
Vol.:(0123456789)1 3

Social Network Analysis and Mining (2022) 12:158 
https://doi.org/10.1007/s13278-022-00983-9

ORIGINAL ARTICLE

RunMax: fake profile classification using novel nonlinear activation 
in CNN

Putra Wanda1

Received: 3 April 2022 / Revised: 4 October 2022 / Accepted: 6 October 2022 / Published online: 27 October 2022 
© The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2022

Abstract
Online social networks (OSN) are well-known platforms for exchanging various information. However, one of the existing 
OSN challenges is the issue of fake accounts. The attacker harnesses malicious accounts in the infected system to spread false 
information, such as malware, viruses, and harmful URLs. Based on the vast triumphs of deep learning in several fields, mainly 
automated representation, we propose RunFake, a convolutional neural network (CNN) to handle malicious account classifi-
cation. We build a dynamic CNN to train a classification model instead of using regular machine learning. In particular, we 
create a general activation function called RunMax as a new element of the neural network's final layer. We improve accuracy 
in the training and testing procedure by utilizing the proposed activation layer instead of the traditional function. Based on the 
experimental result, our method can yield Precision = 94.00, Recall = 93.21, and F1-Score = 93.42 with a better area under curve 
(AUC) score = 0.9547 using user profile data as features. We harvest a promising outcome with greater accuracy with tiny loss 
than common learning architecture in a fake account classification problem.

Keywords Classification · Fake profile · Nonlinear activation · Online social network

1 Introduction

Millions of user accounts connect and share different data 
items, including movies, images, and messages, on public 
OSNs. On the other hand, fake accounts represent a signifi-
cant risk in OSN protection. Counterfeit profiles are used in 
various current threats and other criminal actions. Approaches 
to detecting false profiles in the OSN may be divided into 
data analysis and individual accounts. The development of 
phony profiles is usually regarded as causing more damage 
than any other cybercrime. As a result, this danger should be 
recognized before the user is told that a bogus profile has been 
created. Anomaly detection is proposed in a variety of ways 
in many research. Another research proposed a fake account 
detection methodology based on the similarity of the user's 
friends. The graph's adjacency matrix is calculated using this 
method. It examines the friend's network structure to deter-
mine if the user is genuine or not (Muftic et al. 2016).

The traditional authentication methods to construct the 
protection scheme are passwords and PINs. Unfortunately, 
the conventional technique risks user data since the attacker 
unlocks or authenticates into the system. There is no ongo-
ing security to monitor the user's activities and patterns. 
Moreover, unauthorized individuals may be able to crack 
simple passwords or PINs on mobile phones or even wear-
able devices because of these issues (Takahashi et al. 2018).

The OSN environment keeps a massive amount of private 
data. However, it has attracted attackers to steal sensitive data, 
share fake news, and spread malicious applications. Phish-
ing is one of the most common methods of attack for sus-
picious reasons. The hacker can use the fraudulent practice 
of obtaining sensitive information such as PINs, passwords, 
and credit card details. Fake profiles play an important role 
in other malicious activities on the OSN. In this part of the 
thesis, we develop learning techniques to classify benign or 
fake accounts relying on user features with supervised learn-
ing (Takahashi et al. 2018; Abeer et al. 2016).

Furthermore, the flaws of these point-of-entry methods are 
frequently explored. It continues to be a flaw in the user's abil-
ity to regulate and monitor risk. The OSN security approach 
requires critical characteristics such as privacy, authentic-
ity, integrity, and non-repudiation. Existing users utilize the 

 * Putra Wanda 
 wpwawan@gmail.com

1 Universitas Respati Yogyakarta, Yogyakarta, Indonesia

http://crossmark.crossref.org/dialog/?doi=10.1007/s13278-022-00983-9&domain=pdf


 Social Network Analysis and Mining (2022) 12:158

1 3

158 Page 2 of 11

OSNs ecosystem to communicate a variety of data elements. 
It is simple for attackers to gather critical data and damage 
the system (Abeer et al. 2016). A vast number of malicious 
accounts may cause the theft of private data because the first 
step to jeopardizing user privacy is data leaking (Kökciyan 
and Yolum 2016).

A compromised OSN system displays unusual activity 
because the infected user may disseminate false or misleading 
information to the target user. By using a fraudulent account, 
Sybil can attack the large OSN ecosystem. Both human and 
bot accounts have profiles with comparable features and 
attributes. For example, individual reports and bot accounts 
have a similar identification, such as a name or images. The 
strange intruder might use the disadvantage to watch the tar-
get. Telegram, one of the most popular social messengers, 
has a vulnerability with the encrypted messenger. It could 
be possible to reconstitute the data log that the user sends or 
receives (Anglano et al. 2017). Suspicious nodes may cause 
Sybil threats due to OSN's shortcoming protection mecha-
nisms (Al-Qurishi et al. 2017).

Fake account concerns include a variety of risks, such as 
vertical attacks on OSN providers and horizontal attacks on 
OSN members. According to the server, fake accounts may 
mimic regular users by using a phony name and posting false 
information on their profiles. One of the most challenging 
problems is detecting fraudulent profiles in a large volume 
of unstructured data. It must categorize the characteristics of 
users in-depth to detect irregularities. The aspects of infor-
mation for security analysis are frequently provided via the 
public OSN (Bindu and Thilagam 2016).

In the typical OSN graph, the OSN contains many actors 
(nodes) and connections (links). Actors include individu-
als, groups, organizations, computers, and other information 
knowledge processing entities. User profiles include many 
personal facts, such as usernames, complete names, and 
phone numbers. Because of the flaws in privacy protection, 
a competent attacker may modify or corrupt crucial informa-
tion. They might use social engineering tactics and malicious 
accounts to steal information and modify data. Fake profile 
attacks threaten an organization's reputation because of odd 
patterns and unneeded updates (Meier and Johnson 2022).

According to the literature analysis, most existing public 
OSNs need fast and reliable privacy-preserving detection to 
discover anomalous accounts in an OSN dynamic context. To 
solve the problem of fake accounts in the dynamic environ-
ment, the communities should propose a novel approach to 
deal with intelligence and sophisticated attacks. Many studies 
suggest traditional methods for detecting malicious code, such 
as statistics, clustering, and machine learning. However, the 
techniques need frequent access to IDs or account monitor-
ing to distinguish between regular and suspect users. These 
flaws still exist in conventional methodologies. For starters, 
existing approaches are incapable of detecting fake accounts 

quickly in the large and dynamic ecosystem. OSN has many 
users that may register tens of thousands of new users daily. 
Unfortunately, the attackers attempt to create fake accounts 
on a large scale (Vigliotti and Hankin 2015).

As a result, the OSN system must develop a pre-entry 
level detection model. Before joining the OSN system, it 
must develop a rapid and scalable mechanism for detecting 
and responding to fake accounts. Existing statistical analysis 
approaches have difficulty recognizing false account connec-
tions in dynamic user interaction. The strategy allows mali-
cious accounts to remain in the network, make malicious 
connections, and collect extensive activity data (Vigliotti and 
Hankin 2015). In this study, we experimented with construct-
ing a model with a new classifier function for classifying OSN 
fraudulent accounts. To conduct our experiment, we collect 
various user attributes from user profile information as sam-
ples to help our training model.

Instead of utilizing conventional learning techniques like 
linear or logistic regression and SVM, we construct a unique 
approach to identify false profile accounts effectively. To cat-
egorize the anomalous account in OSN, we use a supervised 
learning model. It's a technique for detecting rogue accounts 
using OSN user characteristics. The best of our survey and 
expertise is the one strategy for tackling the rogue profile issue 
by evaluating user profile information with advanced learn-
ing. The goal of the model is to create and choose subsets of 
relevant characteristics for building a viable predictor. The 
following is a summary of our primary contributions, which 
are focused on addressing fake profile categorization in the 
OSN system:

1. We present a novel method for identifying false profiles in 
the OSN using a learning technique. Its goal is to detect 
fake profiles before they remain and infect the system. 
The model honed the OSN accounts' engineered charac-
teristics. To improve the learning classifier's accuracy and 
performance, we build a CNN model with a generic func-
tion of the final layer. Instead of employing a traditional 
CNN architecture, we used a generic linear classifier to 
train the suggested CNN model using a fictitious profile 
dataset.

2. We train the proposed classifier in the CNN architecture 
to measure whether it can provide cutting-edge results, 
particularly when identifying fake OSN profiles. Then, 
we give a metric assessment to check the model's quality. 
With the benchmark results, the suggested approach may 
increase classification performance. The model utilizes 
matrix inputs to calculate the large OSN features and train 
the features using a variety of hyperparameters.

3. We test the proposed activation function in a dynamic 
CNN architecture with different pooling functions using 
various valuable features. In CNN architecture, it is a new 
function for the final layer of the neural network. The 



Social Network Analysis and Mining (2022) 12:158 

1 3

Page 3 of 11 158

function may produce the best result by setting appro-
priate hyper-parameters and computing NN parameters. 
Furthermore, our experiment shows that the proposed 
approach can be a novel solution to classify fake profiles 
and a potential solution for improving the NN in classifi-
cation tasks.

Organization: In Chapter I, the paper will address the topic 
and the paper's contribution, and in Chapter II, it will review 
similar studies. The experiment's background is described 
in Chapter III, the suggested model is described in Chapter 
IV, the experimental setup is discussed in Chapter V, and the 
results and analysis are discussed in Chapter VI. In this sec-
tion, we also give a metric assessment to evaluate the model's 
efficacy. The conclusion and future study directions are dis-
cussed in Chapter VII.

2  Related works

OSNs provide a platform for users to interact with others by 
expressing their opinions, resharing content into different net-
works. Millions of user profiles and billions of transaction 
data make up a huge OSN. People's popularity and social 
evaluations may both benefit from increased OSN. OSN users, 
for example, may gain popularity by accumulating a large 
number of likes, follows, and comments. However, it is simple 
to establish phony accounts, or anyone may purchase them for 
a low price online. Typically, approaches for detecting abnor-
mal accounts in OSN evaluate activity fluctuations. With an 
increase in the number of active users on OSN, the propaga-
tion of fake news became obvious (Uppada et al. 2022).

In most cases, the users' actions change over time. The 
server might detect the suspicious account due to a quick 
change in access patterns for information and behavior. If 
it fails, the anomaly can potentially infect the system with 
already existing fraud (Vigliotti and Hankin 2015). A Cyborg, 
a form of phony account with falsified identities, is also to 
blame for the infected account. It undermines the user's repu-
tation by using the account to disseminate false information, 
create falsehoods, and polarize public opinion (Durst and Zhu 
2016). On the other hand, diverse communities use various 
dataset analysis techniques to tackle the problem, including 
supervised and unsupervised learning. The model may train 
the features to calculate user categorization throughout the 
learning phase (Vigliotti and Hankin 2015).

OSN security and privacy is a growing research area in the 
current year (Wanda and Jie 2020, 2021; Wanda et al. 2020; 
Jie and Wanda 2020). The research of fake account identifica-
tion may use dynamic data such as behavioral analysis, graph 
theory, learning algorithm, application design, and OSN 
characteristics data (Nadav 2021; Satish Kumar 2022; Kevin 
et al. 2021). Various papers design multiple ways to find and 

categorize abnormalities using the characteristics. Another 
research investigated how to thwart the intruder's suspicious 
actions in a big OSN by creating a community detection algo-
rithm (Liu et al. 2014). Another study proposes a model with 
a social behavior foundation. To tackle the detection issue, it 
looks into the profiles of people. The model can categorize 
the compromised user by evaluating their behavior in a sin-
gle OSN environment. The approaches use intelligent sens-
ing models to identify abnormalities (Sharma et al. 2017) or 
assess suspect accounts at various grades without considering 
horizontal categorization (Ruan et al. 2016).

The traditional scheme of OSN security utilized 
CAPTCHA to authenticate users and acquire an effective 
authentication procedure for different concerns. To gain 
adequate authentication, the OSN environment must devise 
a system to address the issue of fraudulent accounts. The 
approach may be considered the physical–social location (Ni 
et al. 2016), rumors propagation (Tan et al. 2016), or even 
monitoring user activity in joint community OSN for roaming 
service with user anonymity (Baingana and Giannakis 2016). 
On the other hand, standard security techniques make discov-
ering and blocking phony accounts challenging. Conventional 
approaches, including CAPTCHAs and SMS verification, are 
used in traditional security to authenticate accounts and pre-
vent false accounts (Simon et al. 2021).

The current strategies present the technique to avoid 
assaults in the pre-stage rather than identifying phony 
accounts after they have penetrated the network. Some 
research suggested rewiring and augmenting social graphs 
(Mohaisen and Hollenbeck 2013) or constructing a design 
point between the network connection and threat resilience-
based Sybil defensive models (Chiluka et al. 2015). Another 
method for identifying hacked accounts is to create user habits 
using the behavioral profile. The technique divides compa-
rable material and hacked accounts using content similarity 
(Egele et al. 2017). Other current approaches are using the 
SENAD model incorporated as authenticity score and fac-
tors in user social engagement-centric measures (Uppada 
et al. 2022), utilizing SVM, ANN, and an RF technique to 
build a fake profile detection model (Prabhu Kavin et al. 2022) 
and other machine learning models (Al-Zoubi et al. 2021). 
However, since the OSN needs to maximize development and 
engagement, it is difficult to apply in the practice area unless 
misuse causes a severe problem inside the system.

In this study, we design a new classifier using the learning 
approach to recognize the identification categories of the OSN 
account based on positive findings. According to our analysis, 
none of the available solutions present a classification strategy 
for detecting abnormalities in OSN using a unique supervised 
learning model that analyzes high data characteristics. As a 
result, to solve the issue of rogue profiles, we develop a new 
classifier in the neural network to enhance the mode that not 



 Social Network Analysis and Mining (2022) 12:158

1 3

158 Page 4 of 11

only detects OSN groups but also predicts future malicious 
activities pattern.

3  Proposed method

A common technique for building the OSN security model is 
machine learning. However, manual feature engineering is a 
costly and laborious task. Instead of using conventional ML, 
we proposed a deep learning algorithm to establish the learn-
ing model in OSN. Typically, the researcher can construct a 
classifier model that is appropriate to the problem of employ-
ing the DL algorithm as a solution for OSN protection and 
business purposes. To improve training and testing accuracy, 
a study can take advantage of several parameters in the DL 
algorithm, including epoch, regular, and optimizer.

In this paper, we construct a generic activation function 
called RunMax as a new part of the final layer by adding 
the Gaussian factor as an element of the function. Instead of 
training the model using a standard activation function, we 
introduce the technique as a linear classifier combined with 
the distribution to optimize the standard SoftMax classifier. 
We use gradient descent techniques to signify the stride size 
and attain a (local) minimum in the training phase. Based on 
the demonstration, we obtain higher accuracy in the training 
and testing result than the standard activation function. Nota-
bly, choosing a suitable Gaussian factor becomes essential 
for determining the NN performance in the fake accounts’ 
classification problem.

In the first part, we construct a CNN architecture with sev-
eral hidden layers and a hyperparameter. Instead of using the 
conventional architecture, we introduce a novel CNN architec-
ture to deal with malicious activities in OSN. This technique 
adopts supervised learning to detect fake accounts by analyz-
ing various useful features. Figure 1 depicts the CNN topol-
ogy to train the classifier using engineered features.

The proposed CNN employs several hidden layers to train 
and test the model and utilizes a gradient descent to minimize 
the objective function with the model's parameters. The model 
updates the settings in the opposite direction of the gradient of 
the objective function. By using the proposed CNN topology, 
we calculate the accuracy and loss of the training and testing 
process to achieve the best result with the diverse input vector. 
This study feeds the 1D features dataset and tunes an appro-
priate hyperparameter is beneficial. We establish a supervised 
learning model by defining calculation over NN as follows:

Input features x(i) ∈ R

Outputs x(i) ∈ Y(e.g.R, {0, 1}, {1, ..., p})

Model parameters � ∈ ℝ
k

Hypothesis function h�∶ ∶ ℝ
n
→ ℝ

Loss function � ∶ ℝ × Y → ℝ+∶

In this study, we calculate the optimization problem as 
follows:

In this paper, we provide hypothesis function h�∶ ∶ ℝ
n
→ ℝ 

in neural network processing. On a CNN, we need to calculate 
forward pass and backward pass to measure the gradient of the 
loss function in the model. The study calculates the forward 
pass to convolve input matrix xi with filter Wi to produce con-
volution output zi∶ as follows:

The CNN consists of the filters Wi and bias term b as the 
parameters of the convolutional layer during training. CNN 
has many identical neurons among the layers to run large 
models’ computation with a little number of parameters. The 
layer receives a single input (the feature maps) and computes 
the feature maps as its output by convolving filters across the 
feature maps. The parameters of the convolution layer called 
filters and the back-propagation model are used to learn dur-
ing training.

In the second part, we construct a generic linear activa-
tion function as a linear classifier called RunMax combined 
with the CNN model to increase the model performance. 
This method establishes a classifier with a binary classifi-
cation type, which may be the most widely applied kind of 
deep learning case. We build supervised learning to train the 
model by taking input data and crossing it onto hidden layers. 
To produce the output, the network undergoes computation 
in convolution, pooling, and fully connected layers. In this 
experiment, we classify the user profile as usual or malicious 
by calculating the explicit user features.

(1)
Minimize

�

m∑
i=1

�
(
h�∶

(
x(i)

)
, y(i)

)

(2)f ∶ ℝ
n
→ ℝ

m

(3)zi∶
(
xi
)
= Wixi + b

Fig. 1  Proposed CNN topology for training the OSN dataset



Social Network Analysis and Mining (2022) 12:158 

1 3

Page 5 of 11 158

3.1  Nonlinear activation function

The CNN network has an output of positive numbers and a 
sum of one. In the final phase, the conventional model uses 
a SoftMax function to reduce noise signals in the fully con-
nected layer before producing the classification result. To cal-
culate probabilities, the classification layer utilizes the out-
put result. In the final layer of a CNN, a model can employ 
SoftMax to reduce noise signals in the fully connected layer 
before producing the classification result. The SoftMax layer 
takes the logits as the input and has the probability values as 
the output layer.

After the last fully connected layer, a typical architecture 
utilizes the SoftMax function as a linear classifier. The net-
work acts as a classifier for a problem with classes c1 … ..cn , 
the output layer contains one neuron per class and building a 
vector z = z1 … ..zN . The SoftMax will be used to convert the 
values into probabilities, where SoftMax �(z)t is the probabil-
ity of the input to belong to the class and e is the exponential 
function. The SoftMax can normalize the output of the fully 
connected layer. In the neural network, the SoftMax layer can 
be calculated with formula 4.

SoftMax has two parts: a particular number e exponents to 
some power divided by a sum of some sort. Notation zi refers 
to each element with the logits vector z . In deep learning, 
especially in SoftMax, the term logits are popularly used for 
the last neuron layer of a neural network for a classification 
task that harvests raw prediction values. Logits are the raw 
scores produced by the last layer of a neural network before 
activation. As a result, SoftMax produces numbers represent-
ing probabilities values between 0 and 1 valid value range of 
probabilities (denoted as [0,1]). Figure 2 depicts the SoftMax 
operation from input to multiclass output.

To train the SoftMax-based models, the function utilizes 
a gradient descent concept. The gradient of SoftMax is cal-
culated by:

We can calculate the derivative of SoftMax where ŷt is the 
output prediction of the target class t,

To train a neural network, we require to compute the gradi-
ent updates of each layer concerning its inputs. So, we need to 
calculate the partial derivative of the SoftMax function with 

(4)�(z)l =
expzl∑N

n=1
expzn

, t = 1…N

(5)
�
[
log �(z)

]
t

�zn
=

{
1 − [�(z)]n if n = t

−[�(z)]n if n ≠ t

}

(6)ŷt =
ezl∑N

n�=1
ezn�

respect to a single input zn using the above rule. Thus, we can 
compute the gradient of SoftMax with respect to zn for n = t 
as follows:

And for n ≠ t as follows,

3.2  Proposed nonlinear activation: RunMax

In this experiment, we construct a fully connected (FC) layer 
as the final layer in a the CNN architecture. In the layer, every 
neuron in the preceding layer is connected to every neuron and 
depend on the level of feature abstraction. This layer gets the 
convolutional, ReLU, or pooling layer as its input and calcu-
lates the accuracy and loss score. The FC layer computes that 
outputs a vector of K (the number of classes) dimensions in 
the classification process, and the vector owns the probabili-
ties for each category.

(7)

𝜕
�
ŷt
�

𝜕zn
=

𝜕

�
ezt∑N

n�=1
e
z
n�

�

𝜕zn

=

�
𝜕

𝜕zn
ezt

�∑N

n�=1
ezn�−ezt

�
𝜕

𝜕zn

∑N

n�=1
ez,�

�

�∑N

n�=1
ezn�

�2

=
ezt

∑N

n�=1
ez

�
n − ezt ezn

�∑N

n�=1
ez

�
n

�2

=
ŷezt∑N

n�=1
ez

�
n

�∑N

n�=1
ez

�
n − ezn

∑N

n�=1
ez

�
n

�

�yt =
ezt∑N

n�=1
ez

�
n

(8)

𝜕
�
ŷt
�

𝜕zn
=

0 − ezt ezn�∑N

n�=1
ez

�
n

�2

𝜕
�
ŷt
�

𝜕zn
= ŷtŷn

Fig. 2  SoftMax operation from input to multiclass output in the final 
layer of NN



 Social Network Analysis and Mining (2022) 12:158

1 3

158 Page 6 of 11

Instead of using traditional approach like SoftMax which 
suffers from a bottleneck in a language modeling problem 
when training in extensive features, SoftMax bottleneck has 
been described in detail in the previous study (Yang et al. 
2018). The bottleneck is caused by a rank deficiency in the 
final linear layer due to its connection with matrix factoriza-
tion. To deal with the SoftMax bottleneck from the output set 
(range) and construct a function without additional parame-
ters, we propose RunMax as an alternative activation function 
to improve the traditional SoftMax. RunMax contains desir-
able properties for output activation functions by composing 
an exponential function and Gaussian function for its gradient 
calculation. In this paper, we introduce RunMax nonlinear 
activation as an alternative solution to deal with the SoftMax 
bottleneck in the large 1D dataset. The function is used at the 
final layer of CNN for the classification tasks. We develop 
RunMax linear classifier f (z)i as follows:

Notably, instead of using a standard activation function that 
calculates logits' probability values, we propose a novel linear 
classifier with �

(
zi
)
 and �

(
zm
)
 as a Gaussian function ( � ) for 

the zi and zm samples to construct the fully connected layer. 
Using the OSN dataset for experiments, we conduct training 
models using RunMax and provide the CNN performance.

4  Experimental setup

4.1  Dataset

A user profile records a person's activity in the OSN environ-
ment over time. Its purpose is to capture the typical behavior 
of a frequent user. This research focuses on accumulating the 
stream of information posted on the user wall to create user 
profiles. Then we gather additional essential information such 
as profile images and social activities (e.g., connecting friend 
or follower relationships). Unfortunately, the OSN system 
seldom provides historical data on feature changes, and as 
a result. We give full OSN profile data as the dataset at this 
time, which includes a sample with a benign and bogus label. 
Identity, complete names, number of friends, number of fol-
lowers, time, language, a link, message samples, and profile 
photographs are all included in the sample.

To create a benchmark dataset, we collect and extract sev-
eral profile characteristics from the corpus. By deconstructing 
certain user profile information, we gathered sample OSN 
profiles with over 3000 unique users as the dataset for this 
research. The study looks at user data from over three thou-
sand OSN members. To obtain a promising accuracy and 
tiny loss in the training and testing process, we separate the 

(9)
�
f (z)i

�
=

exp
�
zi
�
�
�
zi
�

∑M

m=1
exp

�
zm
�
�
�
zm
� , i = 1…M

dataset into training and testing datasets. To achieve a better 
performance of the proposed learning model, we developed 
a learning method to train and evaluate the dataset using vari-
ous features. Table 1 shows the training and testing dataset 
of this study.

We give the OSN dataset to train the learning classifier, 
containing numerous user attributes such as identity Pu and 
relation Ru. User identity is an individual account in the OSN 
that relates to a genuine natural member. Pu is a user repre-
sentation that includes usernames, ages, and other informa-
tion. In the OSN, Ru symbolizes the user's social relationships. 
Ru network includes how many friends they have. The OSN 
connection is defined as and is represented as ∁(∪, �) where 
∪ =

{
p1, p2,… pn

}
 is the set of user profiles and the collection 

of OSN links is stated as 𝜀 ⊆ ∪ × ∪ . Table 2 lists the high-
profile data used to train the classifier.

This research includes a dataset with many profiles, both 
real and fraudulent. In the OSN environment, we give certain 
fundamental characteristics that depict dynamic interaction. 
To increase the dataset reliability, we separate the sample data 
by splitting the train and test datasets. Splitting the sample 
data into two parts can improve the classifier's quality of train-
ing results on a benchmark dataset. By dividing the dataset, 
the classifier can ensure the model performance accuracy on 
the unseen data. We undergo the preprocessing stage to enable 
the learning model to learn more efficiently.

The research also includes assessment measures for deter-
mining how effectively a neural network generalizes to non-
dataset situations. In the first step, we prepare the user profile 
data as input and utilize it to create the extracted characteris-
tics. The model analyzes the data, extracts a few features, and 

Table 1  OSN dataset as features 
in training and testing

Dataset Training Testing

Normal 1200 300
Fake 1230 320

Table 2  OSN profile’s features

Features Description

Username_identity The account holder's identification number
Screen_name Account's full name
Friend_count The account's total number of friends
Follower_count The account's total amount of followers
Time_interaction The account holder's time information
Language The account holder's language
Location The account holder's location
Profile_background The profile background information in the 

OSN account message
Description_account The account holder's brief description
Profile_image The account holder's profile picture



Social Network Analysis and Mining (2022) 12:158 

1 3

Page 7 of 11 158

then uses the learning process to train the features. Finally, we 
compute the extracted features by examining existing attrib-
utes to identify whether a user profile is fraudulent or benign.

4.2  Preprocessing

The experiment obtains the user information as features con-
taining various user profiles information. To build adaption on 
the network, the model feeds tensor values to carry out CNN 
computation, including the training and testing process. This 
experiment converts all the user features into vectors to allow 
the training process. The profile features depict some explicit 
user data, including identity, username, location, profile image 
information, etc.

All of the input samples are converted into numerical 
arrays during data preprocessing. The model should trans-
form the array into tensors to allow matrix computation 
before beginning the training process. After converting the 
features to byte representation values, the model generates 
the input vectors. To support the quality of training in the 
learning issue, the feature extraction procedure is critical. In 
most cases, the learning process is required to train the model 
in categorizing user profiles based on implicit and explicit 
information. The explicit characteristics of raw user metadata 
such as information credibility (Castillo et al. 2011) and user 
identity linkage (Shu et al. 2017).

Implicit characteristics are not explicitly stated in the pro-
file. They are often helpful for representing user profiles for 
specialized jobs. Age, gender, and personality are all typical 
implicit profile characteristics. We use the explicit attributes 
in this research and input them into the model. As a result, we 
collect the users' feature types to build the classifier, which is a 
crucial aspect of the OSN connection for inferring friendship 
(He, et al. 2020).

The data preprocessing offers the dataset as a table in the 
dimensional grid in this section. The table's rows represent 
individual components, while the columns represent the num-
ber of characteristics. Before changing the features matrix's 
integer, the dataset containing features and label refers to 
rows and columns. Features and targets in data preprocessing 
should be numerical arrays. As a result, before feeding the 
integer values to the classifier, we must transform them into 
tensor forms.

5  Experiment result

5.1  Proposed CNN

We train the model using convolutional architecture in the 
first step, followed by a fully connected layer. In a fully 
connected layer, all input units have a separate weight from 
each output unit. For n inputs and m outputs, the number 

of weights is n ∗ m . The research uses SGD to train the 
model and adjusts the learning rate to decide the stride size 
to obtain a (local) minimum. During the training and test-
ing procedure, we used a gradient descent (SGD) optimizer 
with momentum. To minimize the objective function j(x) 
using the model's parameters, we use gradient descent. We 
use many optimizers with epoch = 12 to train the proposed 
CNN, and we use gradient descent to minimize the objective 
function j(x). Using the suggested function in a sample of 
user profile characteristics, Fig. 3 demonstrates the perfor-
mance in our model graph's training and testing procedure.

We achieve the best accuracy and little loss in the train-
ing and testing process while training the model using 
SGD + momentum for CNN architecture, based on many 
testing processes. To prove the model's performance, we 
calculate Recall, Precision, F1-Score, and ROC using evalu-
ation measures. Then, to prove our proposed model's perfor-
mance, we compare it to other learning algorithms using the 
same dataset and hyperparameter settings. Table 3 displays 
the Recall, Precision, and F1-Score with different methods.

Because it is relevant in the classification context, we 
depict the ROC curve to measure sensitivity and specific-
ity. To widen the ROC curve of binary classification, it 
must transform the output into binary values. As the cri-
teria change, it becomes a relative operating characteristic 
curve (TPR and FPR). This experiment also calculates the 
AUC score to measure sensitivity and specificity in various 
thresholds without altering the threshold. The AUC meas-
ures how well a model can distinguish between positive 
and negative classifications. In the classifier, we use binary 
classification.

The AUC in this research is 0.9547, which indicates that 
the value of the area is essential in metric assessment. The 
AUC works by calculating a rating based on the distance 
between two classes, which shows the model's ability to dis-
tinguish between positive and negative categories. As seen 
above, the suggested CNN is capable of making accurate 
level predictions and beats other traditional learning meth-
ods. We discovered that our model produces more accurate 
results and is more efficient.

5.2  Comparison of activation functions

In this section, we train users' characteristics to test the sug-
gested classification algorithm using learning parameters. 
In this process, we use a smaller sample dataset and train 
the model using CNN architecture with and without a linear 
classifier at the final fully connected layer. We also com-
pute the loss function using the local variable notion. Its 
purpose is to determine the loss gradient in terms of weight 
and bias. In CNN architecture, we examine several activa-
tion functions, such as SoftMax and RunMax, and tweak 



 Social Network Analysis and Mining (2022) 12:158

1 3

158 Page 8 of 11

optimization techniques using hyperparameters. Choosing 
a hyperparameter value is critical for improving network 
training quality in regular deep learning. Before adding the 
nonlinear activation functions, we modify the same hyper-
parameter to retain the training result's dependability and 
stability and pick the network with the best performance.

In the training and testing process, we tune the CNN hyper-
parameters and set different linear classifiers at the end of the 
last hidden layer. We test CNN with and without the RunMax 
function to measure classifiers' performance in the same data-
set. By adding the RunMax function, we gain better accuracy 
than another state-of-the-art method, SoftMax, in the same 
environment and hyperparameters. Table 4 displays the com-
parison performance among different classifiers to measure 
training accuracy and testing accuracy.

The training accuracy of the neural network with the Run-
Max is 0.8334, and the testing accuracy is 0.8172, which is 
greater than other typical CNN designs. The results suggest 
that by setting an adequate gradient descent in the training 
process, the proposed CNN with RunMax may deliver a 
promising outcome. The function may optimize the neural 
network's performance by demonstrating on the dataset. In the 
classification domain issue, training the model using an opti-
mizer may improve accuracy. However, if a CNN with many 
layers and more neurons cannot increase predictive capacity, 
we identify a downside, and this approach remains a training 
time weakness.

As the standard activation function, Softmax converts all 
logits into probabilities. However, in several classification 
cases, the empty feature maps still produce a result. Softmax 
function can also suffer from a bottleneck of the representa-
tional capacity of neural networks in language modeling or 
the 1D dataset. The proposed nonlinear activation function is 
a new way to achieve accurate classification results to train 
features as the dataset to improve the Softmax drawbacks. The 
RunMax classifier becomes a useful technique if we train a 
model with a 1D dataset like OSN features.

Notably, adding the Gaussian function to develop the Run-
Max can be crucial to improving the classifier performance at 
the final layer of the neural network. Based on the experiment, 
we obtain that RunMax can achieve a better result than the 
conventional SoftMax activation function. In the fake account 
problem, this technique's significance relates to information 
security and rests on the ability of the model to distinguish 
fake profiles within similar contexts. To the best of our knowl-
edge, no similar works presented the idea of binary classifying 
malicious profiles by constructing a novel learning model. 

a)Accuracy Score 

b) Loss Score 

Fig. 3  Performance result of the proposed CNN with fake profile fea-
tures

Table 3  Comparison of precision, recall and F1-Score among algo-
rithms

Algorithm Precision (%) Recall (%) F1-Score (%)

Naïve bayes 86.91 86.95 87.02
GB (n estim = 50) 90.65 90.69 91.01
LR 90.48 90.58 90.60
SVM (rs = 31.6) 90.04 87.34 87.24
Proposed CNN 94.01 93.22 93.41

Table 4  Comparison among classifiers with the CNN architecture

Activation type Training accuracy (%) Testing 
accuracy 
(%)

CNN + No activation 80,51 79,54
CNN + SoftMax 82,31 81,33
CNN + RunMax 83,34 81,72



Social Network Analysis and Mining (2022) 12:158 

1 3

Page 9 of 11 158

Therefore, this study can be a promising solution to achieve 
more accurate interpretability for phishing detection in the 
OSN.

6  Conclusion

Many researchers have proposed various techniques to deal 
with malicious account detection issues. Some critical aspects 
of malicious account classification are fake attributes, sus-
picious URLs, and toxic comments on the OSN wall. The 
conventional methods such as self-rules, statistical, or even 
common learning-based remain drawbacks. Instead of using a 
standard model to construct our method, we propose the mali-
cious classification model with a novel learning algorithm.

Inspired by deep learning performance in various prob-
lems, we develop the classification model with the learn-
ing classifier concept. Our goal is to understand the state 
of the art in a malicious account problem in the first line of 
research, including novel techniques and approaches. Based 
on the experiments, the proposed method can harvest potential 
results to deal with malicious account detection using a deep 
learning classifier. We gain three research achievements with 
large user features using the neural network training process. 
Our proposed methods obtain several promising achievements 
in malicious classification as follows:

By developing a nonlinear activation function at the final 
layer to increase CNN's performance, we find the neural net-
work architecture using the RunMax with a Gaussian distri-
bution can improve SoftMax performance to address fake 
accounts issues with binary classification. This experiment 
can produce higher Precision, Recall, F1-Score, and AUC 
scores with user profile features as a dataset based on the 
two classes' separation. Based on the comparison table, the 
proposed model produces a higher accuracy score than other 
activation algorithms with the benchmark dataset. By imple-
menting the generic function network, we obtain a promising 
improvement in the CNN graph's performance. Thus, it can 
be a real-time solution to address malicious account detection 
issues in practical areas.

Based on the experimental result, our technique can accu-
rately detect the fake profile by producing Precision = 94.00, 
Recall = 93.21, and F1-Score = 93.42. By assessing the 
ranking based on the separation of the two classes, the 
suggested model may reach a better AUC score = 0.9547. 
To summarize, the model may be a valuable method for 
developing a classification model based on large datasets 
of profile data. Our findings may encourage individuals to 

work on social network data and develop solutions to help 
them make better judgments based on facts. This approach 
can increase the accuracy of predicting whether a profile is 
fake or real.

By implementing the network with the generic functions, 
we get better improvement in the CNN performance with 
supervised learning to classify fake and regular accounts. 
Notably, adding the Gaussian function to the proposed non-
linear classifier becomes essential for constructing a bet-
ter neural network to achieve better performance. In future 
research, the subsequent investigation requires building a 
novel model using a more complex technique like ontology 
engineering or more sophisticated architecture including 
GAN and GCN.

Appendix

RunMax: complement material

To deal with the SoftMax bottleneck problem, we propose 
RunMax given as follows:

Definition 1 RunMax is defined as

whereG(⋅) represents a Gaussian function f (z) = exp
(
−z2

)
 

with derivative f �(z) = −2z
(
exp

(
−z2

))

Theorem 1 Let z ∈ S as the input of RunMax f (z) and Soft-
Max fs(z). Let S as a d-dimensional vector space 1 ∈ S, thus 
the range of Softmax is a subset of RunMax.

Proof If we have 1 ∈ S  , it can be described as 

S =

�
d−1∑
l=1

k
�(l)u

�(l) + k
�(d)1�k�(l) ∈ R

�
 w h e r e  u

�(l)  i s 
(l = 1,… , d − 1) and 1 are linearly independent vectors. The 

arbitrary part of S can be represented as 
d−1∑
l=1

k
�(l)u

�(l) + k
�(d)1 , 

and thus, we can write z =
d−1∑
l=1

k
�(l)u

�(l) + k
�(d)1 . For the output 

of softmax,

(10)
�
f (z)i

�
=

exp(zi)�(zi)∑M

m=1
exp(zm)�(zm)

, i = 1…M

(11)
{
fs(z)|z ∈ S ⊆ f (z)|z ∈ S

}



 Social Network Analysis and Mining (2022) 12:158

1 3

158 Page 10 of 11

By substituting z =
d−1∑
l=1

k
�(l)u

�(l) + k
�(d)1 to the 

[
fs(z)i

]
 func-

tion, we have:

Thus, the range of SoftMax become as follows:

Besides, by replacing z =
d−1∑
l=1

k
�(l)u

�(l) + k
�(d)1 to the 

[
f (z)i

]
 

RunMax function, output of RunMax becomes as follows:

When k�(l) are fixed for (l = 1,… , d − 1) and k�(d)
→ +∞ , 

we get the following equality:

hence limk→+∞G(v, k) = 1 when v is fixed. Considering 
Eq. 17, RunMax has following relation:

(12)
�
fs(z)i

�
=

exp
�
zi
�

∑M

m=1
exp

�
zm
�

(13)

[

fs(z)i
]

=
exp

([

∑d−1
l=1 k′(l)u′(l)

]

i
+ k′(d)

)

∑M
m=1 exp

([

∑d−1
l=1 k′(l)u′(l)

]

m
+ k′(d)

)

=
exp

([

∑d−1
l=1 k′(l)u′(l)

]

i

)

∑M
m=1 exp

([

∑d−1
l=1 k′(l)u′(l)

]

m

)

(14)

�
fs

��
d−1�
l=1

k
�(l)u

�(l)

�
+ k

�(d)1

�
k
�(d) ∈ ℝ

�
=

⎧⎪⎨⎪⎩

exp
��∑d−1

l=1
k
�(l)u

�(l)
�
i

�

∑M

m=1
exp

��∑d−1

l=1
k
�(l)u

�(l)

�
m

��k�(l) ∈ ℝ

⎫
⎪⎬⎪⎭

(15)

�
f (z)i

�
=

exp
��∑d−1

l=1
k
�(l)u

�(l)
�
i

�
�
��∑d−1

l=1
k
�(l)u

�(l)
�
i
+ k

�(d)
�

∑M

m=1
exp

��∑d−1

l=1
k
�(l)u

�(l)

�
m

�
�
��∑d−1

l=1
k
�(l)u

�(l)

�
m
+ k

�(d)

�

(16)

lim
k
� (d)→+∞

exp
��∑d−1

l=1
k
�(l)u

�(l)
�
i

�
�
��∑d−1

l=1
k
�(l)u

�(l)
�
i
+ k

�(d)
�

∑M

m=1
exp

��∑d−1

l=1
k
�(l)u

�(l)

�
m

�
�
��∑d−1

l=1
k
�(l)u

�(l)

�
m
+ k

�(d)

�

=

exp
��∑d−1

l=1
k
�(l)u

�(l)
�
i

�

∑M

m=1
exp

��∑d−1

l=1
k
�(l)u

�(l)

�
m

�

(17)

⎧⎪⎨⎪⎩

⎛
⎜⎜⎜⎝

exp
��∑d−1

l=1
k
�(l)u

�(l)
�
i

�

∑M

m=1
exp

��∑d−1

l=1
k
�(l)u

�(l)

�
m

�
⎞
⎟⎟⎟⎠
k
�(l) ∈ ℝ

⎫⎪⎬⎪⎭
=
�
f (z)�z ∈ s�

�
⊆ f (z)�z ∈ S}

We can calculate S
� =

�
d−1∑
l=1

k
�(l)u

�(l) + k
�(d)1�k�(l) ∈ R

for
(
l = 1,… , d − 1, k

�(d)
→ +∞

)
⊂ S

} . Based on Eq. (16), 
we can look that the range of RunMax contains the range of 
SoftMax. Therefore, we get 

{
fs(z)|z ∈ S ⊆ f (z)|z ∈ S

}
 . Theo-

rem 1 describes that if 1 ∈ S , so the range of RunMax is able 
to be larger than that of SoftMax. The assumption 1 ∈ S 
means that there exist inputs of which outputs are the equal 
probabilities for all labels as p�

(
yi|x

)
=

1

M
 for all i.

References

Abeer A-M, Maha H, Nada A-S, Hemalatha M (2016) Security issues 
in social networking sites. Int J Appl Eng Res 11(12):7672–7675

Al-Qurishi M, Al-Rakhami M, Alamri A, Alrubaian M, Rahman SMM, 
Hossain MS (2017) Sybil defense techniques in online social net-
works: a survey. IEEE Access 5:1200–1219

Al-Zoubi AM, Alqatawna J, Faris H, Hassonah MA (2021) Spam pro-
files detection on social networks using computational intelligence 
methods: the effect of the lingual context. J Inf Sci 47(1):58–81

Anglano C, Canonico M, Guazzone M (2017) Analysis of telegram mes-
senger on android smartphones. Digital Investig 23:31–49

Baingana B, Giannakis GB (2016) Joint community and anomaly 
tracking in dynamic networks. IEEE Trans Signal Process 
64(8):2013–2025

Bindu P, Thilagam PS (2016) Mining social networks for anomalies: 
Methods and challenges. J Netw Comput Appl 68:213–229

Castillo C, Mendoza M, Poblete B (2011) Information credibility on 
twitter. WWW Conference

Chiluka N, Andrade N, Pouwelse J, Sips H (2015) Social networks meet 
distributed systems: towards a robust sybil defense under churn. In: 
Proceedings of the 10th ACM symposium on information, com-
puter and communications security, ASIA CCS '15, ACM: 505–518

Durst S, Zhu L (2016) The darpa twitter bot challenge
Egele M, Stringhini G, Kruegel C, Vigna G (2017) Towards detecting 

compromised accounts on social networks. IEEE Trans Dependable 
Secure Comput 14(4):447–460

He C et al (2020) CIFEF: combining implicit and explicit features for 
friendship inference in location-based social networks. KSEM, 
Texas

Jie HJ, Wanda P (2020) RunPool: a dynamic pooling layer for convolu-
tion neural network. Int J Comput Intell Syst 13(1):66–76

Kevin K, Alexander D, Matthias S (2021) Does my social media burn?—
identify features for the early detection of company-related online 
firestorms on twitter. Online Soc Netw Media 25:100151

Kökciyan N, Yolum P (2016) ProGuard: a semantic approach to detect 
privacy violations in online social networks. IEEE Trans Knowl 
Data Eng 28(10):2724–2737

Liu B-H, Hsu Y-P, Ke W-C (2014) Virus infection control in online 
social networks based on probabilistic communities. Int J Commun 
Syst 27:4481–4491

Meier A, Johnson BK (2022) Social comparison and envy on social 
media: a critical review. Curr Opin Psychol 45:101302. https:// doi. 
org/ 10. 1016/j. copsyc. 2022. 101302

Mohaisen A, Hollenbeck S 2013 Improving social network-based sybil 
defenses by rewiring and augmenting social graphs. In: Revised 
selected papers of the 14th international workshop on information 
security applications, WISA: 8267

https://doi.org/10.1016/j.copsyc.2022.101302
https://doi.org/10.1016/j.copsyc.2022.101302


Social Network Analysis and Mining (2022) 12:158 

1 3

Page 11 of 11 158

Muftic S, Abdullah N, Kounelis I (2016) Business information exchange 
system with security, privacy, and anonymity. J Electr Comput Eng 
251:7093642

Nadav V, Gal-Oz N, Ehud G (2021) A trust based privacy provid-
ing model for online social networks. Online Soc Netw Media 
24:100138

Ni X, Luo J, Zhang B, Teng J, Bai X, Liu Bo, Xuan D (2016) A mobile 
phone-based physical-social location proof system for mobile social 
network service. Sec Commun Netw 9:1890–1904

Prabhu Kavin B, Sagar Karki S, Hemalatha DS, Vijayalakshmi R, 
Thangamani M, Haleem SLA, Jose D, Tirth V, Kshirsagar PR, 
Adigo AG (2022) Machine learning-based secure data acquisition 
for fake accounts detection in future mobile communication net-
works. Wireless Commun Mobile Comput 2022:1

Ruan X, Wu Z, Wang H, Jajodia S (2016) Profiling online social behav-
iors for compromised account detection. IEEE Trans Inf Forensics 
Secur 11(1):176–187

Satish Kumar A, Revathy S (2022) A hybrid soft computing with big 
data analytics based protection and recovery strategy for security 
enhancement in large scale real world online social networks. Theor 
Comput Sci  927:15–30. https:// doi. org/ 10. 1016/j. tcs. 2022. 05. 018

Sharma V, You I, Kumar R (2017) ISMA: intelligent sensing model for 
anomalies detection in cross platform OSNs with a case study on 
IoT. IEEE Access 5:3284–3301

Shu K, Wang S, Tang J, Zafarani R, Liu H (2017) User identity linkage 
across online social networks: a review. ACM SIGKDD Explor 
Newsl 18(2):5–17

Simon WJ, Krupnik TJ, Aguilar-Gallegos N, Halbherr L, Groot JCJ 
(2021) Putting social networks to practical use: improving last-mile 
dissemination systems for climate and market information services 
in developing countries. Climate Serv 23:215

Takahashi T, Panta B, Kadobayashi Y, Nakao K (2018) Web of cyberse-
curity Linking, locating, and discovering structured cybersecurity 
information. Int J Commun Syst 31:3470

Tan Z, Ning J, Liu Y, Wang X, Yang G, Yang W (2016) ECRModel: An 
elastic collision-based rumor-propagation model in online social 
networks. IEEE Access 4:6105–6120

Uppada SK, Manasa K, Vidhathri B et al (2022) Novel approaches to 
fake news and fake account detection in OSNs: user social engage-
ment and visual content centric model. Soc Netw Anal Min 12:52

Vigliotti MG, Hankin C (2015) Discovery of anomalous behaviour in 
temporal networks. Soc Netw 41:18–25

Wanda P, Jie HJ (2020) DeepProfile: finding fake profile in online social 
network using dynamic CNN. J Inf Secur Appl 52:102465

Wanda P, Jie HJ (2021) DeepFriend: finding abnormal nodes in online 
social networks using dynamic deep learning. Soc Netw Anal Min 
11:34

Wanda P, Endah MH, Jie HJ (2020) DeepOSN: Bringing deep learning 
as malicious detection scheme in online social network. IAES Int J 
Artif Intell (IJ-AI) 9(1):146

Yang Z, Dai Z, Salakhutdinov R, Cohen WW (2018) Breaking the soft-
max bottleneck: a high-rank RNN language model. In: International 
conference on learning representations. https:// arxiv. org/ abs/ 1711. 
03953.

Publisher's Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds 
exclusive rights to this article under a publishing agreement with the 
author(s) or other rightsholder(s); author self-archiving of the accepted 
manuscript version of this article is solely governed by the terms of 
such publishing agreement and applicable law.

https://doi.org/10.1016/j.tcs.2022.05.018
https://arxiv.org/abs/1711.03953
https://arxiv.org/abs/1711.03953

	RunMax: fake profile classification using novel nonlinear activation in CNN
	Abstract
	1 Introduction
	2 Related works
	3 Proposed method
	3.1 Nonlinear activation function
	3.2 Proposed nonlinear activation: RunMax

	4 Experimental setup
	4.1 Dataset
	4.2 Preprocessing

	5 Experiment result
	5.1 Proposed CNN
	5.2 Comparison of activation functions

	6 Conclusion
	References




