such as health care, sen-
timent analysis, opinion mining, recommender systems, etc. 
An enormous amount of survey papers and review papers 
are available aiming at the use of machine and deep learning 
for mental health disorders detection using the social media 
posts of users.

A complicated multifactorial disease, mental illness is 
influenced by a number of socioeconomic and clinical fac-
tors, including individual risk factors. Natural language pro-
cessing (NLP) techniques show potential in capturing these 
complex relationships represented in a wide range of textual 
data, including social media posts, interviews, and clinical 
notes. This will enable proactive mental health care and aid 
in early diagnosis. In order to comprehend methodologies, 
trends, obstacles, and future directions, the authors gave a 
narrative review of mental illness detection using NLP over 
the previous 10 years. In this study, 10,467 records repre-
senting a total of 399 studies were included. The review 
demonstrates an upward trend in NLP research on mental 
disorder identification. Traditional machine learning tech-
niques are outperformed by deep learning techniques, which 
are given greater attention. The authors also offered sugges-
tions for further research, such as creating fresh detection 
techniques, deep learning paradigms, and understandable 
models (Zhang et al. 2022). A systematic review of using 
machine learning and natural language processing tech-
niques on mental health and their use in the medical field 

is presented (Le Glaz et al. 2021). Salas et al. reviewed 34 
studies for detecting depression from online social media 
using machine learning from 2016 to mid-2021. The digi-
tal libraries included for primary studies are: ACM Digi-
tal Library, IEEE Xplore Digital Library, SpringerLink, 
Science Direct, Google Scholar, and PubMed. The social 
media platform most extensively researched for identifying 
depression symptoms was Twitter. The most used linguis-
tic feature extraction technique was word embedding. The 
most popular machine learning algorithm was support vector 
machine (SVM) (Salas et al. 2022). Liu et al. conducted a 
systematic review on using machine learning methods on 
social media text for detecting depressive symptoms from 
January 1990 to December 2020. The authors used various 
search terms to search for the papers for the review. Then, 
the authors also shared various inclusion criteria to finally 
include the papers for their study (Liu et al. 2022). Esteva 
et al. presented a survey paper discussing various deep learn-
ing techniques for health care. The major areas covered were 
computer vision for medical imaging, natural language pro-
cessing for electronic health records, reinforcement learn-
ing for robotic-assisted surgery, and generalized methods 
for genomics (Esteva et al. 2019). Miotto et al. discussed 
the recent literature available on using deep learning for 
health care with the challenges and opportunities associated 
with them for electronic health records, genomics, mobile, 
and clinical imaging (Miotto et al. 2017). Rahmani et al. 
presented a review paper focusing on the use of machine 
learning in medicine with the pre-processing steps, type of 
machine learning technique used, evaluation metrics, and 
applications (Rahmani et al. 2021). Kim J et al. presented a 
review study on using machine learning for mental health 
detection on social media data. They presented a literature 
study of articles from 2015 to 2020 and obtained 565 rel-
evant papers. They mainly focused on papers from Web of 
Science and Scopus (Kim et al. 2021).

Su et al. presented a detailed study on the uses of deep 
learning for mental health. They conducted their study based 
on clinical data, vocal, and visual expression data and social 
media data (Su et al. 2020). The many methods for data 
gathering, the most recent trends and technologies in this 
area, and the current uses of ML and NLP in the monitoring 
of public mental health are all covered, along with the draw-
backs and the gaps discovered while doing research in this 
area (Skaik et al. 2020). In order to determine the state-of-
the-art social media data prediction of mental health status, 
researchers undertook a comprehensive literature evaluation 
with an emphasis on the study design, methodologies, and 
research design of their study. Between 2013 and 2018, 75 
studies in this field were selected. The findings describe the 
procedures for annotating data for mental health status, gath-
ering data and managing data quality, selecting features for 
pre-processing, and choosing and validating models. The 
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authors presented alarming tendencies regarding construct 
validity and a lack of reflection in the approaches taken to 
operationalize and identify mental health status despite the 
field's growing interest. The authors also offer suggestions 
to solve these issues, such as a set of suggested publishing 
reporting criteria and chances for multidisciplinary collabo-
ration (Chancellor and Chaudhary 2020). The paper aims 
to thoroughly evaluate the literature on NLP and ML tech-
niques used to detect depression in Online Support Forums 
(OSF). A thorough search was conducted to find studies 
that looked at ML and NLP methods to distinguish depres-
sion disorder from OSF. The PRISMA method was used to 
choose the articles. A total of 29 publications were chosen 
and studied for the review. Using the results of this compre-
hensive study, the authors further examined which combina-
tion of attributes obtained using NLP and ML algorithms is 
suitable for modern depression identification (Nanomi et al. 
2021).

Most of the existing review studies have focused on the 
research published over the course of the past decades. How-
ever, this review study specifically directs its attention to the 
research conducted in the past few years and has a particular 
emphasis on the studies published in the past 2 years. This 
review presents the studies on the basis of different mental 
health disorders on online social media using different tech-
niques. In other studies, the authors have covered mainly the 
type of mental health disorder and the techniques used. Our 
review study also focuses on the models used for comparison 
along with evaluation metrics discussed in the papers and 
also clarifies whether the research is based on binary clas-
sification or multi-classification, topic modeling along with 
the social networking site used for the dataset and the type 
of features used.

3  Study objectives

The objective of this study is to present a review of studies 
that have used social media data for detecting and treating 
mental health disorders using machine and deep learning. 
We have tried to review the most updated papers in this area 
in the past 5 years, i.e., January 2018 to August 2022, while 
the main focus is to review the studies in 2020–2022.

3.1  Data inclusion

For our study, we start searching using terms such as 
mental health disorders, stress detection, online social 
media, and word embeddings. The research is focused 
on presenting a review of the papers which have utilized 
datasets from online social media data, including Twit-
ter, Reddit, Weibo, and Facebook. The study focuses on 

deep learning and machine learning methods to detect 
mental health from social media data. We have searched 
various databases for appropriate results, i.e., Google 
Scholar, PubMed, Nature, Web of Science, JMIR Men-
tal health, NCBI, Medline, ACM Digital Library, MDPI, 
IEEE Xplore, Science Direct, and Springer Link. We do 
not have any restrictions on the type of article. The papers 
are collected from 2018 to 2022.

For our search, we used multiple general terms related 
to mental health, such as mental health disorder detec-
tion, mental issues, and many more. We also used specific 
mental health disorder terms such as depression, anxiety, 
etc. We searched for papers focusing on mental health dis-
orders on online social media such as Twitter, Facebook, 
and Reddit. The focus of the search is only on the machine 
and deep learning techniques using natural language pro-
cessing, text mining, etc. Multiple combinations of these 
queries are sent in parallel to different search databases, 
as mentioned above. We can understand this with the help 
of some examples:

Query 1 (Q1): Detecting mental health disorders on 
online social media using machine and deep learning.

In query 1, we combined the term machine and deep 
learning with natural language processing, text mining, 
and other terms mentioned in the methods column of 
Table 1.

Query 2 (Q2): Depression detection using machine and 
deep learning on Twitter.

Here, in query 2, we replaced the ‘depression’ for every 
mental health disorder that we mentioned in the mental 
health disorder column in Table 1, and the machine and 
deep learning term is replaced with terms mentioned in the 
methods column in Table 1.

Query 3 (Q3): Predicting mental health disorders using 
transfer learning on Twitter.

Here, in query 3, we replaced ‘Twitter’ with other 
online social media platforms mentioned in the dataset 
column of Table 1 and transfer learning with different val-
ues in the methods column in Table 1.

Similarly, we generated multiple queries like this by 
combining the terms mentioned in Table 1. These queries 
are combined with different combinations mentioned in 
the table to get a universal set for our research.

Here Q1, Q2, Q3,…Qn represents the different com-
binations of the queries that we have used for searching 
our papers.

Û represents the final set of papers obtained from all the 
different combinations of these queries by running a search 
on all the databases mentioned above.

Q1UQ2UQ3UQ4UQn = Û
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These keywords were combined using the Boolean 
operator ‘or’ and ‘and.’

3.2  Exclusion criteria

In this section, we mention the criteria used to finalize the 
papers for this review. We have identified some exclusion 
criteria for the purpose of this review study. These factors 
are used to exclude the papers which we considered to be 
out of the scope of this study.

• If the article is not focused on using natural language 
processing, text mining.

• If the article is based on images, videos, or speech.
• If the abstract was found later irrelevant, not relating to 

the mental health data.
• If the article is just doing statistical analysis for general 

individuals having mental health disorders without using 
machine learning techniques.

• If the article is focused on surveys, etc.
• Research not focusing on ML and DL techniques.
• Research not focusing on online social media.
• Research on patient data in hospitals.
• Research only performing text pre-processing.
• Research focusing on physical health disorders.

The exclusion criteria help us to focus on the objective of 
this research paper. Although there have been many studies 
published in this area as this is a multidisciplinary research 
field covering computer engineering, psychology, and 
medicine. There were studies that have used machine learn-
ing techniques for mental health disorders, but they were 
focused on hospital-based data, so we have excluded such 
studies. Also, we encountered many studies focused on men-
tal health disorder detection on online social media, but their 
only focus was doing text analysis and feature extraction, 
and no algorithms were used in their paper. In this way, we 

removed the papers according to the exclusion criteria pre-
sented above to focus on the studies helpful for this review.

3.3  Results

In this study, 4000 review studies were identified from dif-
ferent database searches, as discussed in the data inclusion 
section. These studies were then screened for any duplicates. 
After duplication removal, only 3676 studies were obtained. 
Then, these studies were searched for full-text access. After 
rigorous searching, we gathered about 1987 studies for our 
study. These studies were further evaluated to fall into our 
search criteria as discussed in Fig. 1 We removed the stud-
ies which were out of the scope of this review based on the 
exclusion criteria discussed above. Finally, we were left with 
99 studies presented in this paper.

Now, for the purpose of understanding the review study 
in a more comprehensive manner, we have discussed some 
research questions. These questions helped us in forming 
the basis for our study. Some of the research questions are 
discussed below.

Research Question 1: Which online social media plat-
form is most commonly used for mental health disorder 
detection?

Answer: There have been many online social media plat-
forms that exist nowadays. The most well-known and most 
used social media platforms by users and researchers can be 
summarized below. These social media platforms are not the 
only ones used by researchers but are also most commonly 
used by individuals for sharing their opinions and thoughts.

3.3.1  Reddit

Reddit is a social media platform founded in 2005 by Steve 
Huffman and Alexis Ohanian. The site is organized around 
user-created communities, known as subreddits, which cover 
a wide range of topics, from news and politics to hobbies and 

Table 1  Different category and the corresponding keywords used for paper extraction

Category Keywords

Mental health disorder Mental illness, mental health, mental disorders, mental issues, mental disorder detection, and predicting mental 
disorders

Depression, suicide, stress, anxiety, schizophrenia, bipolar disorder, BPD, autism, anorexia, self-harm, and PTSD
Dataset Online social media, text, social media posts, social media text, tweets, subreddits, Twitter, Reddit, Weibo, Facebook, 

and Instagram
Methods Natural language processing, text mining, text analysis, deep learning, artificial intelligence, machine learning, word 

embeddings, transformers, attention networks, transfer learning, neural networks, document classification, ensemble 
methods, and deep neural networks

CNN, RNN, LSTM, Bi-LSTM, GRU, LSTM, SVM, RF, LDA, and LSA
Word embeddings Word2vec, Glove, Bert, FastText, and ELMO
Technique Classification, clustering, topic modeling, prediction, detection, binary, and multi
Evaluation criteria Accuracy, recall, precision, F1-score, coherence, and perplexity
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interests. As of 2021, Reddit has over 430 million monthly 
active users, making it one of the largest social media plat-
forms in the world (McAuliffe et al. 2022).

One of the unique features of Reddit is its Ask Me Any-
thing (AMA) interviews. These sessions allow users to ask 
questions directly to a notable person, such as a celebrity or 
expert in their field. These interviews can provide insights 
into a wide range of topics and give users a chance to inter-
act with people they may not usually have access (Fraga 
et al. 2018). In addition to its social and cultural impact, 
Reddit has become an important tool for researchers and 
scientists. Due to the platform's unique features, such as its 
subreddits and threads, researchers can analyze the language 
and experiences shared by users to gain insights into a wide 
range of topics, including mental health disorders, political 

beliefs, and more. Reddit is becoming an increasingly popu-
lar tool for mental health research by medical professionals 
and computer scientists. Due to the platform's large user 
base and the abundance of user-generated content, it pro-
vides a unique opportunity to gain insights into the experi-
ences and behaviors of people with mental health disorders 
(Ptaszynski et al. 2021).

One-way Reddit is used for mental health research which 
is through natural language processing (NLP) techniques. 
Computer scientists and linguists can use NLP to analyze the 
language used in Reddit posts and comments to identify pat-
terns and gain insights into the experiences and emotions of 
people with mental health disorders. For example, research-
ers can use NLP to analyze subreddits dedicated to depres-
sion or anxiety to identify common themes and emotions 

Fig. 1  PRISMA flow diagram for searching of the literature studies
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expressed by users. This can help researchers understand 
the experiences of people with mental health disorders and 
inform the development of new treatments or interventions 
(Lau et al. 2016). Medical professionals are also increasingly 
using Reddit to connect with patients and gain insights into 
their experiences. For example, psychiatrists and therapists 
may browse relevant subreddits to understand the experi-
ences and perspectives of people with specific mental health 
disorders (Chandra Guntuku et al. 2019). This can help them 
provide better patient care and develop more effective treat-
ment plans. In addition, researchers can use Reddit to recruit 
participants for mental health studies. They can post study 
advertisements on relevant subreddits or reach out to users 
who have shared their experiences with mental health dis-
orders to see if they are interested in participating in a study 
(Shigemera et al. 2020). This can help researchers recruit a 
diverse and representative sample of participants for their 
studies. Overall, Reddit is becoming an important tool for 
mental health research by medical professionals and com-
puter scientists. It provides a unique opportunity to gain 
insights into the experiences and behaviors of people with 
mental health disorders and has the potential to inform the 
development of new treatments and interventions. However, 
it is important to use Reddit ethically and responsibly and to 
respect the privacy and confidentiality of users who share 
their experiences on the platform (Chang and Tseng 2020).

3.3.2  Twitter

Twitter is a popular social media platform that was founded 
in 2006. It allows users to post short messages, known as 
tweets, of up to 280 characters. The platform has grown in 
popularity over the years and has become a powerful tool for 
communication, news dissemination, and social engagement. 
As of the first quarter of 2021, Twitter had 199 million active 
daily users worldwide, according to Statista. While this is 
a relatively small number compared to other social media 
giants like Facebook, Twitter's active user base is highly 
engaged and influential. Every day, millions of tweets are 
posted on Twitter, with an average of 500 million tweets 
sent per day in 2020 (Twitter 2022). This high volume of 
tweets means that the platform generates a massive amount 
of data that can be analyzed and leveraged by research-
ers, businesses, and other organizations. The platform is 
available in over 40 languages, and users can connect and 
engage with others around the world. This has led to the 
development of Twitter communities and movements that 
have had a significant impact on social and political issues 
(Chatterjeeet al., 2021). Twitter is a powerful tool that has 
become increasingly valuable to mental health research-
ers. Its vast and diverse user base provides researchers with 
a unique opportunity to analyze how people with mental 

health disorders are coping, connecting, and communicating 
in real-time (Ríssola et al. 2021).

One of the primary ways researchers use Twitter is by 
analyzing the language used in tweets (Sakib et al. 2021). 
Overall, Twitter is a valuable tool for researchers, offering 
a unique and dynamic platform to analyze the experiences 
and behaviors of people with mental health disorders. As 
the platform continues to evolve and adapt to changing user 
needs and trends, it will be interesting to see how it can 
be further leveraged for mental health research and support 
(Andy 2021).

3.3.3  Facebook

Facebook is a social networking site founded in 2004 by 
Mark Zuckerberg and his college roommates at Harvard Uni-
versity. Initially, the platform was only accessible to college 
students, but it quickly expanded to include anyone with an 
email address. Today, Facebook is one of the most popu-
lar social media platforms in the world, with over 2.9 bil-
lion monthly active users as of 2021 (The Latest Facebook 
Statistics 2023). Facebook is a highly interactive platform 
that allows users to connect with friends and family, join 
groups, and share content such as photos, videos, and writ-
ten posts. It also offers a range of features such as event 
invitations, a marketplace, and fundraising tools, making it 
a versatile tool for both personal and professional uses. One 
of the unique aspects of Facebook is its ability to facilitate 
communities and group connections. Users can join groups 
based on shared interests, geographic location, or other 
factors, allowing them to connect with others with similar 
experiences or concerns. This has made Facebook a pow-
erful tool for social movements and advocacy groups, as 
well as for businesses and organizations looking to build a 
loyal customer base (Argyris et al. 2022). In addition to its 
social and commercial potential, Facebook has become an 
important tool for researchers and health-care professionals 
interested in mental health. Researchers can use Facebook 
to recruit participants for studies, collect data, and analyze 
patterns in user behavior (Shrestha et al. 2020). Despite its 
many benefits, Facebook has also faced criticism over the 
years for its handling of user data and privacy concerns. The 
platform has implemented a range of measures in response, 
such as enhanced privacy settings and increased transpar-
ency around data usage. However, concerns around these 
issues continue to be a topic of debate among users and crit-
ics alike. Overall, Facebook has had a significant impact on 
the way we connect and communicate with each other, both 
personally and professionally. As the platform continues to 
evolve and adapt to changing user needs and trends, it will 
be interesting to see how it continues to shape the world of 
social media and beyond (Behesti et al., 2020).
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3.3.4  Seina Weibo

Seina Weibo, often referred to simply as Weibo, is a micro-
blogging platform that was launched in China in 2009. 
The platform is similar in many ways to Twitter, allowing 
users to post short messages and updates, as well as photos 
and videos. Weibo quickly became one of the most popu-
lar social media platforms in China, with over 500 million 
registered users as of 2021 (Yang et al. 2022a, b). The plat-
form's popularity is due in part to its ability to allow users to 
share their thoughts and experiences in real-time, as well as 
to connect with others who share similar interests and con-
cerns. In addition to its social potential, Weibo has become 
an important tool for businesses and organizations looking 
to reach Chinese consumers (Wang et al. 2020a, b). The 
platform offers a range of advertising and marketing tools, 
as well as accesses to a massive user base that is highly 
engaged and active. Weibo has also been used by researchers 
and mental health professionals interested in understanding 
mental health in China (Lyu et al. 2022). The platform offers 
a unique opportunity to access a large and diverse group of 
users and to analyze patterns in user behavior and communi-
cation related to mental health. This has led to various stud-
ies on topics such as depression, anxiety, and other mental 
health issues. Overall, Weibo is a highly influential platform 
in China, offering users a powerful tool for communication, 
connection, and self-expression. As the platform continues 
to grow and evolve, it will likely remain an important part 
of the Chinese social media landscape, with implications for 
social and political discourse, business and commerce, and 
mental health research and practice.

During our research, we came across multiple standard 
datasets from Reddit and Twitter, available online. Most of 

the studies used these two platforms for the research pur-
pose. Limited studies have used Facebook and Seina Weibo. 
The total studies reviewed in this paper can be visualized 
with the help of a pie chart in Fig. 2. As can be seen, the 
maximum studies obtained are from the Reddit social media 
platform, which accounts for 48% of the total studies. The 
least studies discovered are from the Seina Weibo platform 
due to the reason that it is specific for the Chinese popula-
tion, while 2% of the studies did not specify the exact social 
media platform, they are using while just mentioning about 
the posts, comments, etc., being used for the study. These 
studies are further elaborated in the upcoming sections.

Research Question 2: What are the different algorithms 
used for mental health disorder detection on online social 
media?

Answer: The algorithms that we found in our review 
studies can be broadly classified as given below:

3.4  Machine learning

Earlier machines were programmed with computational 
algorithms to follow certain instructions to solve specific 
problems. Machine learning is the branch of artificial intel-
ligence that empowers machines to learn and behave like 
humans. Humans have the intelligence to behave according 
to past experience, machines were lacking in this quality. 
Machine learning has enabled machines to learn from past 
experiences to perform specific tasks with specific perfor-
mance. In 1995, Allan Turing introduced a ‘Turing Test’ 
which helped in evaluating machines on the basis of their 
intelligence. In 1995, Arthur Samuel described machine 
learning as ‘a study which gives computers learning abili-
ties without programming explicitly.’ In machine learning, 

Fig. 2  Total studies in the 
review paper focusing on multi-
ple social media platforms
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machines are fed with data and are allowed to learn on their 
own without any human intervention. Machine learning 
algorithms are generally comprised of three parts (Myszc-
zynska 2020). First is the decision process, which generally 
takes some labeled or unlabeled data, and then makes either 
a prediction or classification. Then, next, we have the error 
function, which evaluates the model prediction capability. 
Then, we have model optimization, where the weights are 
adjusted to reduce the difference between the actual and the 
predicted values until a threshold accuracy is reached. Some-
times, these models are easily understandable by humans 
and sometimes, they are complex to understand, similar to 
a black box. Machine learning algorithms are also as flat 
algorithms as they cannot be applied directly to the raw data. 
If the model is not able to capture the underlying patterns 
of the data and cannot perform well on the testing data, 
underfitting occurs. When the model is very complex and 
is trained on too much data, it starts capturing the noise in 
the data. Such models perform well on the training data but 
cannot make accurate predictions, in this case, overfitting is 
said to occur (Rezaii et al. 2019).

3.5  Supervised machine learning (SML)

As the name indicates, in supervised machine learning, we 
have a supervisor who supervises the learning of the algo-
rithm (Azam et al. 2021). In SML, we have labeled data 
in which each input has an associated label. We train or 
supervise our model using this data. The labeled data can 
be categorical (Yes or no) or continuous (range of values). 
In SML, we have some input and output variables, and the 
focus is to have a mapping function from input to output 
using an algorithm. This mapping function should be able 
to predict the new data without any labels based on the fea-
tures provided and the training process (Kang et al. 2016). 
In SML, we have the correct answers, and the algorithm 
keeps making predictions on the training data. When the 
model makes wrong predictions, they are corrected just like 
a supervisor corrects their students. The model stops learn-
ing when the desired performance is reached. Regression 
and classification problems are the main types of supervised 
learning problems (Deng et al. 2021).

3.6  Unsupervised machine learning (UML)

In unsupervised machine learning algorithms, data are 
not provided with labels, and learning happens on its own 
without any supervision by finding similarities in the input 
data and getting insights about the structure of the data. In 
this, we only have the input data and no output labels. It 
is unsupervised because there is no correct answer as they 
are identified by different experts. UML enables users to 
perform more complex operations than SML. UML is more 

challenging than SML, because of the absence of labels 
within the dataset. Clustering, dimensionality reduction, 
and association are the main tasks of unsupervised learning 
algorithms (Westrupp et al. 2022).

3.7  Deep learning

Deep learning is the branch of machine learning which is 
influenced by the functioning of the human brain (Saravanan 
et al. 2022). When humans get any new information, they 
try to compare it with already available known objects. DL 
enables the machines to focus on the right set of features 
by themselves without any or little human intervention 
(Durstewitz 2019). It used multi-layer structures known as 
neural networks. Deep learning is capable of focusing on 
the right set of features requiring very little guidance by the 
programmer by reducing the dimensionality of the features. 
It basically skips the manual step of feature extraction as that 
of machine learning. Deep learning uses neural networks 
for processing large datasets through multiple hidden lay-
ers. The input data passes through the nodes of the neural 
networks, with each node having some weight. Each layer 
helps the next layer in refining and optimizing the outputs, 
and this phenomenon is known as forward propagation. The 
node which has a higher weight is more important than the 
node which has a lower weight. In the input layer, we pro-
vide the same input entries as our input data, and the output 
layer consists of the actual output that should come from our 
data (Sun et al. 2022).

3.8  Attention networks

Attention is a method used in artificial neural networks to 
imitate cognitive attention. This effect makes some portions 
of the input data better while making other parts worse. This 
is done to encourage the network to pay more attention to the 
critical parts of the data, even if they only make up a small 
piece of an image or text (Rutowski et al. 2020). Gradient 
descent trains an algorithm that determines which portion of 
the data is more relevant than another based on the context 
(Haque et al. 2020).

In the 1990s, mechanisms resembling attention were 
developed, known as multiplicative modules, sigma pi units, 
and hyper-networks. In contrast with normal weights, which 
must remain fixed during runtime, ‘soft weights’ can alter 
during runtime, giving them flexibility (Alsayat 2022).

Figure 3 gives us an estimation of the multiple tech-
niques that have been applied by researchers in their papers. 
Most of the researchers have used deep learning techniques 
accounting for 44% of our review studies, followed by 
supervised machine learning techniques. While a very lit-
tle amount of work is done using unsupervised machine 
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learning accounting for 5% only. This is due to the fact that 
mental health disorder detection is more of a classification 
task than a clustering task.

Research Question 3: What are mental health illnesses 
that are mostly recognized on online social media?

Answer: In this paper, we have focused on reviewing the 
papers based on mental disorders. In those mental disorders, 
we further categorized the disorders on the basis of which 
techniques are used to identify the disorders.

4  Classification of mental health disorders 
on online social media using different 
evaluation techniques

4.1  Depression

Depression is a mood disorder that enables sadness and loss 
of interest. Depression affects a person's thinking and behav-
ior, leading to multiple emotional and physical problems 
hampering the everyday activities of an individual. Depres-
sion affected 350 million people globally (Thij et al. 2020). 
Many people seek medical advice when depression becomes 
severe, which has many health and economic effects (Maxim 
et al. 2020). Early detection of depressive symptoms and 
those at risk of developing them in the community is helpful 
for formulating public policies and may open up new doors 
for early intervention or online referrals of those in need of 
efficient preventive measures (Alexopoulos 2019 and Chiong 
et al. 2021). Nowadays, online social media has increased 
the tendency of people to talk about their mental state openly 
(Depression 2022.)

In this survey, we found several studies on depression 
detection using machine and deep learning on online social 

media. We discovered many studies focusing on depression, 
so we are bifurcating the studies into supervised, unsuper-
vised machine learning, deep learning, and attention net-
works for the purpose of clarity in Tables 2, 3, 4, and 5, 
respectively.

The goal of depression detection is to create a predictive 
model that can quickly identify textual information related 
to mental health issues and identify persons with depression 
from tweets of Twitter users. Using a regular expression 
or stream of real-time tweets made up of 3682 individuals, 
1983 of whom self-declared having depression and 1699 of 
whom did not were used in this work. To recognize people 
with depression and draw attention to postings pertaining to 
the author's mental health, two multiple-instance learning 
models (MIL)—one with and one without an anaphoric res-
olution encoder—were created. Anaphora resolution is a text 
analysis problem that focuses on identifying which person is 
referenced in which textual context. In this paper, the authors 
use the MIL approach to create two models: MIL-SocNet, 
which is multiple-instance learning for social networks, 
and (MILA-SocNet), which is multiple-instance learning 
for social networks using anaphora resolution, to identify 
users who are depressed and emphasize posts that have been 
written on the user's issue of mental health. Instead of a 
document vector, both models employ new document seg-
ment encoding, a tweet encoder, and user representation. 
The performance is further enhanced by the inclusion of 
the anaphora resolution in the latter model. The anaphoric 
resolution model achieved 92% accuracy, 92% F1-score, and 
90% area under the curve (AUC) at its best. The model's 
prediction abilities were superior to those of both traditional 
machine learning and deep learning alternatives (Wongko-
blap et al., 2018).

Fig. 3  Studies reviewed using 
different techniques using a 3-D 
pie chart view representation
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User-generated information from Twitter can be used to 
examine the dynamics of depression in communities affected 
by the COVID-19 outbreak. To construct depression clas-
sification models, the authors present a novel method based 
on multimodal characteristics extracted from tweets and 
term frequency-inverse document frequency (TF-IDF). 
Multimodal characteristics capture depression indications 
from affective, topical, and disciplinary angles by analyzing 
recently scraped tweets from New South Wales, Australia, 
residents. During the COVID-19 timeframe, this unique 
classification approach can extract depression polarities that 
may be influenced by COVID-19 and related events. The 
results showed that after the COVID-19 epidemic, people's 
levels of depression increased. State lockdown and other 
government interventions contributed to an already depress-
ing atmosphere. The LDA model was used to classify these 
tweets and was compared with other models also (Zhou et al. 
2021).

The paper by Naseem et al. focuses on the application 
of personalized mental health interventions using natural 
language processing (NLP) and attention-based in-depth 
entropy active learning. The objective of this research is to 
increase the trainable instances using a semantic clustering 
mechanism. For this purpose, the authors proposed a method 
based on synonym expansion by semantic vectors. Seman-
tic vectors based on semantic information derived from the 
context in which it appears are clustered. The resulting simi-
larity metrics help to select the subset of unlabeled text by 
using semantic information. The proposed method separates 
unlabeled text and includes it in the next active learning 
mechanism cycle. The method updates model training by 
using the new training points. The bidirectional long short-
term memory (LSTM) architecture with an attention mecha-
nism achieved 0.85 receiver operating characteristic (ROC 
curve) on the blind test set. The learned embedding is then 
used to visualize the activated word’s contribution to each 
symptom and find the psychiatrist’s qualitative agreement 
(Naseem et al. 2022).

A novel model, explainable multi-aspect depression 
detection with hierarchical attention network (MDHAN), 
to automatically identify depressed people on social 
media and to provide an explanation for the model's pre-
dictions is proposed. The authors considered user’s posts 
that have been enhanced with extra Twitter features. In 
particular, the model computed the importance of each 
tweet and word, encoded user postings using two levels of 
attention mechanisms applied at the tweet level and word 
level, and extracted semantic sequence features from user 
timelines (posts). This hierarchical attention model was 
created in a way that it can identify patterns that result in 
incomprehensible findings. The tests reveal that MDHAN 
beats a number of well-known and reliable baseline tech-
niques, illuminating the potency of fusing deep learning Ta
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with multi-aspect information. Additionally, it is also 
demonstrated how this algorithm enhances predictive 
performance when identifying depression in people who 
openly post messages on social media. MDHAN performs 
exceptionally well and guarantees that there are enough 
data to support the prediction. The model performs the 
best in comparison with all the other state-of-the-art mod-
els and achieved the highest accuracy, precision, recall, 
and F1-score (Zogan et al. 2022).

4.2  Schizophrenia

Schizophrenia is a severe mental illness in which reality 
is perceived by sufferers strangely. Schizophrenia may 
include hallucinations, delusions, and severely irrational 
thinking and behavior, which can make it difficult to go 
about daily activities and be incapacitating. Schizophrenia 
patients require ongoing care. Early intervention may help 
keep symptoms under control before major issues arise 
and may enhance the prognosis in the long run (Schizo-
phrenia, 2020). The study focusing on detecting schizo-
phrenia using online social media is presented in Table 6. 
The purpose of this study is to investigate whether social 
media user writings can be utilized to detect indicators 
of schizophrenia using machine learning. For the con-
trol group, the authors gathered postings from the social 
media site Reddit that discussed schizophrenia as well 
as those about fitness, humor, meditation, parenthood, 
relationships, and teaching and identified linguistic mark-
ers of schizophrenia by classifying posts as belonging 
to schizophrenia using supervised machine learning and 
analyzing significant aspects. For the purpose of iden-
tifying a cohesive semantic representation of words in 
schizophrenia, an unsupervised clustering algorithm was 
applied to the features. The greater usage of third-person 
on plural pronouns, words that express negative emotions, 

and topics relating to symptoms are only a few of the 
linguistic traits, and topics were found to be significantly 
different. The accuracy achieved is 96% (Bae et al. 2021).

4.3  Psychopath

A psychopath is defined as an individual with an egotistical 
and antisocial disposition who lacks regret for their actions, 
lacks empathy for others, and frequently exhibits criminal 
tendencies. Instead, it is a colloquial word frequently applied 
to the disease known as antisocial personality disorder 
(ASPD) (Psychopathy 2023). During our study, we came 
across a few studies detecting psychopaths on online social 
media, as shown in Tables 7 and 8, respectively.

The majority of the work that has hitherto been done 
on psychopath detection has been done in the psychology 
field using conventional methods, such as the SRPIII tech-
nique with small dataset sizes. This encourages to develop a 
sophisticated computational model for psychopath diagnosis 
in the field of text analytics. In this study, attention-based 
Bi-LSTM for psychopath detection with a larger dataset size 
is investigated for its effectiveness in classifying input text 
into a psychopath and non-psychopath categories (Asghar 
et al. 2021).

4.4  Suicide

Suicide is the deliberate act of bringing about one's own 
death. When someone hurts oneself with the intent of 
ending their life, but does not die as a consequence of 
their acts, it is considered a suicide attempt. Numerous 
factors both enhance and decrease the chance of suicide. 
There is a link between suicide and other types of harm 
and violence. People who have experienced violence, such 
as child abuse, bullying, or sexual violence, for instance, 
are more likely to commit suicide. Suicidal thoughts and 
behaviors can be reduced by having simple access to 

Table 3  Depression detection using unsupervised machine learning techniques on online social media

S. No. Dataset References Type of feature ML and DL technique Evaluation metric Number of posts Multi 
/binary
class/cluster

1 Twitter (Zhou et al. 2021) Emotional level, topic 
level, domain-specific 
features, TF-IDF

LR, LDA, GBM,
multimodal feature 

extraction with 
TF-IDF

Precision, recall, 
F1-score, accu-
racy

94,707,264 Binary

2 Seina Weibo (Liu and Shi 2022) Part-of-speech tagging LDA Mean, SD 396,152 Binary
3 Reddit (Sik et al. 2021) LDA topics LDA No metric 67,857 cluster
4 Twitter (Safa et al. 2021) Polarity score, LIWC 

dictionary
N-grams, LIWC Accuracy 11,890,632 Binary
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health care, connections to family and community support, 
and several other factors. The suicide rate surged by 30% 
between 2000 and 2018, then fell in 2019 and 2020. With 
45,979 deaths from suicide in 2020, it will be the third 
greatest cause of mortality in the US. Approximately one 
death occurs every 11 min. Even more, people contemplate 
suicide or make an attempt at it. According to estimates, 
12.2 million American people considered suicide seriously 
in 2020, 3.2 million made plans to commit suicide, and 
1.2 million actually succeeded in doing so (Facts about 
suicide 2023). There are multiple studies available for 
suicide detection using online social media. For ease of 
understanding, we have separated the studies of detecting 
suicide using machine and deep learning. Tables 9 and 
10 focus on studies using supervised and unsupervised 
machine learning techniques, respectively, while Table 10 
focuses on suicide detection on online social media using 
deep learning (Z Li2022).

Social media data analysis using machine learning 
offers a viable method for identifying long-term contex-
tual factors that increase a person's risk of having suicidal 
thoughts and actions. The goal was to create the ‘Suicide 
Artificial Intelligence Prediction Heuristic (SAIPH)’ algo-
rithm, which analyzes publically available Twitter data to 
forecast future risks of suicide thinking against psycho-
logical factors linked to suicide, such as burden, stress, 
loneliness, hopelessness, sleeplessness, sadness, and anxi-
ety, the authors trained a number of neural networks, aid to 
help with suicide screening and risk monitoring, and have 
the ability to identify a person's future suicide ideation 
(SI) risk. The data are fed into random forest models to 
identify the individuals who are at a risk of suicide idea-
tion (SI). An AUC of 88% was produced utilizing tweet 
data from at least 1 day before the case individuals' dec-
laration of SI using a series of 10 bootstrap aggregated 
random forest models that included neural network model 
scores and a training and test set of roughly equal sizes. 
Importantly, the range of AUC values obtained using data 
from 3 weeks' worth of days within the 6 months prior to 
the SI event averaged an AUC of about 0.8, indicating that 
this method is effective for identifying people at risk for 
suicidal ideation who have not yet expressed such thoughts 
(Roy et al. 2020) (Table 11).

Artificial neural network (ANN) models were developed 
in this study to forecast suicide risk using the common lan-
guage of social media users. The dataset contained legiti-
mate psychological data about the users as well as 83,292 
posts written by 1002 verified Facebook users. A single-task 
model (STM) to predict suicide risk from Facebook postings 
directly (Facebook texts—suicide) and a multi-task model 
(MTM), which included hierarchical, multilayered sets of 
theory-driven risk factors (Facebook texts—personality 
traits–psychosocial risks–psychiatric disorders–suicide), Ta
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were both built using deep contextualized word embeddings 
for text representation. The MTM achieved much better pre-
diction accuracy when compared to the STM predictions 
(0.697 AUC 0.746), with significantly bigger effect sizes 
(0.729 d 0.936) (Ophir et al. 2020).

4.5  Stress

Any form of change that causes physical, mental, or psy-
chological strain on a person is considered to be stressful. 
Your body's reaction to anything that demands attention or 
action is stress. Everyone experiences moments of stress. 
However, how you tackle stress has a significant impact on 
your overall well-being (Stress 2022). Stress is a state of 
tension, either emotionally or physically. Any circumstance 
or idea that gives you cause for annoyance, rage, or anxiety 
can trigger it. The body’s response to a demand or challenge 
is stress. Stress can occasionally be advantageous, such as 
when it keeps a person safe or helps accomplish a deadline. 
However, chronic stress can be bad for a person’s health (Li 
N, 2023).

We discovered two studies focusing on stress detection 
on online social media using deep learning and a study on 
machine learning which are presented in Tables 12 and 13, 
respectively.

Text analysis has been demonstrated to be useful in the 
diagnosis of mental illness, emotions, and sentiment. How-
ever, the current state of the art in stress identification from 
text is corpus-specific. Good, well-validated approaches that 
work across several datasets are currently in short supply. 
Munaz et al. proposed a method to detect stress in textual 
data and evaluate it using numerous publicly available Eng-
lish datasets, with the goal of advancing the state of the art 
in this area. In order to improve classification accuracy, the 
proposed method blends lexicon-based characteristics with 
distributional representations. Additionally, three distinct 
word embedding methods for making use of distributional 
representation are investigated. Three machine learning 
models were used to implement this method, and their per-
formance was assessed by F1-score. This analysis serves as 
a starting point for future studies, and the results show that 
the best model, with F1-score over 80%, combines FastText 
embeddings with a subset of lexicon-based features (Munaz 
and Iglesias, 2022) as mentioned in Table 12.

4.6  Borderline personality and bipolar disorder

Borderline personality disorder affects how you perceive and 
feel about yourself and other people, making it difficult to 
function in daily life. Issues with one's self-image, trouble 

Table 6  Schizophrenia detection using machine learning techniques on online social media

S. No. Dataset Reference Type of feature ML technique Evaluation metric Number of posts Multi 
/binary
class/cluster

1 Reddit (Bae et al. 2021) LIWC dictionary, LDA 
topics

RF, SVM, LR, NB Recall, precision, accu-
racy, F1-score, AUC 

247,569 Binary

Table 7  Psychopath detection using machine learning technique on online social media

S. No. Dataset References Type of feature ML technique Evaluation metric Number of posts Multi 
/binary
class/cluster

1 Twitter (Tadisetty, and Ghazinour 
2021)

N-grams, TF-IDF NB, SVM, KNN with 
N-grams

Accuracy 600,000 Binary

Table 8  Psychopath detection using deep learning technique on online social media

S. No. Dataset References Type of feature DL technique Evaluation metric Number 
of posts

Multi 
/binary
class/cluster

1 Twitter (Asghar et al. 2021) Bag-of-words, TF-IDF Bi-LSTM and compared 
with other state-of-art 
ML and DL models

Accuracy, precision, 
recall, F1-score

601 Binary

2 Twitter (Alotaibi et al. 2021) Bag-of-words, TF-IDF CNN-LSTM Precision, recall, 
F1-measure

601 Binary
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controlling one's emotions and conduct, and a history of 
rocky relationships are all included (Cleveland Clinic 2022).

A brain illness called bipolar disorder alters a person's 
energy, mood, and capability to work. Bipolar disorder 
patients go through severe emotional crises, or mood epi-
sodes, that normally last a few days to a few weeks (Bipolar 
Disorder, 2022).

We found two studies focusing on borderline and bipo-
lar personality disorders using machine learning only, 
that are presented in Table 14. Sekulic et al. performed 
a binary classification task on the social media posts of 

Reddit for detecting bipolar disorder by gathering inter-
esting linguistic distinctions between individuals with 
bipolar disorders and the control group revealed by fea-
ture analysis, including variations in the use of words that 
indicate emotions. Recognizing that emotional ups and 
downs are the primary symptoms of the disorder in the 
textual clues, the authors examined the emotion-expres-
sive textual qualities in individuals with bipolar disorder 
and the non-bipolar control group of users using SVM, 
RF and evaluated them on the different metrics (Sekulic 
et al. 2018).

Table 9  Suicide detection using supervised machine learning techniques on online social media

S. No. Dataset References Type of feature ML technique Evaluation metric Number of posts Multi 
/binary
class/cluster

1 Twitter (Chadha and Kau-
shik 2021)

Bag-of-words NB, SVM, 
Bernoulli NB, 
DT, LR, vot-
ing ensemble, 
RF, AdaBoost 
ensemble

Accuracy, preci-
sion, recall

14,202 Binary

2 Reddit (Lao C et al. 2022) LIWC dictionary, 
TF-IDF

Gradient boost, 
SVM, RF

F1-score, AUROC 1732 Binary

3 Twitter (Roy et al. 2020) One-hot encoding Suicide artificial 
intelligence 
prediction heu-
ristic (SAIPH) 
algorithm

AUC 7,223,922 Binary

4 Reddit (Acuna Caicedo 
et al. 2022)

Bag-of-words, 
TF-IDF, word 
embeddings

SVM Macro precision, 
recall

273 Multi

5 Twitter (Chatterjee et al. 
2022)

N-grams, TF-IDF, 
sentiment polar-
ity, LDA topics, 
social features, 
temporal features

LR, RF, SVM, 
XGBoost using 
TF-IDF, N-grams

Accuracy, recall, 
precision, 
F1-measure

188,704 Binary

6 Twitter
(CLPsych 2021)

(Wang N et al. 
2021)

Latent features, 
POS tagging,

C-Attention, linear 
discriminant 
analysis, KNN, 
SVM, used POS 
tagging

F1-score, TPR, 
FPR, AUC 

Not specified Binary

Table 10  Suicide detection using unsupervised machine learning technique on online social media

S. No. Dataset References Type of feature ML
technique

Evaluation metric Number of posts Multi 
/binary
class/cluster

1 Reddit (Feldhege J et al. 2022) LIWC dictionary LDA Mean, median 7995 Cluster
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4.7  Self‑harm

Self-harm refers to the act of intentionally inflicting pain 
on oneself as a means of coping with intense emotions, 

distressing memories, or overwhelming circumstances and 
situations (Self-harm 2022).

Table 11  Suicide detection using deep learning technique on online social media

S. No. Dataset References Type of feature DL technique Evaluation metric Number of posts Multi 
/binary
class/cluster

1 Seina Weibo (Li Z et al. 2022) Sentence-level 
feature

Deep hierarchical 
ensemble model 
for suicide detec-
tion (DHE-SD)

Accuracy, F1-score 164,856 Binary

2 Facebook (Ophir et al. 2020) ELMO embeddings ANN AUC 83,292 Binary
3 Twitter (Sawhney et al. 

2021)
TF-IDF, BERT 

embeddings
CNN-LSTM, CNN, 

RF
Recall, accuracy, 
F1-score

34,306 Binary

4 Reddit (Sawhney and Joshi 
2021)

Glove, BERT 
embeddings

SVM with radial 
basis function, 
SVM with linear 
kernel, RF, MLP, 
contextual-CNN, 
suicide detection 
model

Precision, recall, 
F1-score

3894 Multi

5 Seina Weibo (Li and Zhou et al. 
2021)

BERT embeddings FastText, DPCNN, 
TextCNN

Accuracy, precision, 
recall, F1-score

452,508 Binary

6 Reddit (Kodati and Tene 
2022)

BERT embeddings, 
lexicon-based con-
textual information

RNN, Bi-LSTM, 
GRU-Bi-LSTM-
CNN

Accuracy, precision, 
recall, F1-score, 
MSE

6820 Binary

7 Seina Weibo (Li et al. 2022) Frequency count DPCNN, FastText, 
TextCNN

Accuracy, precision, 
recall, F1-score

563,336 Binary

Table 12  Stress detection using machine learning technique on online social media

S. No. Dataset References Type of feature ML technique Evaluation metric Number of posts Multi 
/binary
class/cluster

1 Reddit, Twitter
(DReddit, The 

Natural Stress 
Emotion, and 
TensiStrength)

(Muñoz and Igle-
sias 2022)

LIWC stress 
dictionary

SVM, logistic 
regression, SGD

F1-score 2294, 2243, and 
6142, respec-
tively

Binary

Table 13  Stress detection using deep learning techniques on online social media

S. No. Dataset References Type of feature DL technique Evaluation metric Number of posts Multi 
/binary
class/cluster

1 Seina weibo (Li, Zhang and Fang 
2023)

Bert embeddings LSTM, RNN, GRU Accuracy, precision, 
recall, F1-score

524,944 Binary

2 Twitter (Wang et al. 2022) Bert embeddings Meta-learning-based 
stress category 
detection framework 
(SCD)

Accuracy, precision, 
recall, F1-score

1553 Binary
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Table 14  Borderline personality disorder and bipolar disorder detection using machine learning techniques on online social media

S. No. Dataset References Type of feature ML and DL technique Evaluation metric Number of posts Multi 
/binary
class/cluster

1 Reddit (Deb et al. 2022) Bag-of-words RF, extra trees classi-
fier, bagging, XGB, DT, 
K-neighbors

Accuracy, F1-score 2504 Binary

2 Reddit (Sekulic et al. 2018) LIWC dictionary SVM, LR, RF Accuracy, F1-score Approx. 3 million Binary

Table 15  Self-harm detection using attention networks on online social media

S. No. Dataset References Type of feature ML and DL tech-
nique

Evaluation metric Number of posts Multi 
/binary
class/cluster

1 Reddit Suicidality 
Dataset

(Abed Esfahani 
et al. 2019)

LIWC dictionary GPT-1 Precision 768 Binary

2 Reddit (eRisk 2019) (Maupome et al. 
2020)

Topic modeling, 
one-hot encod-
ing

LDA, neural 
encoders

Precision, recall, 
F1-score

Not specified Binary

Table 16  Anxiety detection using machine learning technique on online social media

S. No. Dataset References Type of feature ML and DL tech-
nique

Evaluation metric Number of posts Multi 
/binary
class/cluster

1 Facebook (Chang and Tseng 
2020)

Text-based features, 
social features, 
para-social relation-
ship

One-class SVM Precision, recall, 
F1-score

Not specified Binary

Fig. 4  Total mental health dis-
order studies in our review
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Usually, it is not intended as a suicide attempt. It is 
an unhealthy approach to deal with emotional anguish, 
despair, rage, and stress to damage oneself. While self-
harm may temporarily relieve physical and emotional 
stress and create a sense of serenity, it is typically followed 
by remorse and humiliation as well as the recurrence of 
unpleasant emotions. Usually, life-threatening injuries are 
not planned, but more serious and even deadly self-harm 
is a possibility. Abed Esfahani et al. used transfer learning 
to detect the early signs of self-harm on the Reddit social 
media platform and gave up different evaluation metrics 
(Abed Esfahani et al., 2019).

During our research, we could only get two studies that 
are presented in Table 15.

4.8  Anxiety

Anxiety is characterized by apprehension, worry, and 
restlessness. It may trigger f lushing of the skin, agi-
tation, and a racing heart in certain people. It is not 
unusual for stress to bring up such a response. You may 
experience anxiety when you have to solve a challenging 
problem at work, when you have to take a test, or when 

you have to make a big decision. It may serve as a cop-
ing mechanism. It is possible that the feeling of unease 
will really serve to increase your stamina and mental 
clarity. The terror is permanent and overwhelming for 
those who suffer from anxiety disorders (Anxiety, 2020). 
Table 16 presents studies based on anxiety using online 
social media.

Figure 4 shows us the total mental health disorder studies 
in our review. As can be seen clearly, most studies focus on 
depression alone, followed by suicide. In this chart, we have 
only focused on single studies. In the next chart, we further 
elaborate on the studies that focused on more than two stud-
ies at a time, as shown in Fig. 5.

4.9  Multiple disorders

The above studies presented were targeted at only single 
mental health disorders. In this section, we have shown the 
studies which identified multiple disorders using online 
social media. Some of the mental health disorders have 
been discussed previously, while some others are not.

Anorexia is an eating disorder characterized by a per-
sistent and severe underweight status relative to age and 

Fig. 5  Total studies in the multiple disorders section
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height. Even if they are already underweight, people with 
this disease may experience a crippling fear of gaining 
weight. They could be using unhealthy methods to shed 
pounds, such as excessive dieting or exercise (Anorexia 
Nervosa 2018).

Experiencing or seeing a scary event might set off the 
mental health disease known as post-traumatic stress disor-
der (PTSD). In addition to compulsive, intrusive thoughts 
about the traumatic incident, symptoms can include flash-
backs, nightmares, and anxiety attacks. People who have 
experienced trauma often have brief periods of difficulty 
adjusting and coping, but with time and self-care, they typi-
cally recover. There is a possibility of post-traumatic stress 
disorder (PTSD) if the symptoms worsen over time (months 
or years) and cause significant disruption to daily life (PTSD 
2022).

Inattention/hyperactivity disorder (ADHD) is among 
the most prevalent conditions of childhood neurodevelop-
ment. As a rule, it is first identified in young people and 
continues throughout adulthood for many (Christiansen et al. 
2020). Children with attention-deficit hyperactivity disorder 
(ADHD) may have difficulties focusing, may act without 
considering the potential consequences of their actions, or 
maybe extremely energetic (CDC 2021).

Tables 17, 18, and 19 present the studies focusing on mul-
tiple disorder identification using machine and deep learning 
on online social media, respectively.

In the current study, the authors examined whether there 
is enough signal in people's ordinary language to forecast 

the future. Language samples were gathered from posts to 
discussion groups concentrating on various mental illnesses 
(clinical subreddits) as well as postings to discussion groups 
focusing on nonmental health subjects (nonclinical subred-
dits) on the social media platform Reddit. Finally, models 
trained to predict future mental illness learned to focus on 
words indicating life stress while models trained on clinical 
subreddits learned to focus on words indicating disorder-
specific symptoms, suggesting that the features that are 
predictive of mental illness may change over time. Classi-
fication models were evaluated using precision, recall, and 
accuracy, and clustering was performed to identify the most 
used words in these subreddits (Thorstad and Wolff 2019).

Zeberga et al. proposed a novel methodology for iden-
tifying depression and anxiety-related posts using bidirec-
tional encoder representations from transformers (BERT) 
while preserving the contextual and semantic meaning of 
the words used across the entire corpus. To further improve 
performance and accuracy, a knowledge distillation method-
ology, a relatively new method for transferring information 
learned by a big pre-trained model (BERT) to a smaller one, 
was introduced. The authors developed a methodology for 
gathering information from the most popular social media 
platforms, such as Reddit and Twitter. Finally, word2vec and 
BERT with Bi-LSTM are used to analyze social media posts 
for indicators of depression and anxiety. When compared 
to other state-of-the-art technologies, the system achieved 
98% accuracy employing the knowledge distillation process 
(Zeberga et al. 2022).

Table 17  Multiple disorders detection using machine learning technique on online social media

S. No. Dataset References Type of mental 
disorder

Type of feature ML technique Evaluation 
metric

Number of posts Multi 
/binary
class/cluster

1 Reddit (Jain et al. 2022) Suicide, depres-
sion

Bag-of-words Naïve Bayes, 
logistic 
regression, 
SVM, random 
forest, no word 
embeddings

Precision, recall, 
F1-score

300,000 Binary

2 Reddit (Tariq et al. 
2019)

Anxiety, depres-
sion, bipolar, 
ADHD

TF-IDF RF, NB, SVM Precision, recall, 
F1-score

3922 Binary

3 Reddit (Thorstad and 
Wolff 2019)

ADHD, bipolar, 
anxiety, depres-
sion

TF-IDF L2-penalized 
logistic regres-
sion

Accuracy,
precision, recall, 
F1-score

224,036 Binary

4 Reddit (Ragheb et al. 
2019)

Anorexia, self-
harm, depres-
sion

Bag-of-words Deep mood 
evaluation 
module, Bayes-
ian variational 
inference

Precision, recall, 
F1-measure

Not specified Multi

5 Reddit (Guo et al. 2021) Bipolar disorder, 
anxiety, major 
depressive 
disorder

Bert embeddings SVM, LR, RF Accuracy, F1-
score, preci-
sion, recall

686,359, 
686,369, 
914,082

Multi
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In this section, more than one disorder is used in the 
social media posts for the classification or clustering task. 
In this chart also, the majority of the studies are focused on 
depression, followed by anxiety, anorexia, self-harm, sui-
cide, and autism, etc. This chart represents the total studies 
in the multiple disorders section alone as shown in Fig. 5.

After, reviewing all the studies, we have tried to present 
the total number studies which we found in different years. 
As we can clearly see from the chart in Fig. 6, that the stud-
ies on mental are maximum in the year 2022 according to 
our review. There is a sudden rise in the number of studies 
after 2020 may be because of the sudden rise in mental cases 
because of the consequences of lockdown in different parts 
of the world.

5  Limitations of using online social media

It can be observed that promising results are obtained while 
using online social media for mental health disorder detec-
tion using ML and DL techniques. But there are various 
challenges with the use of social media data that need to be 
resolved. Some of the key challenges are as follows:

5.1  Faulty research ethics

There are no ethical guidelines available for addressing 
the unique challenges of working with the data on social 
media. Because of this, scientists and academicians have 
little direction in addressing the ethical, legal, and social 
issues of social media data. The ethical issues encoun-
tered while using the social media data are not addressed 
in the guidelines given by these federal institutes, as the 
scientists and the review board members are unaware of all 
the ethical, social, and legal implications of using social 
media data. The users who have made their profiles and 
data public need not require any ethical clearances, but 
they may not be aware of the way their data are being 
used, and their identities can be traced back, which could 
cause them harm. Most of the time, the user agreements 
made are very lengthy and detailed, which addresses all 
the complications and guidelines for users. Still, users do 
not read them fully and generally agree to them without 
realizing how their data will be used. IBM’s Watson for 
Oncology kept Watson’s unsafe and incorrect suggestions 
secret for more than a year for cancer patients as the sys-
tem was trained on a few synthetic cancer cases from the 
Memorial Sloan Kettering (MSK) Cancer Center by its 
doctors (Chen 2018). There are some academic groups 
available, like ReCODE Health, which enable resource 
sharing and take the responsibility of educating the gen-
eral public about their rights with respect to social media. Ta
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Researchers should notify about the process used for data 
collection, storage criteria, and how and what information 
they have used (Brown 2018).

5.2  Approach to social media data

Retrieving social media is restricted which includes pub-
licly available data because of the continuous change in the 
data access rules. Previously, a whistleblower revealed the 
privacy breaches in Facebook and Instagram, which made 
these giants change their application programming interfaces 
(APIs) to limit data access by third-party applications. Con-
fining the data access appears to be a convincing means but 
this has a great impact on how the data can be accessed 
favorably by the general public. This continual change in 
the data access policies forces researchers to acquire data 
from third-party applications by paying exorbitant prices. 
These applications add layers of privacy breaches. There 

have been multiple reports suggesting the compromise of 
research when the data access policies changed during a 
research study pressurizing the researchers to redevelop 
the methods and techniques mid-way, ultimately degrading 
the quality of research standards. The Twitter Academic 
Research API was made for research purposes and was free 
for academicians, but when Elon Musk acquired Twitter, he 
made the API paid on February 27, 2023, which posed many 
problems for the researchers who were in the middle of their 
data collection process (Developer terms, 2023). Recently, 
Facebook has partnered with Social Science One, which has 
facilitated the relationship between industry and academia to 
solve the challenges encountered while accessing the data, 
such as privacy, content, and trade secrets. This venture has 
allowed researchers to use Facebook data for how it influ-
ences democracy. Facebook partnered with Social Science 
One to allow scientists to access Facebook data to study how 
social media influences democracy.

Table 19  Multiple disorders detection using attention networks on online social media

S. No. Dataset References Type of mental 
disorder

Type of features DL technique Evaluation 
metric

Number of posts Multi 
/binary
class/cluster

1 Reddit (Dinu and Mol-
dovan et al. 
2021)

ADHD, anxiety, 
autism, bipolar, 
borderline, 
depression, 
OCD, PTSD, 
schizophrenia

LIWC dictionary BERT, 
RoBERTa, 
XLNET

Precision, recall, 
F1-score

356,358 Binary

2 Reddit (Amini et al. 
2020)

Depression, 
anorexia

N-grams CNN-ELMo Accuracy 5998 Binary

3 Twitter 
(CLPsych 
2017)

(Howard et al. 
2020)

Suicide, self-
harm

LIWC dictionary GPT-1 F1-score 157,963 Binary

Fig. 6  Total number of studies 
covered under our review study 
in different publication years 
using stacked area chart
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5.3  Absence of collaborative academic research

Looking at the proliferation of social media, interdisci-
plinary fields should be developed to improve scientific 
research to bring the different communities simultaneously. 
The researchers in different academic fields are unaware of 
different works in the cross-referenced academic fields like 
diabetes prediction using machine learning is the work of 
medicine as well as engineering. Still, there is little aware-
ness among researchers to collaborate with each other so that 
they come up with better results. This lack of merging of dif-
ferent scientific studies disseminated the studies across dif-
ferent journals and conferences, which led to researchers not 
getting enough of what could be implemented by having an 
interdisciplinary approach. Scientific networking programs 
and transdisciplinary training will help researchers flourish 
in their fields. Health training programs can offer courses on 
machine learning, natural language processing, data analyt-
ics, and health-care analytics which will allow clinicians 
and computer engineers to learn and understand the basic 
concepts needed to implement transdisciplinary research.

5.4  Availability and correctness of social media 
data

One major problem encountered while using online social 
media for mental health prediction is accessing correct 
labeled data. Although collecting social media data is easy 
as compared to surveys and questionnaires, getting appropri-
ate data is difficult because of different user writing styles. 
Manual labeling of social media data is very time-consum-
ing and has to be performed by professionals with proper 
consensus. Nowadays, social media giants like Facebook 
have increased measures to protect the privacy of users by 
making all the content of the profile private. These privacy 
features hamper the data collection process as such content 
won’t be accessed by the APIs while extracting the online 
social media data (Jain 2020).

6  Conclusion

The main purpose of this study is to provide a rundown of 
the state-of-the-art research on machine and deep learning 
approaches used for predicting multiple mental health dis-
orders using online social media data. Moreover, the review 
can be helpful for researchers in formulating models based 
on the severity levels of mental health disorders in real-time 
for the users on online social media. Although the reliability 
of online social media is not guaranteed, the data should be 
properly analyzed and the privacy of the users should not 
be compromised. Even though online social media comes 
with methodological and technical difficulties for predictive 

modeling, social media is still a valuable source for identify-
ing the characteristics of individuals vulnerable to mental 
health disorders. Moreover, the COVID-19 pandemic has 
also worsened the mental health of individuals, and social 
media has become a savior for them (Khasnis et al. 2021). 
Despite various difficulties on online social media, this field 
helps in providing rapid tools and techniques to mitigate 
future risks. Furthermore, the review focused on the ideas 
adopted by different researchers by providing a summary of 
the dataset, techniques applied, evaluation metrics used, type 
of features used, and the type of classification or clustering 
applied. However, social media text is comprised of varying 
writing styles and unstructured text, but natural language 
processing and machine learning techniques are widely used 
for the analysis of such text. On the basis of this review 
work, we suggest that natural language processing and 
machine learning approaches could be the vehicle for trans-
lating big online social media data into improved human 
health. Furthermore, we also focused on the limitations 
encountered while using online social media for research 
purposes. As a major concern, this study also outlines the 
research gap while reviewing the papers. The research gap 
should be overcome to bring up more studies in the future. 
A very interesting fact to notice is that the research related 
to mental health has doubled in the year 2020–2022. We 
could gather a lot of research published in these years. The 
major reason for this rise could be the COVID-19 pandemic 
which affected individuals mentally and physically. The 
lockdown put a mental strain on the majority of the indi-
viduals because of loneliness, loss of loved ones, job loss, 
and several other reasons. The lockdowns also increased the 
use of online social media, letting users share their emotions 
on these platforms.

7  Future work

Data collection and analysis tools such as sentiment analysis 
and opinion mining have been widely available due to recent 
technological developments. As it stands, reliance on tech-
nology has advantages and disadvantages. The entire infor-
mation sector would benefit from an internet-based frame-
work that can be accessed from anywhere by anyone looking 
for reliable data and therapeutic guidelines on mental health. 
The research proposal is an interdisciplinary exploration of 
how digital natives' mental health affects their online behav-
iors. Thus, it pulls from psychology and computer science to 
investigate how far open-source content from online social 
media may be mined for clues toward the early diagnosis of 
mental illness in individuals.

Academics can analyze the static data on a forum to 
determine if it contains depressed material, according to 
recent studies. To collect more dynamic data in diagnosing 
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mental illnesses, however, it is now time to combine forum 
users with conversational AI. Because people are more likely 
to open up and share personal details about their experi-
ences with mental health when they know they are being 
anonymous online, it is important to consider how technol-
ogy and mental health intersect when trying to understand 
the data. While it is not the same as having a trained profes-
sional on your side, having a strong social network behind 
you is a great first line of defense. All these things might 
be the foundation for learning more about mental health on 
online social media. People in today's fast-paced world use 
the internet to research their mental, emotional, and social 
health to gain an edge in the workplace. Finding big amounts 
of textual data in the medical field can be challenging, but 
it is important to study how to extract web data related to 
human psychology. Because of the progress made in ML, 
deep learning approaches can now deal with text corpora of 
different sizes throughout time. That is why it is important to 
look into using deep learning to evaluate textual features in 
real-time. To learn from an interactive environment, a deep 
reinforcement learning agent can try out different forms of 
feedback based on their own prior experiences. Therefore, 
better results can be produced by combining reinforcement 
learning with deep learning to identify the severity of mental 
conditions based on social media posts. Transfer learning 
and attention networks can also help analyze these patterns. 
Most of the research we came across only targeted the Eng-
lish language, but in a country like India, where multiple 
languages are spoken along with English, these data could 
not completely determine populations like this. So multilin-
gual and bilingual areas for this research should be explored 
by the researchers as many online social media are available 
in multiple languages. The researchers can also focus on cat-
egorizing the mental health status of individuals depending 
on factors such as geographical area, profession, etc., as we 
could not discover any paper which has classified the mental 
health state of individuals focusing on such factors. These 
factors could provide us a better insight into, let’s say, which 
profession is mostly affected by mental health. This research 
could help psychologists find new areas of study for why a 
particular group is affected and how to tackle these people.
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