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Abstract
Community detection methods aim to find nodes connected to each other more than other nodes in a graph. As they explore 
the entire network, global methods suffer from severe limitations when handling large networks due to their time and space 
complexity. Local community detection methods are based on an egocentric function aiming to find only the community 
containing a query node (or set of query nodes). However, existing local methods are often sensitive to which query node(s) 
is used to discover a particular community. Our proposed approach, called SIWO “Strong In, Weak Out,” is a novel commu-
nity detection method, which can locally discover densely-connected communities precisely, deterministically, and quickly. 
Moreover, our experimental evaluation shows that the detected community is not dependent on the initial query node within 
a community. This method works in a one-node-expansion way based on the notions of strong and weak links in a graph. In 
short, SIWO starts with a community consisting only of the query node(s). Then it checks the set of nodes in the community’s 
neighborhood in each step to add the “best” node and finally returns the desired community around the given query node. 
It can also be used iteratively to detect the entire partitioning of a network with or without considering overlapping com-
munities, and concurrently identify outliers that may not belong in any community. Moreover, as it does not store the entire 
graph into main memory, it can also be used to find the core of a community on very large networks, while there is limited 
time and memory available. Finally, SIWO is also able to handle weighted graphs, making SIWO a general framework for 
community discovery and detection in various type of social networks.
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1  Introduction

Over the last few years, networks have proved to be very use-
ful to model complex systems in different domains, includ-
ing social sciences, biology, pharmacology, criminology, 

and computer science. They allow representing relational 
data by a graph where the vertices (or nodes) correspond 
to the entities and the edges (or links) to their relationships.

As highlighted in the paper “The future is Big Graphs” 
(Sakr et al. 2021), the unprecedented growth in intercon-
nected data underscores the capital role of graph processing 
in our society. These complex networks frequently exhibit an 
intrinsic structure composed of communities—i.e., groups of 
vertices that are densely connected within the network and 
sparsely connected with the rest of the network (Girvan and 
Newman 2002). Community detection algorithms aim to find 
such structures in a given network and have various applica-
tions in different fields. Most of these algorithms attempt to 
cluster all network vertices in a global approach that needs 
to store all network information inside the available memory 
beforehand to be able to process it. Thus, although they are 
assumed to cluster a network into accurate communities, 
they are impractical for very large networks. For example, 
a network with hundreds of thousands of vertices and mil-
lions of edges probably makes any global approach hopeless 
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to achieve any result in a reasonable time if the network has 
to be read as a whole in the first place. Moreover, in prac-
tice, the user can be more interested in the community of a 
given entity than in the network’s whole community struc-
ture. That is notably the case for applications such as social 
influence analysis or recommendation systems.

To address this need, there is another family of algorithms 
that proceed locally. Local community discovery (a.k.a. 
community search) methods need a query node to start a 
search (De Meo et al. 2014; Luo et al. 2020). Their goal 
is to find all other nodes of the network belonging to the 
same community as the query node. Local methods have 
their advantages, including a targeted search, which reduces 
the time computation since there is no need to explore the 
entire graph. Thus, they enable finding communities even 
in extremely large networks since the time complexity does 
not usually depend on the network’s size. Moreover, they 
are particularly suited for online search or handling dynamic 
graphs that evolve over time (Takaffoli et al. 2013).

More precisely, there are specific properties that are 
desired from local community detection approaches: 

(1)	 High Efficiency: The first significant advantage of 
local methods over the global ones is the ability to 
retrieve the query node’s community in a reasonable 
time. Since there is no need to visit all nodes of the 
graph during the process, the time required by a local 
approach should be relatively less than the time needed 
by a global approach (Huang et al. 2019).

(2)	 High Accuracy: For a query node, the retrieved com-
munity should contain the highest possible number of 
nodes from its true community without including outli-
ers. As local methods usually expand the community 
one-node-at-a-time, it is worth mentioning that reach-
ing this goal is much harder than for global methods.

(3)	 Large Graph Handling: Communities exist in both 
small and large networks, even those with tens of 
millions of nodes and edges. It is important that the 
method could be applied to very large networks.

(4)	 Online Implementation: In real-world problems, it 
can be necessary to identify almost instantly the que-
ried community. Having this characteristic enables a 
method to find communities in real-time or a limited 
amount of time, and handle dynamic graphs.

Toward these goals, in this paper we introduce SIWO, our 
parameter-free method, that finds the community to which a 
given query node belongs. SIWO, which stands for “Strong 
In, Weak Out”, firstly places the query node inside the com-
munity then expands it one-node-at-a-time, similarly to most 
modularity-based methods (Clauset 2005; Blondel et al. 
2008). However, at each round, it selects the nodes having 
stronger connections to the current community. This notion 

of strong inward links and weak outward links was exploited 
in our global community mining algorithm of the same name 
(Gharaghooshi et al. 2020) that we extensively rework here 
for an efficient local community search. SIWO’s perfor-
mance does not depend on any preset parameter, which 
is a substantial advantage compared with many existing 
methods, including dense subgraph-based and motif-based 
methods. SIWO is also much faster than the current state-
of-the-art methods when applied on various real-world or 
synthetic networks because it only loads the required parts 
of the network into memory and therefore uses much less 
memory compared to competitors, thanks to a data structure 
described in Sect. 4.3. Moreover, if interrupted by a time 
constraint before finding the whole community, the algo-
rithm provides the intermediate set of nodes instead of an 
empty set for lack of time. This feature makes it a perfect 
choice for analyzing substantially large graphs. In addition to 
its preeminent task of locally detecting a query node’s com-
munity, this method can also find the entire partitioning of a 
given graph, of overlapping or non-overlapping communi-
ties, by applying the local method iteratively on nodes ran-
domly selected in the graph’s unexplored part. Finally, it can 
also handle weighted networks. Various experiments that are 
conducted on real and synthetic networks show that SIWO 
outperforms the state-of-the-art local and global methods 
in both accuracy and robustness and confirm its abilities.

The rest of the paper is organized as follows. In Sect. 2, 
we introduce some related work on different families of 
local community detection algorithms. In Sect. 3, we define 
notions used in the paper and illustrate them with exam-
ples. Section 4 provides a detailed description of our method 
and it explains why SIWO is faster than existing triangle-
based approaches. Section 5 describes two variants of SIWO 
designed to detect the entire partitioning of a given network 
(SIWO+) or to handle a weighted graph (SIWOw). The 
experiments and comparisons of SIWO with contenders 
are presented in Sect. 6 as well as experiments confirming 
its capability to detect the core of the community when a 
limited time budget is allocated such that the search must 
be interrupted. Section 7 illustrates the good behavior of 
the variants SIWO+ and SIWOw. Finally, Sect. 8 concludes 
this paper.

2 � Related work

In general, community detection and community search have 
different goals: while community detection usually targets 
all communities of a network, the latter performs egocentric 
community discovery for some query vertices. Specifically, 
community search is aimed at finding a densely-connected 
subgraph that contains all query nodes. A random-walk, 
density, or closeness measure can be used to evaluate the 



Social Network Analysis and Mining (2023) 13:112	

1 3

Page 3 of 21  112

qualities of the community resulting from the search. One 
of the most widely used measures is the minimum degree, 
defined as the minimum degree of all the vertices in the 
subgraph induced by a community (Sozio and Gionis 2010). 
If initially the local search problem has been solved using 
a global approach that needs to visit the entire input graph 
(Sozio and Gionis 2010), more efficient methods based on 
local approaches have been introduced later (Cui et al. 2014; 
Barbieri et al. 2015).

Community detection consists of grouping the graph ver-
tices into subsets, considering the edge structure of the graph 
so that there should be many edges within each community 
and relatively few between the groups (Girvan and New-
man 2002). One can speak of graph partitioning when the 
process builds a partition of the set of nodes. Still, variants 
of the task can also generate overlapping communities so 
that one node can belong to several groups or, a sequence of 
partitions describing the communities’ hierarchical organi-
zation. Several methods have been proposed in the litera-
ture to detect the community structure of the whole network 
among which we can mention spectral algorithms, dynamic 
or diffusion-based processes such as Walktrap (Pons and 
Latapy 2005), Infomap (Rosvall and Bergstrom 2008), and 
Label propagation (Raghavan et al. 2007), function opti-
mization-based methods including Louvain (Blondel et al. 
2008), Leiden (Traag et al. 2019), and EdMot (Li et al. 2019) 
that exploit the well-known modularity, generative models 
using Bayesian inference, stochastic block modeling or deep 
neural networks and embedding techniques (Su et al. 2022). 
We do not detail them here since it is not the main topic of 
the paper and, refer the interested reader to (Fortunato 2010; 
Fortunato and Hric 2016; Dao et al. 2020; Souravlas et al. 
2021; Su et al. 2022).

However, there is also another type of methods that func-
tions locally. They need a query node and aim to identify all 
the other nodes of the network belonging to its community. 
Thus, by following this local approach, community detec-
tion joins community search. Nevertheless, as Baltsou et al. 
pointed out, “Local community detection (LCD) is used in 
the literature for two similar problems. On the one hand, it 
refers to finding the community to which a seed node (or 
group of seed nodes) belongs. On the other hand, it refers to 
a method that uses local information to discover all commu-
nities in the network” (Dilmaghani et al. 2021; Baltsou et al. 
2022). Thus it is important to note that this paper is devoted 
to the first problem for which, SIWO, the method we intro-
duce, has been designed, even if one of its variants, SIWO+ 
makes it possible to treat the second problem (see Sect. 5).

Many algorithms have been proposed to search for a high-
quality community around a query vertex, but, to our knowl-
edge, there is only one survey related to local community 
detection which proposes a typology of the techniques in 
terms of network type (static, dynamic, etc) and techniques 

(greedy or non-greedy) (Baltsou et al. 2022). In this paper, 
we consider only static networks and categorize the methods 
into three families. Methods in the first family are based on 
various cohesiveness metrics which evaluate the quality of 
the community and return a dense subgraph which can be 
a K-core (Fang et al. 2020), a K-truss (Huang et al. 2014), 
or a K-clique (Palla et al. 2005) to cite a few. In theory, any 
of these dense subgraphs can be used to model the searched 
community. However, finding such cohesive subgraphs in a 
given network is an NP-hard problem, making this family’s 
methods unsuitable for real-time query processing (Huang 
et al. 2019). To overcome this, methods that use heuristics 
(Sozio and Gionis 2010) or quasi-subgraphs (Brunato et al. 
2008) have been introduced and compared by Fang et al. 
(2019). Other experiments and theoretical analyses, done by 
Huang et al. (2019), show using k-clique models (Palla et al. 
2005; Cui et al. 2013) leads to the most cohesive structures 
and that the methods based on K-core (Cui et al. 2014; Bar-
bieri et al. 2015) seem to be the most efficient and suitable 
for real-time query processes. However, they do not guaran-
tee connectedness in communities, and consequently, they 
lack cohesiveness. Finally, the K-truss based models (Huang 
et al. 2014, 2015; Akbas and Zhao 2017) achieve a balance 
between quality and efficiency on moderate-to-large graphs, 
making it the best choice for the community detection pur-
pose among all other cohesive-based approaches, including 
LCTC (Huang et al. 2015) which has been shown to work 
on large networks. However, in real networks, communities 
are rarely likely to be perfect cliques or even quasi-cliques, 
limiting the use of this approach in certain cases.

Another family of local community detection methods 
functions based on motifs, patterns of interconnections 
occurring in real networks in higher numbers than in rand-
omized networks (Milo 2002). In this family, MAPPR (Yin 
et al. 2017) generalizes APPR (Andersen et al. 2006). It 
seeks clusters of nodes based on higher-order network struc-
tures, with minimal motif conductance. This measure has 
been retained because it has been used with success as a 
clustering criterion (Schaeffer 2007) notably in that type of 
community detection methods (Yang and Leskovec 2013). 
Even though MAPPR introduces cliques of sizes larger than 
3 as motifs for local community detection, various experi-
ments show motifs larger than 3 cannot accurately capture 
the community (Slater et al. 2014). Moreover, in some cases, 
edges (i.e., cliques of size 2) are more effective, and APPR, 
which uses edges, performs better than MAPPR. But, both 
methods have some parameters, especially the tolerance 
parameter � , and the teleportation parameter for the random 
walk � , that need to be precisely tuned for accurate com-
munity detection.

The third family of local approaches attempts to maxi-
mize a quality function, by initially placing the query node 
in the community and then expanding it. Usually, the quality 
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function compares the intensity of the relationships inside 
the community and outside it. Modularity R (Clauset 2005) 
and modularity M (Luo et al. 2006) are two well-known 
methods in this category, but one can also mention Bagrow 
and Bollt (2005) or Chen et al. (2010). Recently, Luo et al. 
(2018) proposed two methods, DMF_R and DMF_M, which 
are claimed to outperform Modularity R and M. However, 
the published results are not reproducible, and we cannot 
use them in comparative experiments due to the lack of 
publicly available code. Metric T (Fagnan et al. 2014) is 
another modularity-based method that improves on R and 
M in terms of accuracy but it is very time-consuming, as 
it needs to re-count the number of triangles to which each 
newly added node belongs in each round. Finally, there is 
also MWC (Bian et al. 2017) which employs multiple walk-
ers to explore the network for local cluster identification.

According to Baltsou et al. (2022), Hamann et al.’s Trian-
gle-Based Community Expansion (TCE) method (Hamann 
et al. 2017) is the best method focusing on node selection. 
TCE is fundamentally based on the Local Tightness Expan-
sion (LTE) algorithm (Huang et al. 2011), as both exploit the 
fact that some edges are more embedded in their neighbor-
hood and have more common neighbors than others. LTE 
uses an edge similarity score based on triangles for deciding 
which node to add next and for determining the quality of the 
community. TCE, on the other hand, also uses an edge score 
based on triangles, but employs conductance for the quality 
function of the community. Baltsou et al. (2022) highlight 
that experimental evaluations show that TCE exhibits solid 
performance and often finds the correct community, building 
on the already excellent performance of the computation-
ally more expensive LTE on most tested graphs. However, a 
significant drawback of both LTE and TCE is that they use 
NetworKit1 for their implementation, requiring the entire 
graph to be loaded into the main memory, making these 
algorithms infeasible for handling large networks.

In this paper, we propose SIWO, a method that also 
belongs to the third family, as it aims to optimize a quality 
function. However, unlike the state-of-the-art methods, its 
quality function is not an extended version of modularity, 
which is known for its resolution and field of view limits 
(Lancichinetti and Fortunato 2011). Instead, SIWO directly 
exploits the notion of edge strengths, a well-known concept 
in the literature introduced by Granovetter (1983), to capture 
the neighborhood’s density around other nodes, and evalu-
ates an edge’s strength using the number of triangles shared 
by its endpoints. SIWO starts by placing the query node 
inside an empty community and then expands this commu-
nity one node at a time by selecting nodes with stronger con-
nections to the current community. The algorithm produces 

very accurate deterministic results and has the advantage of 
being parameter-free. Moreover, SIWO is faster than the cur-
rent state-of-the-art methods, as it does not need to load the 
whole graph in main memory, unlike other methods. This 
performance advantage is confirmed by our experiments and 
discussed further in Sect. 6.

3 � Preliminaries

Before presenting our method, we introduce the notations 
used throughout this paper. We consider an undirected and 
unweighted graph G = (V ,E) , where V is the set of vertices 
( |V| = n ) and E, the set of edges ( |E| = m ). Without loss of 
generality, we assume that G is connected, which necessi-
tates there is a path connecting any node u ∈ V  to any other 
node v ∈ V  . As we need to find a community developed of 
a connected group of nodes, we can argue this premise does 
not harmfully affect the final detected community.

We assign a strength value to all edges inside the graph, 
representing that edge’s tendency to be inside a community 
rather than between communities. The higher the strength, 
the higher its tendency to be an inner link. Many previous 
works, especially methods that attempt to optimize a local 
modularity criterion, use only the presence of edges to deter-
mine the best next node that must be merged to the commu-
nity and they ignore other kinds of structural property of the 
network. We consider that exploiting larger patterns namely 
triangles (i.e., triplets of linked nodes) can help to detect 
a more cohesive community. There are two advantages in 
using triangles to determine the strength of an edge: 

(1)	 We search communities that are as cohesive as possible 
inside a given graph. With this idea in mind, cliques 
can be considered a reasonable choice to look for, as 
they are the most cohesive structure that several nodes 
can construct. Thus we focus on subgraphs consisting 
of nodes that participate in forming cliques of size 3, 
or triangles, generally denser than subgraphs made by 
nodes connected only via edges (such nodes belong to 
cliques of size 2).

(2)	 We need to look for patterns that repeat more often in 
a given graph. Increasing the size of a clique leads to 
more cohesive patterns, but these are significantly rarer. 
Various observations on real and synthetic networks 
show triangles are generally the most reoccurring sub-
graph compared to any other size cliques.

To explain how cliques of size three are used to compute 
the strength of an edge, we introduce the following notions.

Definition 1  (Support) Given a graph G = (V ,E) , the sup-
port of the edge eu,v is the number of mutual neighbors of u 1  https://​netwo​rkit.​github.​io/.

https://networkit.github.io/
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and v or the number of triangles that eu,v belongs to and it is 
defined as follows:

Example 1  Considering Fig. 1, sup(e1,5) = 3 as there are 
exactly three triangles Δ1,3,5 , Δ1,4,5 , and Δ1,5,6 that own the 
edge e1,5.

Then, during the community detection process, the neigh-
borhood of the detected community is defined as the shell 
set.

Definition 2  (Shell set) Given a graph G = (V ,E) , the shell 
of the community C, denoted by shell(C) is defined by:

The shell of the community C is the group of nodes that are 
not in C, but that are connected to at least one node belong-
ing to that community C.

Example 2  Consider Fig. 2. If C = {v1, v2, v3, v4} (orange 
nodes), then shell(C) contains the green nodes directly con-
nected to one node (nodes v6, v9 ) or multiple nodes (nodes 
v5, v7 ) in C ∶ shell(C) = {v5, v6, v7, v9}.

Definition 3  (Peripheral node) Given a graph G = (V ,E) , 
a peripheral node is a node with degree one. We formally 
define the set of all peripheral nodes in G as follows:

where VN(v) corresponds to the set of neighbors of node v.

(1)sup(u, v) = |{w ∈ V , eu,w, ev,w ∈ E}|

(2)shell(C) = {v ∈ V , v ∉ C s.t. ∃u ∈ C, eu,v ∈ E}

(3)peripheral-nodes(G) = {v ∈ V s.t. |VN(v)| = 1}

Example 3  Considering Fig. 1, node v7 , depicted with blue 
color, is a peripheral node, as it is connected only to node v3.

Finally, we can define the notion of link’s strength.

Definition 4  (Link’s strength) Given a graph G = (V ,E) and 
a vertex u ∈ V  , we define the strength of the link connecting 
u to a node v ∈ VN(u) , where VN(u) is the set of neighbors 
of u, as follows:

where supu,max = maxw∈VN (u)
{sup(u,w)} is the maximum 

support of u and any node in VN(u) . In this formula, since 
the numerator in each fraction is always less than (or equal 
to) the denominator, each fraction is always in the range of 
[0, 1]. By subtracting 1 from the sum of the fractions, the 
link’s strength takes a value between [−1,+1] which gives 
us a better way to compare the strengths and handle them 
in an algorithm. However, it can also be normalized to have 
merely positive values between [0,+1] as follows:

In both Eqs.  4 and  5, if supu,max = 0 or supv,max = 0 , 
then sup(u, v) = 0 and we assume that part of the equation 
is zero. Both equations indicate the higher the number of 
mutual neighbors of a pair of connected nodes, the higher 
the strength of the link that connects them. These values are 
computed only for the edges connecting nodes in the shell 
to the community and exploited by our algorithm to find the 
best candidate to expand the community locally. Still, this 
best candidate is added to the community only if it increases 
the total strength of the edges inside the community. The 

(4)su,v =
sup(u, v)

supu,max

+
sup(u, v)

supv,max

− 1

(5)s
u,v =

sup(u, v)

2

(
1

sup
u,max

+
1

sup
v,max

)

Fig. 1   Peripheral node (7 in blue) (Color figure online)
Fig. 2   Community ({1, 2, 3, 4} in orange) and its shell ({5, 6, 7, 9} in 
green) (Color figure online)
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choice of using supu,max as the denominator in Eqs. 4 and 5 is 
rooted in our intention to normalize the strength values. By 
doing so, we aim to provide a relative measure of strength 
that is consistent across the graph, irrespective of the degree 
of the nodes. This ensures that the strength value reflects the 
relative importance of the connection in the context of the 
node’s other connections. Specifically, for a node with a high 
degree, even if it has a large number of mutual neighbors 
with another node, the strength value might not be as sig-
nificant if it has even stronger connections with other nodes. 
Conversely, for a node with a smaller degree, a few mutual 
neighbors can be quite significant. This approach allows us 
to capture the community structure in the graph more effec-
tively, ensuring that the strength value is not just an absolute 
measure but a relative one that takes into account the broader 
connectivity patterns of the nodes involved.

4 � Proposed approach

This section is dedicated to the proposed approach. First 
it describes the local community discovery method SIWO, 
then it explains how SIWO can also be applied in two dif-
ferent settings: with multiple query nodes or with a limited 
time budget. Finally, it details how the optimizations allow 
it to handle large networks.

4.1 � Local strong and weak link

Our novel local community search method SIWO starts 
with placing the query node(s) inside an empty community. 
Then it explores locally to find the best node among the 
set of nodes in the community’s neighborhood in each step 
to expand it by one node at a time and ultimately return 
the desired community around this given query node. Our 
method iteratively performs four steps to construct the 
community and one last step to adjust it, as stated in Algo-
rithm 1. Its different steps are as follows: 

(1)	 Update shell set: Initially, as there is no community, 
there is no shell either. After placing the query node u 
inside the community C, all other nodes connected to 
u go into the shell S. If the query node is a peripheral 
node, its single neighbor replaces the query node, as a 
peripheral node cannot usually generate a justifiable 
community. At the next rounds, we must only update S 
by removing from it node v, which joined C in the pre-
vious round, and adding to the shell the nodes directly 
connected to v that do not already belong to C. The 
updated shell denoted S′ is determined as follows: 

(6)S� = (S ∪ (VN(v) − C)) − {v}

 where VN(v) corresponds to the set of neighbors of 
node v. The shell set S not only corresponds to the 
neighborhood of the community C but it also contains 
all candidates that may join the community in forth-
coming steps. It is worth mentioning that by adding 
nodes only from S to C at each round, we guarantee 
the final detected community is a connected subgraph.

(2)	 Assign strength values: We identify a node from S with 
the strongest connections to the community C at each 
round and claim it is the best node among all candi-
dates, potentially joining C at the end of the current 
cycle. To find the best candidate, we need to assign 
strength according to Eq. 4 to each edge that connects 
any node in S to any node in C. We do this process 
locally, which means we do not need to access the 
whole network. We need only to compute the strength 
value su,v for each pair of nodes (u, v) where u ∈ C and 
v ∈ S.

(3)	 Select best candidate node: After the edge strengths are 
determined, we compute the strength of each potential 
community C′

i
 which is composed of every node in C, 

plus the ith node from the shell set. The strength of C′
i
 

is defined as the sum of the strength values of all edges 
inside that community. It is computed by: 

 Where vi is the ith node in the shell. After calculating 
all s(C�

i
) s, we find the largest one and declare the cor-

responding node vj to be the best candidate only if 
s(C�

j
) > s(C) then continue to the next step. Otherwise, 

the community C will no longer expand and the algo-
rithm goes to the reformation process (Step 5). The last 
condition ensures a node joins C only if it improves its 
strength.

(4)	 Expand community: Now that SIWO found the node 
which improves the community’s strength the most, it 
has to expand the community C by including that node 
to C. 

If the community expands, the algorithm continues by 
returning to step (1) with the newly developed community 
C = C� and S ready to be updated, with the process repeat-
ing. If the community remains the same, the algorithm 
refines the last obtained community. 

(5)	 Reform community: Finally, any peripheral node con-
nected to a node of C is added to the community. 
Indeed, a peripheral node cannot join any community 
without this last step, as the sole edge that connects it 

(7)s(C�
i
) =

∑

u,v∈C

su,v +
∑

u∈C

su,vi

(8)C� =

{
C ∪ {vj} if s(C�

j
) > s(C)

C otherwise
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to the rest of the graph cannot belong to any triangle 
and thus, such an edge cannot improve the community’s 
total strength. Although appending peripheral nodes in 
this way is intuitively acceptable because they can only 
be a part of their sole neighbor’s community, in some 
applications, such nodes are considered to be outliers 
and stay out of the community. So, adjusting the com-
munity is done based on user preference.

Algorithm 1 SIWO : A local community search algorithm
Input: Graph G and query node(s) {q}
Output: The community C of the query node(s) {q}

� Initialization
C = {q}, S = VN (q)
while S �= ∅ do

� Assign Strength Values
For all v ∈ S, calculate the strength of s(C ∪{v}) according to Equation 7
� Select best candidate node
Find the node u in S which maximizes s(C ∪ {v}) for all v ∈ S
if s(C ∪ {u}) ≥ s(C) then

� Expand Community
C = C ∪ {u}
S = S ∪ (VN (u)− C))− {u}

end
else

break
end

end

� Reform Community
C = C∪P where P is the set of peripheral nodes that are connected to a node
in C
return C

In SIWO, the stopping condition is crafted to balance preci-
sion and efficiency. Its primary objective is to ensure that 
the detected community is cohesive, reflecting the local 
structure around the query node. At the same time, it aims 
to preserve the locality of the search, preventing unneces-
sary expansion into distant regions of the graph. When using 
Eq. 4, the stopping condition is inherently tied to the link 
strength values, which span from negative to positive. While 
this provides a natural halting point in smaller datasets, in 
larger networks it can lead to the inclusion of a vast number 
of nodes, often beyond the genuine community boundaries. 
Similarly, when using Eq. 5, the link strengths are non-
negative, the challenge of over-expansion persists. This risk 
is alleviated by introducing a threshold as a heuristic stop-
ping condition. This threshold (currently set to 1) ensures 
that the community only expands when nodes of significant 

connection strengths are considered, preventing over-expan-
sion into less relevant regions of the graph.

The choice of this threshold, while empirical, was based 
on preliminary observations across diverse datasets. It serves 
as a balance between precision and recall, ensuring that the 
detected community remains cohesive and accurately repre-
sents the local structure around the query node. As seen in our 
experiments in Sect. 6.1, datasets with well-defined, tightly-
knit communities often resonate better with Eq. 4, while those 
with more intricate, overlapping community structures may 
benefit from Eq. 5. While further empirical analysis could 
provide more efficient threshold values for different datasets, 
the current study offers a foundational approach, with deeper 
explorations earmarked for future work.

Note that to further improve the efficiency of the algo-
rithm, Step 5 (Reform Community) could be eliminated and 

merged with Step 1 (Update Shell Set). Indeed, instead of 
letting a peripheral node lurk in the shell set for the whole 
process till the end, it can de facto be added to the commu-
nity once it is identified in the Shell set. Similarly, in Step 
3 (Select Best Candidate Node) if there is more than just 
one best node to add, instead of adding one and leaving the 
others for the next iterations, we could add all the top nodes 
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that have equal strength contribution in one round avoiding 
additional iterations.

4.2 � Community discovery with a set of query nodes

SIWO is able to start with more than one query node. In 
such a case, SIWO starts by placing all query nodes in C, 
and S will contain the neighbors of all query nodes which 
are not themselves query nodes. Although using an appropri-
ate set of query nodes results in a connected community as 
expected, querying multiple unrelated nodes of course does 
not guarantee this connectivity.

4.3 � Community discovery with a limited time 
budget and limited memory

Most search methods require significant time to find a com-
munity in dense networks, and do not produce results until the 
process is finished. In contrast, SIWO can produce a result 
even if it is interrupted. Given a limited time budget, it gener-
ates the core part of the community. When the allotted time is 
less than the required time to find the whole community, SIWO 
discovers and returns the part of the community composed of 
the nodes with the strongest connection to the query node’s 
community found up to the interruption time. Memory is a 
constraint for algorithms that must load the entire very large 
network. This can be a significant bottleneck for processing 
massive networks. However, SIWO is designed to handle very 
large networks with limited memory resources, making it suit-
able for a wide range of applications. The way SIWO achieves 
this is explained in detail in Sect. 4.4, where the optimization 
techniques and data structures used are outlined.

4.4 � Optimizing SIWO

4.4.1 � Efficient memory management

In order to efficiently process large networks while conserv-
ing memory, SIWO employs a unique approach that involves 
selectively reading and storing the necessary information 
from the network file. This is achieved by utilizing a special-
ized data structure to store relevant information about the 
required part of the graph, thus minimizing memory usage 
while also making file access faster. This data structure con-
sists of four components: A list of line break locations up 
until the maximum node number that was requested from 
the file, a dictionary of neighbors for each required node, 
a dictionary of required edge strengths, and a dictionary of 
required node pair support values.

To optimize memory usage, the graph is first pre-processed 
using a Map-Reduce program that converts the file to an adja-
cency list format, with the rule that “line number n consists of all 
the nodes that are adjacent to node n.” During the execution of 

SIWO, each time the neighbors of a node are requested, the data 
structure is checked to see if the neighborhood information for 
that node already exists. If not, the algorithm uses the line break 
locations to quickly reach the required line and stores the unseen 
line break locations in the process. Similarly, whenever the cal-
culation of the support of a pair of nodes or the strength of an 
edge is requested, the corresponding dictionaries are first checked 
for the required information. If not found, the data structure is 
updated accordingly after the necessary calculations.

This optimization process not only reduces memory usage 
but also speeds up the algorithm’s execution time, since it 
avoids repeatedly reading and processing the entire network 
file, eliminating unnecessary I/O operations. By storing only 
the necessary information in memory and accessing it effi-
ciently, SIWO can perform its computations more quickly 
and with lower resource requirements, making it a practical 
solution for analyzing large-scale networks.

4.4.2 � Efficient candidate node selection

The improvement a candidate node can bring to a community’s 
quality can change as the community evolves since the edges 
connecting this candidate to the community may also alter. An 
advantage of SIWO, compared to the local modularity-based 
methods that exploit the support of the edges, such as Fag-
nan et al. (2014), relies upon its second step. Indeed, the time-
consuming part of SIWO, which calculates edge strengths, is 
independent of the community’s current state. Because of this 
advantage, our method does not require repeating the second 
step for every node in the shell of the community in each round. 
More precisely, local strength values are assigned to the edges 
connected to a candidate node only once during the entire 
process. Edge strength is agnostic to the current state of the 
community C. It is the strength that a given node adds to the 
community C that changes. This reduces the required time for 
the whole process by a considerable amount.

To make the third step of SIWO more efficient, we noticed 
that all the edges in the community C will be in all possible 
next-round communities C′

i
 . Thus we only need to consider the 

sum of strengths of the edges that connect the ith node from 
the shell set S to C when determining which node increases the 
total community strength by the greatest amount, rather than 
calculating the total strength of each C′

i
 . We also note that all 

edges connecting nodes in S − {vi} to nodes in C′
i
 will be the 

same as edges connecting S − {vi} to C plus the edges connect-
ing S − {vi} to vi . Therefore we can update the sum of edge 
strengths connecting a node in S to C rather than recalculating 
it at each iteration. We only perform a full calculation on the 
first iteration and store these sums for each node in S. When 
adding a node to the shell set in Step 1 we initialize its sum to 
0. For each subsequent iteration, we only need to consider the 
neighbors of the previously added best node vi , VN(vi) . For 
each vj ∈ VN(vi) if vj ∈ S then we add svi,vj to the strength total 
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for shell node vj . If vj ∈ C then all of its edges with nodes in S 
have already been added to their strength totals and no updat-
ing is needed. The best candidate node is then simply the node 
in S with the greatest strength sum. The problem of calculating 
the sum of strengths for all edges in every possible C′

i
 is 

reduced to a small number of addition operations and a linear 
scan through S for the highest sum.

Thus, one significant privilege of SIWO is that the total 
time required to return the desired community depends on the 
community’s size, not the given network. Indeed, the algo-
rithm’s first step can be done in O(c.d), where c is the number 
of nodes in C, and d is the nodes’ average degree, and it would 
be almost linear for large sparse networks. The second step 
can be done in O(c.d2) because we need to investigate each 
neighbor’s neighbors for all nodes in the community. In the 
third step, only the edges between the last node added to C 
and its neighbors need to be considered to update the running 
totals, which is O(d), and finding the maximum strength sum 
of S is linear in |S| , which is O(c.d), and so the whole process 
takes O(c.d + d) = O(c.d) time. We can fulfill the fourth step 
in a constant time as we only need to add one new node to the 
community’s current state. The reformation step takes O(c.d) 
time with proper implementation as we only need to see which 
neighbors of the nodes in C are peripheral nodes.

5 � SIWO variants: SIWO+ and SIWOw

5.1 � SIWO+: Global community detection

In addition to finding the community of a given query node, 
our approach can also detect all of the communities inside 

the network using only local information by applying SIWO 
multiple times, each time with a different starting node 
belonging to uncharted parts of the graph. It is important 
to note that our intention with SIWO+ is not to compete for 
efficiency with other global community mining algorithms; 
rather, we aim to demonstrate that SIWO, designed primarily 
for community search, can also be effectively employed for 
global community mining because of its flexibility.

After SIWO discovers the first community out of a ran-
dom node in G, it initiates another search by picking a new 
random node from the network’s unexplored part. By doing 
this, the algorithm iteratively finds communities inside 
the network until all communities are detected, meaning 
any node of G resides in a community. This variant of our 
method is called SIWO+.

In most cases, we are interested in having each node 
inside only one community. However, this is not always the 
case, and overlapping communities may be of interest for 
some applications. Thus, to have an implementation compat-
ible with both scenarios, we consider a set I for nodes that 
need to be ignored during the detection process. These are 
the nodes already in a community, so the algorithm will not 
consider them among the candidates for the next communi-
ties’ expansion during the subsequent discovery processes. 
When a task demands overlapping communities, meaning 
a node can be part of more than one community, we may 
clear set I before initializing any new community search 
to avoid ignoring nodes already placed in a detected com-
munity. Algorithm 2 reveals how our community detection 
mechanism works in either scenario where parameter ol is 
true when overlapping communities are sought for.

Algorithm 2 Global Community Detection with SIWO+
Input: Network G, Boolean Overlap Parameter ol (true means with overlap)
Output: Set P = {C1, C2, ..., Ck} of all communities of G

VP ← {} � set of processed nodes
I ← {} � set of nodes to be ignored in next discovery
P ← {} � final partitioning of the network

while Size(VP ) < |G| do
u ← a random node from {G.nodes− VP }
C ← SIWO(G− I,u)
P .append(C)
VP ← VP ∪ C

if ol = False then
I ← I ∪ C

end
return P
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While SIWO+ offers the flexibility to detect overlapping 
communities, it could be susceptible to excessive overlaps, 
where nodes might be part of multiple communities, if 
indeed the real data comprises all these overlaps. To manage 
the degree of overlap a user might want to limit, we could 
introduce a threshold parameter, � , which limits the number 
of communities a node can belong to. After a node is part 
of � communities, it is added to the ignore set I, even if the 
overlap parameter ol is set to true. This ensures that while 
communities can overlap, the extent of overlap is controlled, 
preventing nodes from being part of an unrestrained number 
of communities. Scoring criteria can also be introduced to 
keep only the relevant overlaps; however, this is beyond the 
scope of our targets for this paper on community search.

5.2 � SIWOw: Community detection on weighted 
networks

The topological structure of a network provides a great deal 
of information for community search. However, many net-
works are defined both by the presence of connections and 
the intensity of those connections. These edge weights can 
be crucial to understanding the network (Barrat et al. 2004). 
We therefore extend our approach to deal with weighted net-
works and call this variant SIWOw.

The extension to handle weights is straightforward. The 
only necessary modification is to the support calculation of 
Eq. 1. In the unweighted case, sup(u, v) is the count of com-
mon neighbors for nodes u and v, i.e. the number of triangles 
to which eu,v belongs. In the weighted case, we must assign 
a value to each triangle based on the edge weights. Several 
approaches have been tried for the similar problem of defin-
ing a weighted clustering coefficient (Saramäki et al. 2007). 
We adapt the approach of Onnela et al. (2005) who use the 
geometric mean of the three edge weights of the triangle. 
This matches our intuition that all three edges contribute 
to the formation of a triangle. We also experiment with the 
arithmetic mean, harmonic mean, and minimum to evaluate 
how sensitivity to large values impacts the community detec-
tion. The weighted support of eu,v is defined as:

where VCN is the set of common neighbors of nodes u and v, 
func is one of arithmetic mean, geometric mean, harmonic 
mean, or minimum, and weightu,v is the weight of the edge 
between nodes u and v. In the case of a weighted graph with 
all edge weights equal to 1, Formulas 1 and 9 will return 
the same support value and the results of the algorithm will 
be identical, which is what we desire. All other parts of 
the algorithm remain the same as in the unweighted case. 
The strength calculations of Formulas 4 and 5 still result in 

(9)sup(u, v) =
∑

w∈VCN

func(weightu,v, weightu,w, weightv,w)

values in ranges [−1,+1] and [0,+1] , respectively, regardless 
of the magnitude of the edge weights and support values.

Building on the idea of adapting a greedy community 
search approach for weighted networks, one might wonder 
why we did not simply adopt the direct edge weights as link 
strengths. However, note that direct edge weights may not 
always reflect the underlying community structure, particu-
larly in networks with a broad range of edge weight values. 
A high edge weight between two nodes might indicate a 
strong pairwise interaction without suggesting shared com-
munity membership. By employing the support calculation 
from Eq. 9, we integrate information from a node’s broader 
neighborhood, offering more accurate information on com-
munity affiliation as compared to only using edge weights. 
This approach ensures that the strength of a link is not just 
determined by its weight but also by the surrounding topo-
logical and weighted structure. Furthermore, our method 
ensures consistency with the unweighted version of the algo-
rithm, allowing for a unified approach to community detec-
tion in both weighted and unweighted graphs.

6 � Evaluation of SIWO

We first evaluate the performance of SIWO, designed for 
local community discovery, on real-world networks, with or 
without ground-truth, and compare it against the best meth-
ods of the state of the art in Sect. 6.1. Then, in Sect. 6.2, we 
use synthetic networks to study the behavior of SIWO and 
its competitors when the community structure is more or less 
well-defined. Finally in Sect. 6.3, we study the case where 
a limited time budget is allocated to the discovery of the 
community. All experiments are conducted on a commod-
ity laptop with 16 GB of memory. Note that the contenders 
that were selected for our experiments are chosen because 
of their availability and the ease of their implementation in 
the case of non-availability.

6.1 � Discovering local communities in real‑world 
networks

Data sets: We use only the first six real-world networks 
in Table 1 since the available communities for Youtube, 
Orkut, and Friendster have been functionally defined (Yang 
and Leskovec 2013) which does not constitute a confident 
ground truth (Rabbany and Zaiane 2015; Peel et al. 2017). 
An exception is made for DBLP and Amazon with which, 
knowing the researchers and the books, a sanity check on 
a sample can be done. The larger datasets are used later in 
Sect. 6.3. Table 1 shows the number of nodes (n), edges 
(m), and true communities (no. C) in each network and, the 
right-most column indicates if a network has overlapping 
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communities. The first four networks, Karate, Dolphins, 
Political Books, and Football are smaller and have disjoint 
communities whereas Amazon and DBLP are initially com-
posed of overlapping communities.

Evaluation protocol: In these experiments, we consider 
every different node successively as the query node and 
obtain its community, which is then compared with its true 
community using precision, recall, and F1 scores. We report 
the results corresponding to the average scores of all the 
query nodes (with standard deviation for F1 ). The best score 
for each data set is indicated in bold font.

Concerning the datasets with overlap (DBLP and Ama-
zon), we adopt the methodology used in the literature (Yin 
et al. 2017) to adjust the ground-truth for these datasets by 
merging all communities that a query node belongs to into a 
new subset and use it as the ground-truth community that is 
expected to be discovered. We then ignore the obtained sub-
sets having less than 10 nodes (as they probably correspond 
to noise). Then, we limit our selection of query nodes to the 
nodes whose adjusted ground-truth community’s size does 
not exceed 100 for both Amazon and DBLP. Following this, 
the average sizes of communities under evaluation become 
39.17 and 25.44 respectively.

Baselines and settings: We compare our method SIWO to 
R (Clauset 2005), M (Luo et al. 2006), K-Truss (Huang et al. 
2014), APPR (Andersen et al. 2006), MAPPR (Yin et al. 
2017), MWC (Bian et al. 2017), TCE (Hamann et al. 2017), 
LTE (Huang et al. 2011) and LCTC (Huang et al. 2015). We 
do not compare against methods such as Akbas and Zhao 
(2017) or Fang et al. (2020) as they either require pre-pro-
cessed information (which makes the comparison unfair) 
or due to lack of access to functioning executable code. To 
avoid implementation bias, we use publicly available codes 

for LCTC and K-Truss,2 APPR and MAPPR,3 TCE and 
LTE,4 and MWC.5 However, we implemented SIWO6 as well 
as Modularity R and Modularity M in Python.

We run the experiments with different parameters for each 
method and report the best results. We use different values 
of K between 3 and 5 for K-Truss, resulting in the best accu-
racy for different networks. APPR and MAPPR have been 
executed with � = 0.98 and � = 0.001 and MWC has been 
used with � = 0.01 , K = 5 , and � = 0.9 . As these methods 
are sensitive to � and � , respectively, the authors generally 
advised using small values to reach a higher F1 score. Since 
MWC could not process some nodes in Amazon and DBLP, 
and Modularity M may return null communities, we retain 
only the nodes for which all the methods can discover a 
community.

Experimental results: As shown in Table 2, in 5 out of 6 
experiments on these real networks, at least one row dedi-
cated to SIWO achieves the highest F1 score, although it falls 
behind TCE only slightly in the case of the Football network. 
In the case of DBLP, both SIWO and MWC obtained the 
best F1 score, while SIWO has significantly higher preci-
sion. Concerning the different ways to compute the strength 
of the edges, we observe that Eq. 4 results in better F1 score 
for the Karate network, while Eq. 5 leads to a better score 
for other networks. For experiments involving Eq. 4, we 
employed a timeout of 0.01 s. This timeout acts as a second-
ary stopping condition, ensuring that the algorithm remains 
computationally efficient without compromising the quality 
of the detected communities. In smaller graphs, this time-
out is often inconsequential due to the rapid computation. 

Table 1   Characteristics of the 
real-world networks

ahttps://​law.​di.​unimi.​it/​webda​ta/​uk-​2002/

Networks n m No. C Overlap

Karate (Zachary 1977) 34 78 2 No
Dolphins (Lusseau 2003) 62 159 2 No
Pol Books (Adamic and Glance 2005) 105 441 3 No
Football (Girvan and Newman 2002) 115 613 12 No
DBLP (Yang and Leskovec 2013) 317,080 1,049,866 13,477 Yes
Amazon (Yang and Leskovec 2013) 334,863 925,872 75,149 Yes
Youtube (Yang and Leskovec 2013) 1,134,890 2,987,624 8,385 Yes
Orkut (Yang and Leskovec 2013) 3,072,441 117,185,083 6,288,363 Yes
UK-2002a 18,520,486 298,113,762 N/A N/A
Twitter (Kwak et al. 2010) 41,652,230 1,468,364,884 N/A N/A
Friendster (Yang and Leskovec 2013) 65,608,366 1,806,067,135 1,449,666 Yes

2  Code available via request to authors.
3  https://​snap.​stanf​ord.​edu/​mappr/​code.​html.
4  https://​github.​com/​kit-​algo/​LCD-​cliqu​es-​exper​iments.
5  https://​sites.​psu.​edu/​yuche​nbian/​files/​2019/​08/​MWC_​relea​se.​zip.
6  https://​github.​com/​taleb​irad/​SIWO

https://law.di.unimi.it/webdata/uk-2002/
https://snap.stanford.edu/mappr/code.html
https://github.com/kit-algo/LCD-cliques-experiments
https://sites.psu.edu/yuchenbian/files/2019/08/MWC_release.zip
https://github.com/talebirad/SIWO
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However, in larger networks, it serves as a practical con-
straint, ensuring that SIWO remains both local and efficient. 
For experiments involving Eq. 5, no such timeout is needed.

Running time: SIWO is also faster than other methods. 
It finds the communities of queried nodes of Amazon in 
less than 100 ms on average, while the average times for 
K-Truss, APPR, MAPPR, MWC, LTE, TCE, and LCTC are 
6.76, 2.68, 5.13, 0.57, 35.30, 11.84, and 4.87 s, respectively.

The Orkut dataset (Yang and Leskovec 2013) contains 
more than 100 million edges and presents a challenge for 
finding an adequate group of nodes forming a community 
for a query node. Our experiments demonstrated that none 
of the existing methods mentioned above could, in a reason-
able time, find communities for a set of random query nodes 
in Orkut, except LCTC, but LCTC is significantly slow as 
shown in Table 5. In contrast, SIWO is capable of discover-
ing the community, or at least the core of the community 
(consisting of nodes with the strongest connections to the 
community) in a matter of minutes on a commodity laptop. 
Given a limited time budget, the process can halt and pro-
vide the nodes of the community with the strongest links to 
the query node. Other methods return an empty set if halted. 
In the next experiment, we further analyze and compare the 
methods in terms of speed.

6.2 � Discovering local communities in synthetic 
networks

We compare SIWO with a number of different algorithms 
on synthetic LFR benchmark networks (Lancichinetti et al. 
2008) to analyze their behavior when the community struc-
ture is more or less well-defined.

Synthetic data sets: We study the performances of the 
methods in function of � , the fraction of inter-community 
edges incident to each node. � increases from 0.10 to 0.45 
to deteriorate the community quality in the networks so 
that it is more difficult to find the true communities. We 
do not consider values for � higher than 0.45, which means 
nodes having more edges out of the community rather than 
inside and, consequently, contradicts the general definition 
of a community. The number of nodes n is set to 10,000, 
the average degree is 20, the communities’ sizes range 
from 15 to 60, the number of communities is between 500 
and 540, the power law exponent for the degree distribu-
tion ( �1 ) is set to 8, and the power law exponent for the 
community size distribution ( �2 ) is set to 5.

Baselines and settings: We do not consider K-Truss, 
TCE, LTE, and LCTC in this experiment due to their lack 
of efficiency, particularly for large datasets. MWC is very 
sensitive to its � parameter such that a large value stops the 
code and prevents it from finding communities. This issue 
occurs more frequently as the density or the mixing param-
eter of the network increase. To avoid such problems, the 

parameters must be carefully selected. The parameters 
used in Sect. 6.1 for MWC lead to proper functioning. We 
use the same parameters as before for APPR and MAPPR, 
which lead to their best performance. We use every node 
of these networks as query nodes separately and calculate 
the average F1 score over all of them.

Experimental results: Fig.  3 shows similar F1 score 
for MAPPR and SIWO which perform better than other 
methods. All methods’ efficiency drops more or less as � 
increases. The performance of MAPPR strongly depends on 
carefully setting up its parameters, whereas SIWO is param-
eter-free. Although APPR performs accurately when a com-
munity’s quality is high, it cannot maintain such accuracy for 
higher values of � . Similarly, modularity R’s performance 
falls significantly with the increase of � . Still, Modularity M 
and MWC seem to be able to discover communities of these 
synthetic networks with high accuracy; however, they could 
not reach the level of MAPPR and SIWO.

Running time of SIWO: Table  3 shows the average 
required time for each method to retrieve the community 
of a queried node as a function of the mixing parameter 
� . Even though SIWO is implemented in Python while 
MWC, APPR, and MAPPR are all implemented in C++, we 
observe that SIWO needs significantly less time on average 
to discover communities, owing to the optimizations men-
tioned in Sect. 4.4. It is worth noting that no algorithm needs 
pre-computed information, and they all find the communities 
on the fly using local properties. As � increases, the number 
of interconnections between nodes in different communi-
ties raises, leading to more complications for most methods 
attempting to find a queried node’s community, which results 
in more time.

6.3 � Community discovery with a limited time 
budget and limited memory

One key feature of SIWO is that it can return intermediate 
results before finishing a search. In other words, SIWO can 
output the discovered community up to the allotted time, 
which is basically a subset of the targeted community. To 
compute the quality of the intermediate results by compar-
ing it to the corresponding ground truth using precision, 
recall, and F1 Score, we have conducted an experiment on 
a large synthetic network generated with LFR benchmark 
(Lancichinetti et al. 2008). The network is generated by set-
ting the number of nodes to 1 million, � to 0.3, �1 and �2 to 
2 and 1 respectively, average degree to 100, and maximum 
degree to 300. We took each node of a community of 183 
nodes as a query node and ran the algorithm several times 
for different amounts of timeout. Then, for each value of 
timeout, we took the average of the metrics calculated on 
each of the output communities. To show the magnitude of 
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the expansion, we have also counted the number of nodes 
visited by the algorithm, as well as the strength and size of 
the community found so far, per each combination of query 
node (inside the community) and timeout. The results for 
this experiment are shown in Table 4.

We can see that recall and F1 Score have a direct relation 
with the input timeout, which is expected. This means that 
SIWO is generating meaningful results, even if there is a 
limited time. Also, as we give the algorithm more time, it 
brings nodes that increase the community strength inside 
the community, until the stopping condition is met (at which 
point the algorithm will stop even if we give it more time, 
as illustrated in the last row of the table). To the best of our 

knowledge, there are no claims regarding the possibility of 
yielding a result before completion by the previously pro-
posed algorithms, and cannot be (at least trivially) extended 
to do so. Based on the standard deviations, we can also see 
that the results do not differ greatly by selecting different 
query nodes inside the same community. In fact, SIWO 
seems to provide nearly the same results for all query nodes 
in a community, if enough time is given to the algorithm. 
This shows that SIWO does not suffer from one of the most 
important issues that was imposed by similar local commu-
nity search algorithms (especially modularity-based meth-
ods), which is the sensitivity of the output community to 
the initial query node. In other words, the expansion using 

Table 2   Community discovery: average precision, recall, and F
1
 scores (± the standard deviation for F

1
 ) computed over the query nodes on real-

world networks

Bold numbers indicate the best score for each data set

Karate Dolphins Political books Football DBLP (10–100) Amazon (10–100)

R (Clauset 2005) P = 0.881 P = 0.971 P = 0.776 P = 0.680 P = 0.421 P = 0.592

R = 0.589 R = 0.323 R = 0.481 R = 0.735 R = 0.239 R = 0.288

F1 = 0.667 ± 0.246 F1 = 0.446 ± 0.236 F1 = 0.525 ± 0.343 F1 = 0.699 ± 0.372 F1 = 0.261 ± 0.246 F1 = 0.325 ± 0.248

M (Luo et al. 
2006)

P = 0.873 P = 0.947 P = 0.747 P = 0.824 P = 0.445 P = 0.611

R = 0.689 R = 0.422 R = 0.558 R = 0.894 R = 0.285 R = 0.351

F1 = 0.717 ± 0.292 F1 = 0.503 ± 0.344 F1 = 0.572 ± 0.350 F1 = 0.842 ± 0.260 F1 = 0.281 ± 0.252 F1 = 0.366 ± 0.262

K-Truss (Huang 
et al. 2014)

P = 0.592 P = 0.718 P = 0.717 P = 0.854 P = 0.259 P = 0.529

R = 0.628 R = 0.401 R = 0.810 R = 0.890 R = 0.333 R = �.���

F1 = 0.554 ± 0.185 F1 = 0.502 ± 0.329 F1 = 0.738 ± 0.280 F1 = 0.865 ± 0.236 F1 = 0.180 ± 0.275 F1 = 0.402 ± 0.274

APPR (Andersen 
et al. 2006)

P = 0.969 P = 0.959 P = 0.756 P = 0.729 P = 0.348 P = 0.567

R = 0.802 R = 0.710 R = 0.750 R = �.��� R = 0.369 R = 0.419

F1 = 0.843 ± 0.217 F1 = 0.749 ± 0.326 F1 = 0.715 ± 0.308 F1 = 0.762 ± 0.319 F1 = 0.247 ± 0.251 F1 = 0.408 ± 0.259

MAPPR (Yin et al. 
2017)

P = �.��� P = �.��� P = 0.788 P = 0.888 P = 0.398 P = 0.654

R = 0.712 R = 0.281 R = 0.603 R = 0.897 R = 0.341 R = 0.340

F1 = 0.775 ± 0.295 F1 = 0.387 ± 0.274 F1 = 0.630 ± 0.343 F1 = 0.858 ± 0.231 F1 = 0.271 ± 0.250 F1 = 0.354 ± 0.256

MWC (Bian et al. 
2017)

P = 0.906 P = 0.947 P = 0.777 P = 0.872 P = 0.371 P = 0.569

R = 0.806 R = 0.518 R = 0.616 R = 0.893 R = �.��� R = 0.403

F1 = 0.852 ± 0.021 F1 = 0.643 ± 0.191 F1 = 0.657 ± 0.310 F1 = 0.875 ± 0.245 F
1
= �.��� ± �.��� F1 = 0.406 ± 0.258

LTE (Huang et al. 
2011)

P = 0.946 P = 0.985 P = 0.807 P = 0.906 P = �.��� P = 0.678

R = 0.560 R = 0.355 R = 0.399 R = 0.839 R = 0.261 R = 0.356

F1 = 0.673 ± 0.225 F1 = 0.480 ± 0.238 F1 = 0.472 ± 0.321 F1 = 0.863 ± 0.233 F1 = 0.308 ± 0.249 F1 = 0.403 ± 0.271

TCE (Hamann 
et al. 2017)

P = 0.920 P = 0.971 P = 0.796 P = 0.900 P = 0.540 P = 0.649

R = 0.580 R = 0.316 R = 0.536 R = 0.894 R = 0.235 R = 0.359

F1 = 0.681 ± 0.202 F1 = 0.440 ± 0.225 F1 = 0.572 ± 0.345 F
1
= �.��� ± �.��� F1 = 0.282 ± 0.246 F1 = 0.398 ± 0.279

LCTC (Huang 
et al. 2015)

P = 0.990 P = 0.987 P = �.��� P = �.��� P = 0.563 P = �.���

R = 0.227 R = 0.125 R = 0.113 R = 0.731 R = 0.131 R = 0.185

F1 = 0.364 ± 0.099 F1 = 0.216 ± 0.095 F1 = 0.196 ± 0.072 F1 = 0.798 ± 0.224 F1 = 0.191 ± 0.208 F1 = 0.274 ± 0.188

SIWO Eq. 4 P = �.��� P = 0.985 P = 0.759 P = 0.894 P = 0.115 P = 0.410

R = �.��� R = 0.621 R = 0.708 R = 0.895 R = 0.343 R = 0.427

F
1
= �.��� ± �.��� F1 = 0.735 ± 0.203 F1 = 0.700 ± 0.249 F1 = 0.890 ± 0.222 F1 = 0.140 ± 0.155 F1 = 0.298 ± 0.289

SIWO Eq. 5 P = �.��� P = 0.985 P = 0.738 P = 0.792 P = 0.514 P = 0.582

R = 0.694 R = �.��� R = �.��� R = 0.897 R = 0.304 R = 0.433

F1 = 0.812 ± 0.095 F
1
= �.��� ± �.��� F

1
= �.��� ± �.��� F1 = 0.824 ± 0.227 F

1
= �.��� ± �.��� F

1
= �.��� ± �.���
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the SIWO strength function is more likely not to cross com-
munity boundaries.

6.3.1 � Scalability in large synthetic networks

In an attempt to validate the efficiency and scalability of 
our algorithm even further, we conducted an experiment on 
an even larger synthetic LFR graph consisting of 2 million 
nodes. The graph was generated with parameters �1 = 3 , 
�2 = 1.5 , � = 0.3 , an average degree of 10, and a maximum 

degree of 30. This particular choice of parameters, resulted 
in a network with 154,047 communities that is not overly 
dense, allowing our algorithm to not spend excessive time 
per node.

We selected 1000 random nodes, ensuring that no two 
nodes belonged to the same community. The results were 
again promising, with an average precision of 0.947, an 
average recall of 0.904, and an average F1 score of 0.920, 
with a standard deviation of 0.214. The average time spent 
per node was 1.768s. The low average time compared to 
the experiment on the LFR network with 1 million nodes 
highlights the truly local nature of our method, demon-
strating its capability to efficiently navigate large networks 
without being hindered by their size. This also indicates 
that SIWO’s time complexity is indeed a consequence of 
the community size of the given query node and the mag-
nitude of the expansion (determined by the average degree 
of the nodes in that community), rather than the size of the 
whole network.

It is crucial to note that the sheer size of this graph neces-
sitates methods that are truly local and can handle large files 
without loading them into main memory. This constraint 
rendered other contenders infeasible for this experiment, as 
they require substantial memory resources. Our approach’s 
ability to perform efficiently on such a large-scale graph 
underscores its practicality and robustness in real-world 
scenarios where memory constraints are often a significant 
consideration.

Fig. 3   Community discovery: F
1
 average scores computed over all 

nodes used as query nodes on LFR generated networks as a function 
of the mixing parameter �

Table 3   Average run time (ms) 
over all query nodes to discover 
community as a function of the 
mixing parameter �

� 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45

R 09.4 15.3 20.8 25.7 30.6 33.8 45.3 46.7
M 26.6 49.1 78.1 93.3 122 210 330 307
MWC 22.3 44.1 96.5 186 213 315 321 437
APPR 372 669 831 937 1011 1175 1136 1163
MAPPR 404 439 440 433 445 440 487 418
SIWO 02.1 02.9 03.8 03.9 04.4 06.5 17.3 35.4

Table 4   Quality of SIWO 
partial search results for given 
timeout (seconds) in terms 
of found community size 
|C| , number of nodes visited 
by algorithm, sum of edge 
strengths in community S(C), 
precision P, recall R, and F

1
 

score (± the standard deviation 
for F

1
)

Results averaged over runs using each of 183 nodes as query node in a given ground truth community

Timeout |C| Visited S(C) P R F
1

10 5 35,810 7 1.0 0.027 0.053 ± 0.013
30 29 209,955 282 1.0 0.160 0.277 ± 0.011
50 72 374,825 1181 1.0 0.398 0.569 ± 0.023
70 168 500,589 2154 1.0 0.922 0.955 ± 0.067
90 182 512,803 2226 1.0 0.999 0.999 ± 0.003
100 183 512,880 2227 1.0 1.0 1.0 ± 0.0
110 183 512,880 2227 1.0 1.0 1.0 ± 0.0
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6.3.2 � Scalability in large real‑world networks

Further experiments have also been done to observe the per-
formance of SIWO on five very large real-world networks. 
The characteristics of these networks (Youtube, Orkut, 
UK-2002, Twitter, and Friendster) are given in Table 1. The 
algorithms previously used for local search comparison such 
as MAPPR and MWC must load the whole network in the 
main memory, which is infeasible on these very large net-
works, whereas SIWO only needs to load the nodes encoun-
tered during the search.

This is also true for the current versions of Triangle-
Based Community Expansion (TCE) (Hamann et al. 2017) 
and Local Tightness Expansion algorithm (LTE) (Huang 
et al. 2011), as they are implemented in such a way that the 
whole network is loaded in the main memory before the 
algorithm starts. Therefore, we compare SIWO to LCTC 
(Huang et al. 2015) as it was shown to perform local search 
on Orkut. However, while the LCTC search algorithm itself 
is local, it must first create an index of the entire network 
unlike SIWO which indexes only as needed while the search 
progresses. The LCTC indexing process requires a signifi-
cant amount of time and memory to complete, e.g., around 
50 GBs of RAM and 4 h for Orkut, and produces a large 
index file.

Five query nodes were used for each dataset with 1200s 
as the maximum timeout per node. Table 5 reports the 
size of the discovered community |C| , the time in seconds 
and memory in MB used by each algorithm. As SIWO 
indexes while searching, the reported time includes both. 
LCTC starts searching after the indexing has been done, 
so the times can be broken down. For a fair comparison, 
we compare the total time of indexing plus searching 
as this would be the time required to find the commu-
nity given a specific node and network without any pre-
processing. Nonetheless, even just comparing solely the 
search time of LCTC with the time SIWO requires, apart 
from two nodes on Table 5 for the Youtube dataset, SIWO 
was considerably faster. For SIWO, we have also reported 
the number of nodes that were visited by the algorithm 
to show the magnitude of the search. The results confirm 
that SIWO finds larger communities than LCTC in less 
time while using much less memory. In fact, the memory 
requirements of LCTC meant that we were not able to 
run it on the laptop with 16 GB and had to use a machine 
with much larger memory. Even with this machine we 
were not able to complete the indexing process of LCTC 
on the two largest networks and cannot present results. 
This highlights how SIWO is a truly local algorithm that 
can handle very large networks on reasonable commodity 
hardware.

7 � Evaluation of the variants of SIWO

7.1 � Evaluation of SIWO+

In this part, we evaluate the extension of SIWO, called 
SIWO+, described in Sect.  5.1. As SIWO+ has been 
designed to find the entire partitioning of a given net-
work, we compare it against Louvain (Blondel et al. 2008), 
EdMot (Li et al. 2019), and Leiden (Traag et al. 2019) 
which are among the best known global methods, each 
one optimizing a different objective function to find com-
munities. We also compare it against CPM (Palla et al. 
2005), and SCAN (Xu et al. 2007) that find communities 
of a given graph based on expansion from a random start-
ing node in the network. Codes for Louvain, Leiden, and 
SCAN can be found in CDlib (Rossetti et al. 2019) python 
software package.7 EdMot8 and CPM9 also have publicly 
available codes (Rozemberczki et al. 2020).

Using synthetic networks, we conduct two sets of experi-
ments to analyze the methods’ performance when either the 
size of the network grows or the quality of its community 
structure decreases.

Evaluation protocol: In both experiments, we use the 
LFR benchmark (Lancichinetti et al. 2008) to generate the 
networks with ground-truth communities. In the first experi-
ment, � is equal to 0.15 and n, the size of the networks, 
varies from 100 to 30,000. Since the size of the network 
increases, the number and the size of the communities 
increase accordingly. In the second experiment, we use the 
networks described in Sect. 6.2. For each data set, the parti-
tion provided by each method is compared with the ground 
truth according to Normalized Mutual Information (NMI) 
(Danon et al. 2005). We report the average score, with stand-
ard deviation, computed over 10 runs.

Experimental results: Table  6 shows that SIWO+ 
achieves perfect NMI scores, which means it can find 
communities equivalent to the ground truth whatever the 
size of the networks. Louvain, EdMot, and Leiden cannot 
maintain such a high accuracy when the network’s size n is 
higher than 1000 as they inherently suffer from the resolu-
tion limit, which means communities that are smaller than a 
scale cannot be resolved (Lancichinetti and Fortunato 2011). 
Although CPM and SCAN can perform relatively well in 
most cases, they both fail when the network’s size becomes 
large. More importantly, they require a fine-tuning of their 
parameters to fulfill the task successfully. SIWO+, which 
does not need any predetermined parameter, finds the best 
results nonetheless. Even if it has been initially designed to 

7  https://​github.​com/​Giuli​oRoss​etti/​cdlib.
8  https://​github.​com/​bened​ekroz​ember​czki/​EdMot.
9  https://​bit.​ly/​3q1QB​Jj.

https://github.com/GiulioRossetti/cdlib
https://github.com/benedekrozemberczki/EdMot
https://bit.ly/3q1QBJj
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be a local approach, it outperforms state-of-the-art global 
methods for identifying the whole community structure of 
a network. Moreover, its null standard deviations indicate 
that the random selection of a node from the unexplored 
part of the network to initiate the search and then detect 
the other communities has an insignificant impact on the 
final partitioning. As shown by the small standard deviation 
obtained over the 10 conducted runs, it is also the case for 
Louvain, EdMot, and Leiden, which are not deterministic. 
Another set of experiments has been performed. to evaluate 
the seed choice effect on the community structure identified 
by our algorithm. The results are not presented due to the 
lack of space. However, they demonstrate that the results of 
SIWO remain stable regardless of the seeds’ degrees: low, 
middle, or high.

Table 7 shows that SIWO+ is very robust to the commu-
nity’s mixing parameter as it achieves satisfactory perfor-
mances even when � is equal to 0.45. It is essential to notice 
that, in this experiment, CPM and SCAN have not been able 

to find the community of many nodes when � is higher than 
0.3. SCAN should be used with � equals to 0.3 to perform 
relatively well, whereas the recommended value is between 
0.5 and 0.8 (Xu et al. 2007). Even though EdMot and Leiden 
are known to improve Louvain in terms of motif-awareness 
and connectedness, they achieve similar NMI scores. Thus, 
in this experiment, SIWO+ outperformed the existing meth-
ods in all trials, and it has been able to find the community 
of all the network nodes, while CPM leaves many of them 
unassigned (up to 1000 nodes).

Concerning the detection of outliers, we added 1% out-
lier nodes by randomly selecting 100 nodes and attaching 
then to these outliers, making these last ones peripheral. 
EdMot, Louvain, and Leiden included these into communi-
ties. SIWO+, with the optional Step 5 skipped, identified all 
outliers as singletons. CPM and SCAN identified outliers by 
not inserting them in any detected communities but when 
𝜇 > 0.25 , up to 75% of nodes are also erroneously consid-
ered outliers by CPM.

Table 5   Performance of SIWO and LCTC on 5 large networks with 5 
query nodes each in terms of maximum memory required (RAM) and 
size of the index file needed by LCTC (Index Size) in MB, number of 

nodes visited for SIWO, size of the found community |C| and time in 
seconds taken by each algorithm

The wall time for a community search is set to 1200 s

Dataset Node ID SIWO LCTC (Huang et al. 2015)

RAM Visited |C| Time RAM Index size |C| Time (indexing + search)

YouTube 3 7410 4999 4 0.8 557 61 4 64.0 (49.6 + 14.4)
2002 11,599 7 2.0 3 64.3 (49.6 + 14.7)

19,973 29,400 7 8.5 2 65.1 (49.6 + 15.5)
9659 101,026 20 1200.0 8 63.2 (49.6 + 13.6)

97,648 545,630 4308 943.7 4 63.1 (49.6 + 13.5)
UK-2002 14,347 1878 29 6 0.1 18,834 2299 6 15,100.9 (13,663.5 + 1437.4)

31,025 6176 357 15.8 3 15,121.8 (13,663.5 + 1458.3)
78,984 21,851 928 30.1 54 15,109.3 (13,663.5 + 1445.8)
44,379 157,161 1608 316.3 14 15,097.2 (13,663.5 + 1433.7)
61,384 335,346 459 496.7 22 15,069.1 (13,663.5 + 1405.6)

Orkut 98,171 7419 1,092,307 1216 522.4 56,934 6021 12 20,131.2 (19,438.1 + 693.1)
2 1,131,011 1400 392.1 14 20,154.7 (19,438.1 + 716.6)

52,002 1,174,254 1310 418.9 19 20,144.2 (19,438.1 + 706.1)
86,525 1,196,757 1273 572.5 3 20,139.2 (19,438.1 + 701.1)
79,847 1,201,051 1334 439.3 109 20,163.8 (19,438.1 + 725.7)

Twitter 30,634 6918 36 9 17.9 N/A
90,205 47 6 22.9
20,648 745 25 51.38

101 1684 2 184.7
43,748 17,186 10 53.32

Friendster 72,759 7428 1262 6 54.2 N/A
18,427 1623 14 46.2
34,455 179,325 104 1200.0
69,947 253,145 473 1200.0
84,063 321,648 730 1200.0
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7.2 � Evaluation of SIWOw on weighted networks

This section aims to evaluate the quality of our approach 
for handling edge weights through experiments done with 
the variant of SIWO, called SIWOw, described in Sect. 5.2. 
While SIWO is first and foremost a local community search 
algorithm, most algorithms for weighted networks are global 
community detection algorithms. To get a fair idea of the 
performance of weighted SIWO compared to other methods, 
we thus use SIWOw for global community detection (i.e., we 
extend SIWO+ to handle edge weights) and compare it against 
two of the same algorithms used in Sect. 7.1: Leiden and Lou-
vain. The other previously evaluated methods are not able to 
handle weighted networks and so are excluded here. Moreover, 
Louvain has been shown to be one of the best performing com-
munity detection algorithms in a comparative analysis (Yang 
et al. 2016) and Leiden improves upon Louvain by guarantee-
ing well-connected communities (Traag et al. 2019) so we are 
confident in using them as a benchmark for SIWOw. Another 
closely related work to SIWOw is Zheng et al. (2017), in which 
Zheng et al. introduce a novel community model that takes 
edge weights into consideration. However, we were unable to 
include the approach in our comparative analysis due to the 
lack of publicly available executable code for their method.

Synthetic data sets: We evaluate all algorithms on a set 
of synthetic networks which have ground-truth communi-
ties using NMI. There is an unfortunate lack of real-world 
weighted networks with ground-truth communities available. 
We thus use a range of parameter settings for the synthetic 

network generator to ensure a variety of network structures. 
More precisely, we generated 720 unique networks with the 
LFR weighted network generator benchmark (Lancichinetti 
and Fortunato 2009). We generate five different networks for 
each parameter combination of average degree in {15, 20, 
25}, maximum degree in {50, 75, 100}, exponent for weight 
distribution � ∈ {1.5, 2} , and topology mixing parameter �t 
and weight mixing parameter �w taking the same values in 
{0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45}.

Baselines and settings: We compare SIWOw to the 
weighted versions of two community detection algorithms: 
Louvain and Leiden. We evaluate weighted SIWOw using 
the arithmetic mean, geometric mean, harmonic mean, 
and minimum for the weight combination function. We 
denote these different versions as SIWOw(a), SIWOw(g), 
SIWOw(h), and SIWOw(m), respectively.

Experimental results: Table 8 shows that SIWOw out-
performs Leiden and Louvain at all levels of �w . SIWOw 
achieves perfect or near-perfect NMI even as the modular-
ity of the ground truth community structure drops as �w 
increases. The performance of all the algorithms drops as 
�w increases but SIWOw is still able to achieve an NMI 
score of 0.995 when �w equals 0.45, demonstrating the 
algorithm’s robustness to the mixing parameter of the syn-
thetic networks. We note that all of the algorithms achieve 
better performance than in the unweighted evaluation, 
demonstrating the extra information provided by the edge 
weights and the value of an algorithm’s ability to consider 
this information.

Table 6   Community detection: average NMI scores ± the standard deviation computed over 10 runs, in function of the network’s size n 

Bold numbers indicate the best score for each data set

n = 100 n = 300 n = 1000 n = 3000 n = 10, 000 n = 30, 000

CPM (Palla et al. 2005) 0.000 ± 0.000 0.884 ± 0.000 0.995 ± 0.000 0.998 ± 0.000 0.999 ± 0.000 0.999 ± 0.000
SCAN (Xu et al. 2007) 0.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 0.999 ± 0.000 0.999 ± 0.000 0.998 ± 0.000
Louvain (Blondel et al. 2008) 1.000 ± 0.000 1.000 ± 0.000 0.996 ± 0.000 0.974 ± 0.000 0.921 ± 0.000 0.887 ± 0.000
EdMot (Li et al. 2019) 1.000 ± 0.000 0.997 ± 0.007 0.995 ± 0.003 0.969 ± 0.001 0.917 ± 0.001 0.881 ± 0.001
Leiden (Traag et al. 2019) 1.000 ± 0.000 0.997 ± 0.006 0.995 ± 0.001 0.977 ± 0.001 0.921 ± 0.001 0.884 ± 0.001
SIWO+ 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000

Table 7   Community detection: Average NMI scores ± the standard deviation computed over 10 runs, in function of the mixing parameter � . 
Bold numbers indicate the best score for each data set

� = 0.10 � = 0.15 � = 0.20 � = 0.25 � = 0.30 � = 0.35 � = 0.4 � = 0.45

CPM 0.997 ± 0.000 0.993 ± 0.000 0.987 ± 0.000 0.981 ± 0.000 0.966 ± 0.000 0.955 ± 0.000 0.901 ± 0.000 0.801 ± 0.000
SCAN 1.000 ± 0.000 1.000 ± 0.000 0.999 ± 0.000 0.991 ± 0.000 0.938 ± 0.000 0.849 ± 0.000 0.658 ± 0.000 0.398 ± 0.000
Louvain 0.902 ± 0.000 0.885 ± 0.000 0.874 ± 0.000 0.861 ± 0.000 0.835 ± 0.000 0.822 ± 0.000 0.800 ± 0.000 0.735 ± 0.000
EdMot 0.897 ± 0.002 0.883 ± 0.002 0.869 ± 0.002 0.852 ± 0.002 0.831 ± 0.003 0.815 ± 0.004 0.799 ± 0.004 0.734 ± 0.004
Leiden 0.899 ± 0.002 0.884 ± 0.002 0.870 ± 0.002 0.849 ± 0.003 0.824 ± 0.003 0.807 ± 0.003 0.777 ± 0.003 0.680 ± 0.005
SIWO+ 1.000 ± 0.000 1.000 ± 0.000 0.999 ± 0.000 0.999 ± 0.000 0.997 ± 0.000 0.988 ± 0.001 0.952 ± 0.001 0.834 ± 0.004
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SIWOw also exhibits a lower standard deviation than 
Leiden or Louvain. Recall that the 90 runs for each �w 
value in Table 8 consist of networks that have varying 
parameter values and thus varying structures. The low 
standard deviation of SIWOw indicates that it does not 
suffer from significantly worse performance for networks in 
our data set generated with certain combinations of param-
eters and is thus robust to network features such as average 
degree.

Table 8 also shows that none of the weight combination 
functions for SIWOw significantly outperforms the other. 
In fact, there is only one case where one version performs 
worse than the others: SIWOw(m) when �w equals 0.30. 
This result may seem counter-intuitive as the different 
functions will result in different values in many cases. For 
example, the geometric mean will result in a value close 
to zero whenever one edge has a weight very close to zero 
but the arithmetic may not, and the minimum does not use 
most of the information. However, our results show that 
the choice does not have a material impact on performance 
which is consistent with work on the weighted clustering 
coefficient which found a similar value regardless of the 
mean used (Opsahl and Panzarasa 2009).

Table 9 shows that SIWOw finds a number of com-
munities much closer to the true value than Leiden and 
Louvain. Leiden and Louvain both work by attempting to 
optimize modularity and thus suffer from the resolution 
limit and fail to separate small communities. They find far 
fewer communities than the ground truth. SIWOw tends 
to find almost the same number of communities as the 
true number, and this difference increases as �w increases. 
SIWO relies on triangle structures to assign edge strength. 
As �w increases and communities become less dense there 
may be fewer triangles within communities. If there are 
few enough triangles within a community, the intra-
community edges will be considered weak by SIWO and 
the nodes of the community will not be assigned to one 
community. Of course, there is the question of whether a 
ground-truth community that consists of nodes without 
many common neighbors is truly a community.

Our experiments on weighted networks show that SIWOw 
performs well at uncovering community structure with edge 
weights. Combined with our results from Sect. 7, this high-
lights two of the main advantages of SIWO. Unlike many other 
local community search algorithms, SIWO is able to handle 
weighted networks. And unlike weighted community detection 
algorithms such as Louvain and Leiden, SIWO only requires 
local information and can thus be applied to large networks 
that are unable to fit in main memory. The flexibility to be 
used for either global community detection or local community 
search for both weighted and unweighted networks of greatly 
varying sizes distinguishes SIWO from other algorithms.

8 � Conclusion and discussion

Our method, SIWO, is parameter-free and uses the notion 
of triangles, which enables accurate, deterministic, and fast 
local community discovery in networks. While other algo-
rithms have used triangles before, SIWO distinguishes itself 
through its distinctive approach of utilizing strength values 
on edges for normalizing the number of triangles contain-
ing that edge, which has proven experimentally to be very 
effective.

SIWO is non-parametric, which offers a significant 
advantage over many local community detection methods 
that require fine-tuning of their parameters, often difficult 
to interpret and adjust. SIWO is also robust to the query 
node used to start the search and will find the same com-
munity whether it begins in the core or on the periphery of 
a community.

Furthermore, SIWO does not necessitate loading the 
entire graph into main memory, allowing it to operate effi-
ciently even on a regular laptop with limited resources for 
large networks with tens of millions of nodes and hundreds 
of millions of edges. This allows SIWO to provide the core 
of the community within a given time budget, even if the 
network is too large and dense for the search to complete. In 
contrast, most current approaches require a massive amount 

Table 8   Community detection: Average NMI scores ± the standard deviation computed over 90 runs, as a function of the mixing parameters 
with �

w
= �

t
 . Q value indicates the modularity of the ground-truth community structure

�
w
= 0.10 �

w
= 0.15 �

w
= 0.20 �

w
= 0.25 �

w
= 0.30 �

w
= 0.35 �

w
= 0.40 �

w
= 0.45

Q = 0.888 Q = 0.841 Q = 0.792 Q = 0.743 Q = 0.693 Q = 0.643 Q = 0.594 Q = 0.544

SIWOw(a) 0.999 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 0.999 ± 0.000 0.998 ± 0.000 0.995 ± 0.001
SIWOw(g) 0.999 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 0.999 ± 0.000 0.998 ± 0.000 0.995 ± 0.001
SIWOw(h) 0.999 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 0.999 ± 0.000 0.998 ± 0.000 0.995 ± 0.001
SIWOw(m) 0.999 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 0.999 ± 0.000 0.999 ± 0.000 0.998 ± 0.000 0.995 ± 0.001
Leiden 0.966 ± 0.001 0.964 ± 0.002 0.963 ± 0.002 0.962 ± 0.002 0.960 ± 0.002 0.955 ± 0.002 0.951 ± 0.002 0.946 ± 0.003
Louvain 0.924 ± 0.002 0.915 ± 0.002 0.907 ± 0.003 0.898 ± 0.003 0.888 ± 0.003 0.877 ± 0.003 0.865 ± 0.003 0.851 ± 0.004
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of memory to be able to operate on large networks, either to 
fit the whole graph to process or to build indexes, and often 
return an empty set if interrupted.

SIWO serves as a versatile framework capable of han-
dling different types of networks. In this paper, we dem-
onstrated how SIWO can be generalized to perform local 
search on weighted networks, or perform global community 
detection by iteratively applying local search on unexplored 
parts of the network. In addition, it can detect overlapping 
communities or outliers.

The above conveniences are characteristics that no other 
method has and fundamentally differentiate SIWO from the 
state-of-the-art methods.

In summary, SIWO is a fast, highly performant, and 
flexible algorithm for local community detection that dis-
tinguishes itself from existing methods through its non-par-
ametric nature, efficient memory usage, and strong perfor-
mance in various scenarios.

Funding  Funding were provided by Alberta Machine Intelligence Insti-
tute, Laboratoire Hubert Curien and Canadian Institute for Advanced 
Research.

References

Adamic LA, Glance N (2005) The political blogosphere and the 2004 
U.S. Election: divided they blog. In: Proceedings of the 3rd inter-
national workshop on link discovery. LinkKDD ’05. Associa-
tion for Computing Machinery, New York, NY, USA, pp 36–43. 
https://​doi.​org/​10.​1145/​11342​71.​11342​77

Akbas E, Zhao P (2017) Truss-based community search. Proc VLDB 
Endow 10(11):1298–1309. https://​doi.​org/​10.​14778/​31376​28.​
31376​40

Andersen R, Chung F, Lang K (2006) Local graph partitioning using 
pagerank vectors. In: 2006 47th annual IEEE symposium on foun-
dations of computer science (FOCS’06), pp 475–486. https://​doi.​
org/​10.​1109/​FOCS.​2006.​44

Bagrow JP, Bollt EM (2005) Local method for detecting communi-
ties. Phys Rev E 72:046108. https://​doi.​org/​10.​1103/​PhysR​evE.​
72.​046108

Baltsou G, Christopoulos K, Tsichlas K (2022) Local community 
detection: a survey. IEEE Access 10:110701–110726

Barbieri N, Bonchi F, Galimberti E, Gullo F (2015) Efficient and effec-
tive community search. Data Min Knowl Disc 29(5):1406–1433. 
https://​doi.​org/​10.​1007/​s10618-​015-​0422-1

Barrat A, Barthelemy M, Pastor-Satorras R, Vespignani A (2004) The 
architecture of complex weighted networks. Proc Natl Acad Sci 
101(11):3747–3752. https://​doi.​org/​10.​1073/​pnas.​04000​87101

Bian Y, Ni J, Cheng W, Zhang X (2017) Many heads are better than 
one: local community detection by the multi-walker chain. In: 
2017 IEEE international conference on data mining (ICDM), pp 
21–30. https://​doi.​org/​10.​1109/​ICDM.​2017.​11

Blondel VD, Guillaume J-L, Lambiotte R, Lefebvre E (2008) Fast 
unfolding of communities in large networks. J Stat Mech: Theory 
Exp 2008(10):10008. https://​doi.​org/​10.​1088/​1742-​5468/​2008/​
10/​p10008

Brunato M, Hoos HH, Battiti R (2008) On effectively finding maximal 
quasi-cliques in graphs. In: Maniezzo V, Battiti R, Watson J-P 
(eds) Learning and Intelligent Optimization. Springer, Berlin, pp 
41–55

Chen J, Zaïane OR, Goebel R (2010) In: Memon N, Alhajj R (eds) 
Detecting communities in social networks using local informa-
tion. Springer, Vienna, pp 197–214. https://​doi.​org/​10.​1007/​
978-3-​7091-​0294-7_​11

Clauset A (2005) Finding local community structure in networks. 
Phys Rev E 72(2):026132. https://​doi.​org/​10.​1103/​physr​eve.​
72.​026132

Cui W, Xiao Y, Wang H, Lu Y, Wang W (2013) Online search of 
overlapping communities. In: Proceedings of the 2013 ACM 
SIGMOD international conference on management of data. 
SIGMOD ’13. Association for Computing Machinery, New 
York, NY, USA, pp 277–288. https://​doi.​org/​10.​1145/​24636​
76.​24637​22

Cui W, Xiao Y, Wang H, Wang W (2014) Local search of communi-
ties in large graphs. In: Proceedings of the 2014 ACM SIGMOD 
international conference on management of data. SIGMOD ’14. 
Association for Computing Machinery, New York, NY, USA, pp 
991–1002. https://​doi.​org/​10.​1145/​25885​55.​26121​79

Danon L, Díaz-Guilera A, Duch J, Arenas A (2005) Comparing 
community structure identification. J Stat Mech Theory Exp 
2005(09):09008–09008. https://​doi.​org/​10.​1088/​1742-​5468/​2005/​
09/​p09008

Dao VL, Bothorel C, Lenca P (2020) Community structure: a com-
parative evaluation of community detection methods. Netw Sci 
8(1):1–41. https://​doi.​org/​10.​1017/​nws.​2019.​59

De Meo P, Ferrara E, Fiumara G, Provetti A (2014) Mixing local and 
global information for community detection in large networks. J 
Comput Syst Sci 1:72–87

Dilmaghani S, Brust MR, Danoy G, Bouvry P (2021) Community 
detection in complex networks: a survey on local approaches. In: 

Table 9   Community detection: Absolute number of detected communities ± the standard deviation computed over 90 runs, as a function of the 
mixing parameters with �

w
= �

t
 . N̄

GT
 represents the average number of ground truth communities

�
w
= 0.10 �

w
= 0.15 �

w
= 0.20 �

w
= 0.25 �

w
= 0.30 �

w
= 0.35 �

w
= 0.40 �

w
= 0.45

N̄
GT

= 339 ± 6 N̄
GT

= 343 ± 6 N̄
GT

= 345 ± 6 N̄
GT

= 344 ± 7 N̄
GT

= 344 ± 6 N̄
GT

= 345 ± 7 N̄
GT

= 343 ± 6 N̄
GT

= 342 ± 7

SIWOw(a) 339 ± 6 344 ± 6 346 ± 6 345 ± 7 346 ± 6 349 ± 7 350 ± 7 358 ± 7
SIWOw(g) 339 ± 6 344 ± 6 346 ± 6 345 ± 7 347 ± 6 349 ± 7 351 ± 7 357 ± 7
SIWOw(h) 340 ± 6 345 ± 6 347 ± 6 346 ± 7 347 ± 6 350 ± 7 353 ± 7 360 ± 7
SIWOw(m) 341 ± 6 346 ± 6 348 ± 6 348 ± 7 349 ± 6 352 ± 7 354 ± 7 362 ± 7
Leiden 206 ± 4 203 ± 4 203 ± 5 202 ± 4 201 ± 4 196 ± 4 194 ± 4 190 ± 4
Louvain 134 ± 3 124 ± 3 116 ± 2 108 ± 2 100 ± 2 93 ± 2 85 ± 2 78 ± 1

https://doi.org/10.1145/1134271.1134277
https://doi.org/10.14778/3137628.3137640
https://doi.org/10.14778/3137628.3137640
https://doi.org/10.1109/FOCS.2006.44
https://doi.org/10.1109/FOCS.2006.44
https://doi.org/10.1103/PhysRevE.72.046108
https://doi.org/10.1103/PhysRevE.72.046108
https://doi.org/10.1007/s10618-015-0422-1
https://doi.org/10.1073/pnas.0400087101
https://doi.org/10.1109/ICDM.2017.11
https://doi.org/10.1088/1742-5468/2008/10/p10008
https://doi.org/10.1088/1742-5468/2008/10/p10008
https://doi.org/10.1007/978-3-7091-0294-7_11
https://doi.org/10.1007/978-3-7091-0294-7_11
https://doi.org/10.1103/physreve.72.026132
https://doi.org/10.1103/physreve.72.026132
https://doi.org/10.1145/2463676.2463722
https://doi.org/10.1145/2463676.2463722
https://doi.org/10.1145/2588555.2612179
https://doi.org/10.1088/1742-5468/2005/09/p09008
https://doi.org/10.1088/1742-5468/2005/09/p09008
https://doi.org/10.1017/nws.2019.59


	 Social Network Analysis and Mining (2023) 13:112

1 3

112  Page 20 of 21

Asian conference intelligent information and database systems, 
pp 757–767

Fagnan J, Zaïane O, Barbosa D (2014) Using triads to identify local 
community structure in social networks. In: IEEE/ACM inter-
national conference on advances in social networks analysis and 
mining, pp 108–112. https://​doi.​org/​10.​1109/​ASONAM.​2014.​
69215​68

Fang Y, Huang X, Qin L, Zhang Y, Zhang W, Cheng R, Lin X (2019) A 
survey of community search over big graphs. VLDB J 29(1):353–
392. https://​doi.​org/​10.​1007/​s00778-​019-​00556-x

Fang Y, Yang Y, Zhang W, Lin X, Cao X (2020) Effective and effi-
cient community search over large heterogeneous information 
networks. Proc VLDB Endow 13(6):854–867. https://​doi.​org/​10.​
14778/​33807​50.​33807​56

Fortunato S (2010) Community detection in graphs. Phys Rep 486(3–
5):75–174. https://​doi.​org/​10.​1016/j.​physr​ep.​2009.​11.​002

Fortunato S, Hric D (2016) Community detection in networks: a user 
guide. Phys Rep 659:1–44. https://​doi.​org/​10.​1016/j.​physr​ep.​
2016.​09.​002

Gharaghooshi SZ, Zaiane OR, Largeron C, Zafarmand M, Liu C 
(2020) Addressing the resolution limit and the field of view limit 
in community mining. In: Symposium on intelligent data analysis 
(IDA’20)

Girvan M, Newman MEJ (2002) Community structure in social and 
biological networks. Proc Natl Acad Sci 99(12):7821–7826. 
https://​doi.​org/​10.​1073/​pnas.​12265​3799

Granovetter M (1983) The strength of weak ties: a network theory 
revisited. Sociol Theory 1:201–233. https://​doi.​org/​10.​2307/​
202051

Hamann M, Röhrs E, Wagner D (2017) Local community detection 
based on small cliques. Algorithms 10(3):90. https://​doi.​org/​10.​
3390/​a1003​0090

Huang J, Sun H, Liu Y, Song Q, Weninger T (2011) Towards online 
multiresolution community detection in large-scale networks. 
PLOS ONE 6(8):1–11. https://​doi.​org/​10.​1371/​journ​al.​pone.​
00238​29

Huang X, Lakshmanan LVS, Yu JX, Cheng H (2015) Approximate 
closest community search in networks. Proc VLDB Endow 
9(4):276–287. https://​doi.​org/​10.​14778/​28563​18.​28563​23

Huang X, Lakshmanan LVS, Xu J (2019) Community search over big 
graphs. Synth Lect Data Manag 14(6):1–206. https://​doi.​org/​10.​
2200/​s0092​8ed1v​01y20​1906d​tm061

Huang X, Cheng H, Qin L, Tian W, Yu JX (2014) Querying k-truss 
community in large and dynamic graphs. In: Proceedings of the 
2014 ACM SIGMOD international conference on management 
of data. SIGMOD ’14. Association for Computing Machinery, 
New York, NY, USA, pp 1311–1322. https://​doi.​org/​10.​1145/​
25885​55.​26104​95

Kwak H, Lee C, Park H, Moon S (2010) What is twitter, a social net-
work or a news media? In: Proceedings of the 19th international 
conference on world wide web, New York, NY, USA, pp 591–600 
. https://​doi.​org/​10.​1145/​17726​90.​17727​51

Lancichinetti A, Fortunato S (2009) Benchmarks for testing commu-
nity detection algorithms on directed and weighted graphs with 
overlapping communities. Phys Rev E 80(1):016118. https://​doi.​
org/​10.​1103/​physr​eve.​80.​016118

Lancichinetti A, Fortunato S (2011) Limits of modularity maximization 
in community detection. Phys Rev E 84(6):066122. https://​doi.​
org/​10.​1103/​physr​eve.​84.​066122

Lancichinetti A, Fortunato S, Radicchi F (2008) Benchmark graphs 
for testing community detection algorithms. Phys Rev E 
78(4):046110. https://​doi.​org/​10.​1103/​physr​eve.​78.​046110

Li P-Z, Huang L, Wang C-D, Lai J-H (2019) Edmot: an edge enhance-
ment approach for motif-aware community detection. In: Pro-
ceedings of the 25th ACM SIGKDD international conference on 
knowledge discovery and data mining. KDD ’19. Association for 

Computing Machinery, New York, NY, USA, pp 479–487. https://​
doi.​org/​10.​1145/​32925​00.​33308​82

Luo W, Zhang D, Jiang H, Ni L, Hu Y (2018) Local community detec-
tion with the dynamic membership function. IEEE Trans Fuzzy 
Syst 26(5):3136–3150. https://​doi.​org/​10.​1109/​tfuzz.​2018.​28121​
48

Luo D, Bian Y, Yan Y, Liu X, Huan J, Zhang X (2020) Local commu-
nity detection in multiple networks. In: Proceedings of the 26th 
ACM SIGKDD international conference on knowledge discovery 
and data mining. KDD ’20. Association for Computing Machin-
ery, New York, NY, USA, pp 266–274. https://​doi.​org/​10.​1145/​
33944​86.​34030​69

Luo F, Wang JZ, Promislow E (2006) Exploring local community 
structures in large networks. In: 2006 IEEE/WIC/ACM interna-
tional conference on web intelligence (WI 2006 main conference 
proceedings)(WI’06), pp 233–239. https://​doi.​org/​10.​1109/​WI.​
2006.​72

Lusseau D (2003) The emergent properties of a dolphin social network. 
Proc R Soc Lond Ser B Biol Sci 270:S186–S188. https://​doi.​org/​
10.​1098/​rsbl.​2003.​0057

Milo R (2002) Network motifs: simple building blocks of complex 
networks. Science 298(5594):824–827. https://​doi.​org/​10.​1126/​
scien​ce.​298.​5594.​824

Onnela J-P, Saramäki J, Kertész J, Kaski K (2005) Intensity and 
coherence of motifs in weighted complex networks. Phys Rev E 
71(6):065103. https://​doi.​org/​10.​1103/​physr​eve.​71.​065103

Opsahl T, Panzarasa P (2009) Clustering in weighted networks. Soc 
Netw 31(2):155–163. https://​doi.​org/​10.​1016/j.​socnet.​2009.​02.​
002

Palla G, Derényi I, Farkas I, Vicsek T (2005) Uncovering the over-
lapping community structure of complex networks in nature and 
society. Nature 435(7043):814–818. https://​doi.​org/​10.​1038/​natur​
e03607

Peel L, Larremore DB, Clauset A (2017) The ground truth about meta-
data and community detection in networks. Sci Adv 3(5):1602548. 
https://​doi.​org/​10.​1126/​sciadv.​16025​48

Pons P, Latapy M (2005) Computing communities in large networks 
using random walks. In: Yolum P, Güngör T, Gürgen F, Özturan 
C (eds) Computer and information sciences—ISCIS 2005. 
Springer, Berlin, pp 284–293

Rabbany R, Zaiane OR (2015) Evaluation of community mining 
algorithms in the presence of attributes. In: Li X-L, Cao T, Lim 
E-P, Zhou Z-H, Ho T-B, Cheung D (eds) Trends and applica-
tions in knowledge discovery and data mining. Lecture Notes 
in Computer Science. Springer, pp 152–163. https://​doi.​org/​10.​
1007/​978-3-​319-​25660-3_​13

Raghavan UN, Albert R, Kumara S (2007) Near linear time algo-
rithm to detect community structures in large-scale networks. 
Phys Rev E 76(3):036106. https://​doi.​org/​10.​1103/​physr​eve.​76.​
036106

Rossetti G, Milli L, Cazabet R (2019) CDLIB: a python library 
to extract, compare and evaluate communities from complex 
networks. Appl Netw Sci 4:1–26. https://​doi.​org/​10.​1007/​
s41109-​019-​0165-9

Rosvall M, Bergstrom CT (2008) Maps of random walks on com-
plex networks reveal community structure. Proc Natl Acad Sci 
105(4):1118–1123. https://​doi.​org/​10.​1073/​pnas.​07068​51105

Rozemberczki B, Kiss O, Sarkar R (2020) Karate club: An API ori-
ented open-source python framework for unsupervised learn-
ing on graphs. In: Proceedings of the 29th ACM international 
conference on information and knowledge management. https://​
doi.​org/​10.​1145/​33405​31.​34127​57

Sakr S, Bonifati A, Voigt H, Iosup A, Ammar K, Angles R, Aref W, 
Arenas M, Besta M, Boncz PA, Daudjee K, Valle ED, Dumbrava 
S, Hartig O, Haslhofer B, Hegeman T, Hidders J, Hose K, Iam-
nitchi A, Kalavri V, Kapp H, Martens W, Özsu MT, Peukert E, 

https://doi.org/10.1109/ASONAM.2014.6921568
https://doi.org/10.1109/ASONAM.2014.6921568
https://doi.org/10.1007/s00778-019-00556-x
https://doi.org/10.14778/3380750.3380756
https://doi.org/10.14778/3380750.3380756
https://doi.org/10.1016/j.physrep.2009.11.002
https://doi.org/10.1016/j.physrep.2016.09.002
https://doi.org/10.1016/j.physrep.2016.09.002
https://doi.org/10.1073/pnas.122653799
https://doi.org/10.2307/202051
https://doi.org/10.2307/202051
https://doi.org/10.3390/a10030090
https://doi.org/10.3390/a10030090
https://doi.org/10.1371/journal.pone.0023829
https://doi.org/10.1371/journal.pone.0023829
https://doi.org/10.14778/2856318.2856323
https://doi.org/10.2200/s00928ed1v01y201906dtm061
https://doi.org/10.2200/s00928ed1v01y201906dtm061
https://doi.org/10.1145/2588555.2610495
https://doi.org/10.1145/2588555.2610495
https://doi.org/10.1145/1772690.1772751
https://doi.org/10.1103/physreve.80.016118
https://doi.org/10.1103/physreve.80.016118
https://doi.org/10.1103/physreve.84.066122
https://doi.org/10.1103/physreve.84.066122
https://doi.org/10.1103/physreve.78.046110
https://doi.org/10.1145/3292500.3330882
https://doi.org/10.1145/3292500.3330882
https://doi.org/10.1109/tfuzz.2018.2812148
https://doi.org/10.1109/tfuzz.2018.2812148
https://doi.org/10.1145/3394486.3403069
https://doi.org/10.1145/3394486.3403069
https://doi.org/10.1109/WI.2006.72
https://doi.org/10.1109/WI.2006.72
https://doi.org/10.1098/rsbl.2003.0057
https://doi.org/10.1098/rsbl.2003.0057
https://doi.org/10.1126/science.298.5594.824
https://doi.org/10.1126/science.298.5594.824
https://doi.org/10.1103/physreve.71.065103
https://doi.org/10.1016/j.socnet.2009.02.002
https://doi.org/10.1016/j.socnet.2009.02.002
https://doi.org/10.1038/nature03607
https://doi.org/10.1038/nature03607
https://doi.org/10.1126/sciadv.1602548
https://doi.org/10.1007/978-3-319-25660-3_13
https://doi.org/10.1007/978-3-319-25660-3_13
https://doi.org/10.1103/physreve.76.036106
https://doi.org/10.1103/physreve.76.036106
https://doi.org/10.1007/s41109-019-0165-9
https://doi.org/10.1007/s41109-019-0165-9
https://doi.org/10.1073/pnas.0706851105
https://doi.org/10.1145/3340531.3412757
https://doi.org/10.1145/3340531.3412757


Social Network Analysis and Mining (2023) 13:112	

1 3

Page 21 of 21  112

Plantikow S, Ragab M, Ripeanu MR, Salihoglu S, Schulz C, 
Selmer P, Sequeda JF, Shinavier J, Szárnyas G, Tommasini R, 
Tumeo A, Uta A, Varbanescu AL, Wu H-Y, Yakovets N, Yan D, 
Yoneki E (2021) The future is big graphs: a community view on 
graph processing systems. Commun ACM 64(9):62–71. https://​
doi.​org/​10.​1145/​34346​42

Saramäki J, Kivelä M, Onnela J-P, Kaski K, Kertesz J (2007) Gen-
eralizations of the clustering coefficient to weighted complex 
networks. Phys Rev E 75(2):027105. https://​doi.​org/​10.​1103/​
physr​eve.​75.​027105

Schaeffer SE (2007) Graph clustering. Comput Sci Rev 1(1):27–64. 
https://​doi.​org/​10.​1016/j.​cosrev.​2007.​05.​001

Slater N, Itzchack R, Louzoun Y (2014) Mid size cliques are more 
common in real world networks than triangles. Netw Sci 
2(3):387–402. https://​doi.​org/​10.​1017/​nws.​2014.​22

Souravlas S, Sifaleras A, Tsintogianni M, Katsavounis S (2021) A 
classification of community detection methods in social net-
works: a survey. Int J Gen Syst 50(1):63–91

Sozio M, Gionis A (2010) The community-search problem and how 
to plan a successful cocktail party. In: Proceedings of the 16th 
ACM SIGKDD international conference on knowledge dis-
covery and data mining. KDD ’10. Association for Computing 
Machinery, New York, NY, USA, pp 939–948. https://​doi.​org/​
10.​1145/​18358​04.​18359​23

Su X, Xue S, Liu F, Wu J, Yang J, Zhou C, Hu W, Paris C, Nepal 
S, Jin D, Sheng QZ, Yu PS (2022) A comprehensive survey on 
community detection with deep learning. IEEE Trans Neural 
Netw Learn Syst 1–21 (2022)

Su X, Xue S, Liu F, Wu J, Yang J, Zhou C, Hu W, Paris C, Nepal S, 
Jin D, Sheng Q, Yu P (2022) A comprehensive survey on com-
munity detection with deep learning. IEEE Trans Neural Netw 
Learn Syst 1–21. https://​doi.​org/​10.​1109/​TNNLS.​2021.​31373​96

Takaffoli M, Rabbany R, Zaiane OR (2013) Incremental local com-
munity identification in dynamic social networks. In: IEEE/

ACM international conference on social networks analysis and 
mining

Traag VA, Waltman L, van Eck NJ (2019) From Louvain to Leiden: 
guaranteeing well-connected communities. Sci Rep 9(1):5233. 
https://​doi.​org/​10.​1038/​s41598-​019-​41695-z

Xu X, Yuruk N, Feng Z, Schweiger TAJ (2007) SCAN: A structural 
clustering algorithm for networks. In: Proceedings of the 13th 
ACM SIGKDD international conference on knowledge discovery 
and data mining. KDD ’07. Association for Computing Machin-
ery, New York, NY, USA, pp 824–833. https://​doi.​org/​10.​1145/​
12811​92.​12812​80

Yang J, Leskovec J (2013) Defining and evaluating network communi-
ties based on ground-truth. Knowl Inf Syst 42(1):181–213. https://​
doi.​org/​10.​1007/​s10115-​013-​0693-z

Yang Z, Algesheimer R, Tessone CJ (2016) A comparative analysis of 
community detection algorithms on artificial networks. Sci Rep 
6(1):1–18. https://​doi.​org/​10.​1038/​srep3​0750

Yin H, Benson AR, Leskovec J, Gleich DF (2017) Local higher-order 
graph clustering. In: Proceedings of the 23rd ACM SIGKDD 
international conference on knowledge discovery and data min-
ing. KDD ’17. Association for Computing Machinery, New York, 
NY, USA, pp 555–564. https://​doi.​org/​10.​1145/​30979​83.​30980​69

Zachary WW (1977) An information flow model for conflict and fission 
in small groups. J Anthropol Res 33(4):452–473. https://​doi.​org/​
10.​1086/​jar.​33.4.​36297​52

Zheng Z, Ye F, Li R-H, Ling G, Jin T (2017) Finding weighted k-truss 
communities in large networks. Inf Sci 417:344–360. https://​doi.​
org/​10.​1016/j.​ins.​2017.​07.​012

Springer Nature or its licensor (e.g. a society or other partner) holds 
exclusive rights to this article under a publishing agreement with the 
author(s) or other rightsholder(s); author self-archiving of the accepted 
manuscript version of this article is solely governed by the terms of 
such publishing agreement and applicable law.

https://doi.org/10.1145/3434642
https://doi.org/10.1145/3434642
https://doi.org/10.1103/physreve.75.027105
https://doi.org/10.1103/physreve.75.027105
https://doi.org/10.1016/j.cosrev.2007.05.001
https://doi.org/10.1017/nws.2014.22
https://doi.org/10.1145/1835804.1835923
https://doi.org/10.1145/1835804.1835923
https://doi.org/10.1109/TNNLS.2021.3137396
https://doi.org/10.1038/s41598-019-41695-z
https://doi.org/10.1145/1281192.1281280
https://doi.org/10.1145/1281192.1281280
https://doi.org/10.1007/s10115-013-0693-z
https://doi.org/10.1007/s10115-013-0693-z
https://doi.org/10.1038/srep30750
https://doi.org/10.1145/3097983.3098069
https://doi.org/10.1086/jar.33.4.3629752
https://doi.org/10.1086/jar.33.4.3629752
https://doi.org/10.1016/j.ins.2017.07.012
https://doi.org/10.1016/j.ins.2017.07.012

	Fast local community discovery relying on the strength of links
	Abstract
	1 Introduction
	2 Related work
	3 Preliminaries
	4 Proposed approach
	4.1 Local strong and weak link
	4.2 Community discovery with a set of query nodes
	4.3 Community discovery with a limited time budget and limited memory
	4.4 Optimizing SIWO
	4.4.1 Efficient memory management
	4.4.2 Efficient candidate node selection


	5 SIWO variants: SIWO+ and SIWOw
	5.1 SIWO+: Global community detection
	5.2 SIWOw: Community detection on weighted networks

	6 Evaluation of SIWO
	6.1 Discovering local communities in real-world networks
	6.2 Discovering local communities in synthetic networks
	6.3 Community discovery with a limited time budget and limited memory
	6.3.1 Scalability in large synthetic networks
	6.3.2 Scalability in large real-world networks


	7 Evaluation of the variants of SIWO
	7.1 Evaluation of SIWO+
	7.2 Evaluation of SIWOw on weighted networks

	8 Conclusion and discussion
	References




