
Vol.:(0123456789)1 3

Social Network Analysis and Mining (2022) 12:141
https://doi.org/10.1007/s13278-022-00968-8

ORIGINAL PAPER

FPPR: fast pessimistic (dynamic) PageRank to update PageRank
in evolving directed graphs on network changes

Rohith Parjanya Pashikanti1 · Suman Kundu1

Received: 1 April 2022 / Revised: 30 August 2022 / Accepted: 5 September 2022 / Published online: 25 September 2022
© The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2022

Abstract
The paper presents a new algorithm FPPR which updates PageRanks of a directed network after topological changes in the
graphs. The algorithm is capable of regenerating scores on node and link addition/deletion. The changes in the expected
value of random surfers are used for updating the scores of the newly added nodes as well as the impacted chain where the
nodes/links are added or removed. The complexity of the algorithm for k new node addition is O(k × d(k)

avg
) where d(k)

avg
 is the

average degree of k nodes added. On the other hand for node deletion, the complexity is O(|Vs| + |Es|) where Vs and Es the
set of nodes and edges updated using Selective Breath First Update. Extensive experiments have been performed on different
synthetic and real-world networks. The experimental result shows that the rank generated by the proposed method is highly
correlated with that of the recalculation on changes using the benchmark Power Iteration algorithm.

Keywords Dynamic network · Randomized algorithm · Link sensitivity index · Approximate visit · Dynamic PageRank

1 Introduction

Ranking search results of any web search is an important
task. PageRank (Page et al. 1998) is one of the pioneer algo-
rithms to rank web pages. There were only a few pages in
the initial days of the internet. So, static page ranking algo-
rithms were sufficient. However, as the WWW (World Wide
Web) started growing, the calculation of PageRank became
more and more complex and computationally challenging.
With the growth of the internet, many subnetworks appeared
and PageRank provides different values to those networks.
Thus PageRank is not limited to web search only. These sub-
networks may have dynamic characteristics. Dynamic net-
works are those networks where nodes and links get added
or deleted with time. Today’s internet is full of dynamic

networks. For example, the Twitter retweet network, where
the addition of nodes (retweets) happens frequently, the
following/followers network in Twitter/Instagram, where
addition and deletion of nodes, links take place frequently,
Twitter mentions network changes with each Tweet post, the
citation network, where research papers get added over time,
etc. Calculating PageRank in such a dynamic network is an
important and challenging research problem. The trivial way
to find PageRank in dynamic networks is to run the static
PageRank methods after every update in the network. This
is time-consuming and non-sustainable for rapid updates in
the network.

The real-time use cases like finding the top-k popular
products in an online shopping cart or finding top-k spread-
ers of news considering reshare network, etc., will need
high-speed computation of PageRank. PageRank is also used
to get suggestions to users with other accounts to follow in
Twitter (Gupta et al. 2013). PageRank also finds applications
in networks outside the internet. For example, identify new
possible drug targets in proteins (Iván and Grolmusz 2011)
in biochemistry; predicting how many pedestrians/vehicles
visit the individual places or streets (Jiang 2009), etc.

The PageRank was initially proposed in Page et al.
(1998). It is the classical algorithm for ranking web pages.
Over the years, many variations of PageRank (Lempel and
Moran 2000; Breyer 2002; Langville and Meyer 2004;

R. P. Pashikanti and S. Kundu are contributed equally to this work.

 * Suman Kundu
 suman@iitj.ac.in

 Rohith Parjanya Pashikanti
 parjanya.1@iitj.ac.in

1 Cognitive and Social Analytics Lab, Department
of Computer Science and Engineering, Indian Institute
of Technology Jodhpur, Rajasthan 342030 Jodhpur, India

http://crossmark.crossref.org/dialog/?doi=10.1007/s13278-022-00968-8&domain=pdf

 Social Network Analysis and Mining (2022) 12:141

1 3

141 Page 2 of 27

Salehi 2007; Zhou 2015; Vargas 2020) had been evolved.
Randomized algorithms (Breyer 2002; Vargas 2020; Salehi
2007; Zhou 2015; Avrachenkov et al. 2007) for approximat-
ing PageRanks were also introduced. These algorithms are
called Monte Carlo-based algorithms. Randomized Monte
Carlo algorithms provide a reasonable estimation of PageR-
ank. All these algorithms are designed for static networks.
There are methods in the literature to solve the problem of
dynamic PageRank (Desikan et al. 2005; Chien et al. 2004;
Langville and Meyer 2004; Zhan et al. 2019; Isham and Sen-
eta 1983; Liao et al. 2017) as well. In Desikan et al. (2005),
Chien et al. (2004), Langville and Meyer (2004), a subset of
graph is chosen and PageRank is computed on that subset
using static methods for any updates. Zhan et al. (2019),
Isham and Seneta (1983) and Liao et al. (2017) random walk
model is used, where random walk segments are adjusted
in case of updates. However, these algorithms could not
provide satisfying accuracy in terms of relative ranking of
nodes or running time for updates, especially for Big Data
networks. Hence, a simple dynamic PageRank algorithm
that runs fast is critical to address the above problems.

This paper proposes a simple algorithm, namely fast
pessimistic dynamic PageRank (FPPR) to approximate the
PageRank on change in network topology. Different topol-
ogy changes considered are (i) adding a new node/link to
the network and (ii) deleting a node/link from the network.
The present work is an extension of our initial results (Par-
janya and Kundu 2022) where only node addition was con-
sidered. The proposed algorithm uses the expected value of
random surfers to re-calculate the score for changes in the
topology. Here by the expected value of random surfers, we
mean the estimated number of visits at a node by the random
surfers, considering the network is static at that point. For
example, when a new node (or link) is added, the score is
calculated by adding the estimated scores contributed by
in-links to that new node (or target node) and estimating the
visits by random surfers through the link chain it is being
added to. The same method is used to update existing nodes
through the out-links of the newly added node. These are
the links that the random surfer may use to visit (or go out
from) that node if the static PageRank algorithm was used
at that point. FPPR uses Selective Breadth First Update
(SBFU) for node deletion. SBFU updates the score of nodes
and links traversed during the process with the appropri-
ate deductions calculated by the expected values. Further
for link deletion, FPPR performs a local update adjusting
the PageRank score of the target node only. The proposed
algorithm takes O(k × d(k)

avg
) time complexity for k node or

link addition. Here d(k)
avg

 is the average degree of the k nodes
added to the graph. Time complexity for node deletion and
link deletion is O(Vs + Es) and O(1) , respectively. Vs is the

updated set of nodes, and Es is the set of edges associated
with Vs . Further, FPPR takes only O(|V|) additional space.
Specifically, 4 × |V| space is used in the worst case for node
addition. For node deletion, additional E space is required.
Thus FPPR takes a total O(|V + E|) additional space. The
experiments are performed over several synthetic and real-
world networks considering different dynamic behavior of
the network. Random graph generators from the networkX
library are used to test FPPR for link addition and deletion.
The experimental results show that the ranking of the pro-
posed method is highly correlated with the ranking of the
benchmark Power Iteration-based recalculation and better
than the state-of-the-art methods like Fast Incremental Pag-
eRank (FIPR) (Zhan et al. 2019) and Offset Score Propaga-
tion (OSP) (Yoon et al. 2018). The FPPR is also tested on
the simulation of a real-world graph of growth and decay
together. The proposed method has better performance than
FIPR (Zhan et al. 2019). In summary, the major contribu-
tions of the paper are

1. We propose FPPR algorithm for the dynamic network,
which takes less computation and space with respect to
other comparing methods, including classical and state-
of-the-art algorithms. The proposed algorithm can esti-
mate the PageRank for both node and link addition and
deletion.

2. We experimentally show that the updated page ranks are
highly correlated with those of the Power Iteration (PI)
method. Spearman’s rank correlation coefficient is used
to compare the ranking of the proposed FPPR with that
of the comparing methods.

3. We showed with experiments that the proposed algo-
rithm works with different network changes for evolv-
ing networks. Both growing and decaying networks are
simulated.

The paper is organized as: Sect. 1.1 describes the graph
model, Sect. 2 provides a brief literature review, the pro-
posed FPPR method and its rationale are presented in
Sect. 3, experiments performed and corresponding results
are reported in Sect. 4. Finally, Sect. 5 describes the conclu-
sions of the research work.

1.1 The model

In the paper, a directed network is represented with graph
G(V, E) where V is a set of nodes in the network and
E = V × V is the set of edges. The graph is directed, i.e.,
e(u, v) ≠ e(v, u) . Also, we assume that there is no self-loop in
the graph. Symbols used throughout the paper are provided
in Table 1 for the reader’s reference.

Social Network Analysis and Mining (2022) 12:141

1 3

Page 3 of 27 141

2 Related work

Since the inception of WWW in the 1970s, the size of the
internet has been increasing on a rapid scale. There is a need
for ranking pages to find relevant information from it. This
led to the invention of search engines to make web searches
possible for any user query. With the increase in size rank of
the pages need updates. The early search engines use algo-
rithms like HITS (Kleinberg 1999) and PageRank (Page
et al. 1998). Over the years, there have been many methods
to get PageRanks, which can be divided into (i) classical
PageRank, (ii) static Monte Carlo-based methods, and (iii)
PageRank for dynamic networks.

2.1 PageRank

PageRank (Page et al. 1998) defines the importance of web
pages based on the link structure of the web. PageRank is
inspired by the eigenvector centrality measure. The PageR-
ank of any node u is calculated based on the set of nodes
(Γin(u)) that point to u (backward links) and the set of nodes
(Γout(u)) that u points to (forward links). Then the ranking
of any node u (�u) is given by, �u =

∑
b∈Γout(u)

�b

�Γout(b)�
 . The

PageRank for nodes with no hyperlinks is given by
1

Total number of nodes
.

In simple terms, it uses a random surfer model where the
random surfer clicks out-links with probability 1 − � and
terminates its walk to start a new walk at a random page
with probability � . The PageRank transition matrix (P∗) is
as follows.

where I is the unit square matrix and n is the number of
nodes in the network. P is transition probability matrix in
which each entry is 1

dout(u)
 when (u, v) ∈ E and 0 otherwise.

Here dout(u) = |Γout(u)| is the out-degree of u. The simple
pseudocode for calculating the PageRank vector (�) is
described below.

The � is the convergence threshold provided by the user,
and (i + 1) is the current iteration. The converged �(i+1) is
final PageRank vector.

2.2 Static Monte Carlo‑based PageRank algorithms

The Monte-Carlo methods are used to approximate classi-
cal PageRank (Page et al. 1998). Salehi (2007), it is stated
that PageRank is nothing but a finite-state Markov Chain
and there exists an eigenvalue 1. Hence � = P∗� and � is
the final rank vector. Replacing P∗ with [Eq. (1)] gives the
following equation that is interpreted (Zhou 2015) as the
distribution of all the random walks ending at each node.

There are many variations evolved (Breyer 2002; Var-
gas 2020; Salehi 2007; Zhou 2015; Avrachenkov et al.
2007) from the above formulation for approximating Pag-
eRank (�). All these methods majorly follow four different
strategies.

(1)P∗ = (1 − �)P + �
1

n
I

while 𝛿 > 𝜀 do

𝜋(i+1) = 𝜋(i)P∗

𝜀 = |𝜋(i+1) − 𝜋(i)|

end while

(2)� =
(1 − �)

n
[1][I − (�)P]−1

Table 1 Symbol table

Symbol Remarks

G Graph
V Set of vertices
n Number of nodes
E Set of edges
u, v Nodes
Γin(u) Inbound neighbours of u
Γout(u) Outbound neighbours of u
� Probability of random surfer to restart a new walk
P Transition probability matrix
� PageRank vector
�u PageRank of node u
� Convergence threshold of PI method
c 1 − �

m Upper bound of number of edges which could be
visited in each iteration

qoffset (n× 1) offset seed vector
||qoffset|| L1 length of qoffset
c Restart probability
� Error tolerance
dout(u) Outdegree of u, i.e., |Γout(u)|

dk
avg

Average outdegree of k nodes
AV(u) Approximate visits of u
AV(u, v) Contribution of score of node u to v
edgeWT(u, v) Edge weight between u, v
�n+ Probability of adding node
�l+ Probability of adding link
�n− Probability of deleting node
�l− Probability of deleting link
davg Average degree of the graph
Vs The set of nodes that are updated
Es The set of edges concerning ks
R The number of random walk simulations

 Social Network Analysis and Mining (2022) 12:141

1 3

141 Page 4 of 27

1. Monte Carlo end point with a random start: in this
type of method, simulation of N number of random
walks initiated at any random node in the graph. The
final PageRank of any node u is calculated as the total
number of random walks terminating at u, divided by
the total random walks. Final rank of u is defined as
�u =

[random walk termination at u]

N
.

2. Monte Carlo end point with cyclic start: here, simula-
tion of N random walks initiated at every node u in the
graph with an equal number of simulations m. The final
PageRank of any node u is defined as �u =

[terminations at u]

N×m
.

3. Monte Carlo complete path: these methods involve sim-
ulation of N number of random walks initiated at every
node in the graph with an equal number of simulations
m. The PageRank of any node u is defined as
�u =

[visitsu]

Σn
u=1

visits
 , where n is total number of nodes.

4. Monte Carlo complete path stopping at the dangling
nodes: it is similar to the Monte Carlo complete path,
but the random walk stops at the dangling node. A dan-
gling node is a node with no out-links. In this method,
R number of random walks is simulated starting from
each node, and the random walk terminates at dangling
nodes. The PageRank of any node u is defined as
�u =

[visitsu]

Σn
u=1

visits
 , where n is total number of nodes.

It is shown in Vargas (2020) that out of all the mentioned
methods, the last strategy shows better performance in terms
of execution time.

2.3 PageRank for dynamic networks

Dynamic networks are those networks where nodes and links
get added or deleted dynamically in real time. This is more
practical in today’s web 2.0 applications. Many algorithms
for the dynamic network were proposed in the literature.
These are broadly classified into two categories:

1. Aggregation algorithms (Desikan et al. 2005; Chien
et al. 2004; Langville and Meyer 2004): in this type of
method, the algorithm carefully finds the subset of the
graph in the vicinity of the updated node or edge, and
other parts of the graph are assumed to be supernodes.
This gives the smaller graph and then computes the Pag-
eRank using static methods. The disadvantages of this
approach include accuracy, approximation error, and
slower execution time. Accuracy in this type of algo-
rithm purely depends on the selected subset (Bahmani
et al. 2010). The approximation error can also accumu-
late over time. It involves high aggregation computation
resulting in a slower execution time.

2. Monte Carlo-based algorithms (Zhan et al. 2019; Liao
et al. 2017; Yoon et al. 2018; Ohsaka 2015; Bautista and
Latapy 2022): on the other hand, Monte Carlo based
approaches use the theory of Markov Chains (Isham and
Seneta 1983). In this method, the algorithm needs to
store all the random walks made along with the visits
that each random walk contributes to each node. The
random walk segment is adjusted only if its path has
an updated node or edge (Zhan et al. 2019; Liao et al.
2017). On the other hand, the Offset Score Propaga-
tion (OSP) (Yoon et al. 2018) algorithm first calcu-
lates offset scores around the modified edges and then
propagates the offset scores across the updated graph.
Finally, it merges these scores with the current Random
Walk Restart (RWR) (Tong et al. 2006) scores to get
the updated RWR scores. Ohsaka (2015), whenever an
update happens, the residual is calculated, and the Pag-
eRank vector is updated by adding the residual. Most
recent algorithm proposed in Bautista and Latapy (2022)
uses Chebyshev polynomials to approximate PageRank.
Monte Carlo methods have two major issues. First, high
space usage as the graph evolves. Along with graph evo-
lution, random walks that need to be re-initiated also
get lengthy. Second, the random walk segment is to be
removed, and the simulated new random walk segment
follows the same distribution but is actually a different
segment. Hence it brings errors.

3 Proposed fast pessimistic dynamic
PageRank (FPPR) for evolving directed
graphs

In this section, we present the FPPR algorithm, which is
capable of recalculating the PageRanks of a directed network
upon the topological changes in the network.

3.1 FPPR for node addition and link addition

When a new node is added, FPPR (Parjanya and Kundu
2022) calculates the expected score of random surfers con-
sidering the static graph. That is it tries to calculate the
expected score generated by the random walks if the Monte
Carlo method is executed on the graph after the changes
in the network. We calculate this score in two phases. We
will explain this process through examples shown in Fig. 1.
Let ‘x6’ be a newly added node. The expected value of
(considering � = 0.2) of random walks through out-link
reaching ‘x6’ considering a static Monte Carlo simulation
is 80% . This is what we would like to calculate in the first
phase. We call this score as Approximate Visits defined in

Social Network Analysis and Mining (2022) 12:141

1 3

Page 5 of 27 141

Definition 1. We assume the incoming link is linear in the
second phase. This linear assumption makes it easier to
check the visits carried by random walks initiated at any
node in the chain (all the connected nodes with the same
ID), especially when there exists a loop in the chain. For
example, in Fig. 1a, R random walks starting from the node
(1) holding chain ID ‘id1’ would have reached ‘x6’ in 3
hops as shown in orange color, i.e., the expected number
of visits is R ∗ (0.8)3 . Similarly, the random walk initiated
at node (2) must have gone ‘x6’ in 2 hops (the expected
visit is R ∗ (0.8)2) as shown in blue color, and the random
walk initiated at node (3) must have gone ‘x6’ in 1 hop
(the expected visit is R ∗ (0.8)1) as shown in pink color.
All these contribute to the score of the new node. This
linearity assumption will provide the correct expectation
value for chain ‘id1’ in Fig. 1b even though it is a loop
in the network. Accordingly, we defined link sensitivity
index in Definition 2. This linearity assumption is taken
in a pessimistic way. The literal meaning of ‘pessimistic’
is to think about the worst case happening often. While
estimating the random walker visits, we believe that the
existence of a loop is the worst-case scenario. Because it
will be hard to estimate how many times the random walk-
ers had taken the loop and how many visits it contributed
to any node. As a ‘pessimistic’ view, we consider there
will always be some existence of a loop, and a linearity
assumption is required to calculate the baseline values of
the update. Note that the same formulation may not be
valid for chain ‘id4’ in Fig. 1b. However, the algorithm
thinks pessimistic that either the chain is linearly contrib-
uting or it is a loop. In such a case, the algorithm is prone
to error. For example, in Fig. 1b, chain ‘id4’ doesn’t have
a loop, but still, the algorithms assume the chain is linear/
has a loop and accordingly calculate the PageRank scores
of ‘x6’. However, we expect this error will be very small. A
similar process is adopted in addressing the out-link from
the new node as well.

A new link addition in a network would only modify the
score of the target node. When a new link is added between
source and target, the above-discussed procedure is followed
on the target node to estimate the PageRank of the target node.

Definition 1 (Approximate visits (AV)) AV estimates the contri-
bution of the incoming links to the newly added node that a ran-
dom walk might have used if the random walk is executed from
scratch. If nodes have bidirectional edges, a max of approximate
visits is considered for both nodes. It is calculated as:

Here, Γin(⋅) and dout(⋅) return the set of incoming neigh-
bors and out-degree, respectively. AV(u, v) is the contribu-
tion of score of node u to v iff u, v are neighbors and it is
defined as:

Definition 2 (Link sensitivity index (LSI)) LSI defines the
amount of scores a node gets from the whole link-chain it
is joining. In other words, it is the sum of scores received
by the random surfers initiated from the nodes of the chain
which are added before this node. We assume the link chain
is linear, and the LSI is mathematically defined by:

Here, c = 1 − � is the probability that a random surfer moves
forward and i is the length of the chain up to the node vi . In
our experiment, we took c = 0.8.

FPPR does not keep track of all the random walk seg-
ments or aggregations. FPPR takes only 4 × |V| space for
node/link addition as the proposed algorithm uses 4 vectors
of size V namely linkID, approxVisits, LinkIDlength, outde-
gree. That is, space complexity is O(|V|) . For a network with
billions of nodes, this provides a significant improvement.

The Algorithms 1 and 2 shows the steps of FPPR algo-
rithm for node and link addition. Each node in the network
will have a linkID and all the nodes in a chain will have the
same linkID. The linkID of a node is the ID given to a node
to identify the chain to which it belongs. In other words,
linkID keeps track of distinct chains in the graph. More than
one chain may pass through one node. In that case, our pro-
posed method uses the lower linkID for that node. One may
choose it randomly because this convention does not have
any effect on the scores. As we are keeping track of every
link(chain) in the graph, we store the length of each linkID.

3.1.1 FPPR algorithm for node deletion

When a node is deleted, FPPR opts for a Selective Breadth-
First Update (SBFU) approach (Algorithm 3) from the
deleted node. As part of node deletion, the score contribution

(3)AV(v) ←
∑

u∈Γin(v)

1

dout(u)
∗ (1 − �) ∗ (AV(u))

(4)AV(u, v) ←
1

dout(u)
∗ (1 − �) ∗ (AV(u))

(5)

LSI(vi) ← c + c(c)1 + c(c)2 + c(c)3 + ... + c(c)i =
c(1 − (c)i)

(1 − c)

id1

1

id1

2

id1

3

x6

(a)

id1

1
id1

2

id1

3
id4

id4

x6

(b)

Fig. 1 Link chains examples a without loop and b with loop

 Social Network Analysis and Mining (2022) 12:141

1 3

141 Page 6 of 27

from the source node to the target node is used to update
the changes in the target node to approximate PageRank.
These values can be stored as edge weight parameters dur-
ing graph evolution itself. In Algorithm 1, lines 8, 24 stores
AV(u, v) as edge weight parameter. The AV(u, v) is removed
from the target node (v) in the first level of SBFU. In other
words, whatever score is contributed from the source node
to the target node in the addition phase is now removed/
subtracted from the target node. From the next level, the
edge weight (AV(u, v)) and PageRank score of the nodes are
updated accordingly, i.e., all the neighbors of the nodes that

updated (scores (AV(u, v)) being subtracted) are pushed into
the queue and further Breadth First Traversal continues until
the queue is empty. Over time during the addition phase, it
might happen that a source node’s contribution (AV(u, v)) is
greater than the target node’s score itself. In that case, the
target node’s score is already undervalued. So, no need for
further subtraction/removal of its score. This is the reason
that the algorithm SBFU puts only selected nodes, for which
incoming edge weights and incoming node’s score have been
updated, into the queue.

Algorithm 1 Calculate the approximate PageRank of the newly created node
1: Input: new node u, R = 1000
2: for all v ∈ Γin(u) do
3: Assign linkID to the node as described in text
4: linkID[v].length ← linkID[v].length+ 1
5: temporary V ar ← R × LSI(n = linkID[v].length)

comment: LSI calculated by Eqn. 5
6: linkSensitivityIndex ← max (linkSensitivityIndex, temporary V ar)
7: approxV isits ← AV (v) comment: Using Eqn. 3
8: edgeWT (v,u) ← AV (v, u) comment: Using Eqn. 4
9: end for

10: approxV isits ← approxV isits+R+ linkSensitivityIndex
11: finalResult[u] ← approxV isits, totalV isits ← totalV isits+ approxV isits
12: approxV isits, linkSensitivityIndex ← 0
13: for all v ∈ Γout(u) do
14: if u has bidirectional edge with v then
15: replace both nodes with maximum visits
16: else
17: Assign link ID to the node as described in text
18: linkID[u].length ← linkID[u].length + 1
19: temporary V ar ← R × LSI(n = linkID[u].length)

comment: LSI calculated by Eqn. 5
20: approxV isits ← AV (u) comment: Using Eqn. 3
21: finalResult[v] ← approxV isits+ linkSensitivityIndex
22: totalV isits ← totalV iists+ approxV isits+ linkSensitivityIndex
23: end if
24: edgeWT (u,v) ← AV (u, v) comment: Using Eqn. 4
25: end for
26: Output: finalResult ÷ totalV isits

Social Network Analysis and Mining (2022) 12:141

1 3

Page 7 of 27 141

Algorithm 2 Calculate the approximate PageRank when new link is added
1: Input: new link (source u, target v), R = 1000
2: Assign linkID to the target node as described in text
3: linkID[v].length ← linkID[v].length + 1
4: temporary V ar ← R × LSI(n = linkID[u].length)

comment: LSI calculated by Eqn. 5
5: approxV isits ← AV (u) comment: Using Eqn. 3
6: edgeWT (u,v) ← AV (u, v) comment: Using Eqn. 4
7: finalResult[v] ← approxV isits+ linkSensitivityIndex
8: totalV isits ← totalV iists+ approxV isits+ linkSensitivityIndex
9: Output: finalResult ÷ totalV isits

Algorithm 3 Selective Breadth First Update for node deletion
1: Input: visited, queue, delNode, finalResult, totalV isits
2: visited.append(delNode)
3: queue.append(delNode)
4: while queue do
5: update the linkID for only delNode with any of the incoming node’s linkID
6: m = queue.pop()
7: for all neighbour ∈ Γout(m) do
8: if neighbour is not in visited then
9: linkID[neighbour] = linkID[m]

10: update the linkID[neighbour].length and linkID[delNode].length
11: previousEdgeWt ← edgeWt(m,neighbour)
12: currentEdgeWt ← AV (m,neighbour)
13: changedEdgeWt← previousEdgeWt− currentEdgeWt
14: if changedEdgeWt > 0 then
15: totalV isits ← totalV isists− changedEdgeWt
16: finalResult[neighbour] ← finalResult[neighbour] −

changedEdgeWt
17: edgeWt(m,neighbour) ← currentEdgeWt
18: queue.append(neighbour)
19: end if
20: end if
21: visited.append(neighbour)
22: end for
23: end while
24: Output: totalV isits, finalResult

Algorithm 4 FPPR for link deletion
1: Input: source, target
2: weight ← edgeWt(source, target)
3: totalV isits ← totalV isits−weight
4: finalResul[target] ← finalResult[target]− weight
5: update the linkID of the target as discribed in the text
6: Output: totalV isits, finalResult

 Social Network Analysis and Mining (2022) 12:141

1 3

141 Page 8 of 27

3.1.2 FPPR algorithm for link deletion

For link deletion, the simple local update is used in FPPR.
The AV(u, v) value is removed from the target node. This
local update causes approximation error but doesn’t seem
significant in the experimental results.

4 Experiments and results

4.1 Dataset

Different experiments for comparing the performance
of proposed FPPR have been conducted on synthetically
generated networks as well as real-world networks. These

experiments consider node/link addition/deletion. Both the
random network and Barabasi–Albert (Albert and Barabási
2002) networks are used for testing FPPR for node addi-
tion and deletion. For node deletion, upto 50 percent of
the nodes chosen randomly are deleted. The random graph
generators in Networkx library like Erdos–Renyi (Erdös
and Rényi 2011), GNM graphs (Knuth 2014) are used for
experimenting FPPR for link addition and deletion. For
link deletion, up to 10 percent of the randomly chosen links
are deleted. The real-world networks are Wiebo reshare
network of (Chuai and Zhao 2020) and reptilia-tortoise
network, aves-weaver network, mammalia-voles network,
bio-mouse-gene network, bio-human-gene2 network from

the NetworkRepository (Rossi and Ahmed 2015) and Slash-
dot social network (Leskovec et al. 2009), Epinions social
network (Richardson 2003) from Stanford Large Network
Dataset Collection. The salient features of these graphs are
presented in Table 2.

As the Erdos–Renyi random graph does not support
growth, we use Algorithm 5 to generate the random net-
work. In order to get the dynamic character, we started with
one node and added each node according to their creation
for Barabasi–Albert and random networks.

Algorithm 5 Random graph generator
1: Input: number of nodes N comment: single node ‘0’ exist in the graph
2: for all x ∈ Γin(1, N) do
3: add x to Graph G
4: indegree ← random[0, 1]
5: if indegree then
6: G.addEdge(random[0, x− 1], x)
7: end if
8: outdegree ← random[0, x− 1]
9: shuffle.list[0, ..x− 1]

10: while outdegree do
11: G.addEdge(x, list[outdegree])
12: outdegree−−
13: end while
14: end for

4.2 Comparing methods

The proposed methods have been compared with the fol-
lowing methods.

• Power Iteration (PI) (Page et al. 1998): we consider this
method as a benchmark in our experiments. In the experi-
ment, we restarted PI algorithm and recalculated PageR-
ank for the whole graph on appropriate (depending upon
experiments) node/link addition or deletion.

Social Network Analysis and Mining (2022) 12:141

1 3

Page 9 of 27 141

Table 2 Dataset used for
different experiments

Name |V| |E| Min |Γ
in
| Max |Γ

in
| Min |Γ

out
| Max |Γ

out
|

Experiment for node addition & deletion
Weibo1 (Chuai and Zhao 2020) 40 66 0 12 0 6
Weibo2 (Chuai and Zhao 2020) 206 206 0 45 0 2
Weibo3 (Chuai and Zhao 2020) 759 780 0 201 0 3
Weibo4 (Chuai and Zhao 2020) 817 901 0 28 0 297
Random351 351 497 0 7 0 7
Random527 527 783 0 8 0 10
Random751 751 1094 0 8 0 9
Random801 801 1212 0 7 0 11
BA1 (Albert and Barabási 2002) 55 154 0 36 0 3
BA2 (Albert and Barabási 2002) 105 304 0 48 0 3
BA3 (Albert and Barabási 2002) 255 754 0 105 0 3
BA4 (Albert and Barabási 2002) 305 904 0 102 0 3
L1 (Richardson 2003) 75 K 500 K 0 3046 0 1803
L2 (Leskovec et al. 2009) 77 K 900 K 1 2540 0 2508
L3 (Rossi and Ahmed 2015) 14 K 9 M 0 6173 1 435
L4 (Rossi and Ahmed 2015) 43 K 14.5 M 0 3539 0 359
Experiment for link addition & link deletion
ER1 (Erdös and Rényi 2011) 100 1977 9 30 10 35
ER2 (Erdös and Rényi 2011) 200 7949 24 55 24 54
ER3 (Erdös and Rényi 2011) 350 7750 11 34 0 90
ER4 (Erdös and Rényi 2011) 500 11327 9 35 0 126
GNM1 (Knuth 2014) 100 120 0 4 0 5
GNM2 (Knuth 2014) 100 1000 2 19 1 18
GNM3 (Knuth 2014) 500 250 0 4 0 4
GNM4 (Knuth 2014) 500 1700 0 10 0 10
Experiment for real world simulation
ReW1 (Rossi and Ahmed 2015) 445 1357 0 21 0 17
ReW2 (Rossi and Ahmed 2015) 1218 3697 0 25 0 24
ReW3 (Rossi and Ahmed 2015) 1480 4057 0 23 0 25
ReWSIM1 53 167 0 8 0 13
ReWSIM2 89 250 0 8 0 11
ReWSIM3 98 2233 0 89 0 50

• Static Monte Carlo (MC) (Vargas 2020): static Monte-
Carlo method is the method of approximate PageRanks
of the network using Monte Carlo method. We imple-
mented the version of the complete path with dangling
nodes. Similar to PI, we recalculate the PageRanks on
network changes in appropriate steps. The number of
random walks considered in the experiment is 1000.

• Fast Incremental PageRank on Dynamic Networks
(FIPR) (Zhan et al. 2019): the method is designed for
dynamic networks and proposed in 2019. As our algo-
rithm is designed for dynamic networks, we included this
method as related research. Parameter R is set to 16 in the
experiments.

• Offset Score Propagation (OSP) (Yoon et al. 2018): this
method was created for dynamic networks and proposed
in 2018. As our algorithm is designed for dynamic net-
works, we included this method as related research.

4.3 Comparing parameters

All comparing algorithms were executed on different graphs.
As expected, the absolute values of PageRanks by different
algorithms of a node are different. The results for 10 random
nodes for all the datasets with respect to node addition are
shown in Fig. 2 for reference. Hence, comparing different
algorithms in terms of absolute values of the PageRank is

 Social Network Analysis and Mining (2022) 12:141

1 3

141 Page 10 of 27

not fair. Therefore Spearman’s rank correlation coefficient
(Spearman 1904) is used to compare the ranking of the pro-
posed FPPR with that of the comparing methods. The Spear-
man correlation between two vectors will be high when
observations have a similar rank between the two variables
and it will be lower otherwise. A value of it between 0.8 to
1 is considered to be strongly correlated (Zar 2005). Apart
from the Spearman rank correlation coefficient, the compar-
ing parameters include (i) change in Spearman rank correla-
tion coefficient over time and (ii) execution time.

4.4 Results

4.4.1 FPPR for node addition

Accuracy: the results of Spearman’s ranking coefficient
for all nodes in the network for node addition are shown in
Fig. 3. It is evident from the result that the proposed FPPR
is highly correlated with the benchmark PI method. Median
and mean Spearman’s correlation with PI method for all
the experiments performed are 0.98 and 0.97, respectively.

Further, the proposed method is equal to or better than FIPR
for all the networks except Weibo2. The proposed method is
also performing better or close to the OSP algorithm. Note
that MC and PI are highly correlated as both are recalculated
over the full graph once a new node is added to the graph.

Spearman’s rank correlation with changes in network:
as part of the experiment, we would like to see how Spear-
man’s correlation coefficient changes with the addition of
nodes. We recalculate Spearman’s correlation coefficient of
the proposed algorithm against the benchmark Power Itera-
tion for the addition of each 10 nodes. The result is plotted
in Fig. 4 for 6 datasets. The value dipped around 26% for
both random networks, while the Barabasi–Albert network
shows consistent improvement in the value of Spearman’s
correlation coefficient.

Execution time: we checked the overall execution time of
different comparing algorithms and found that the proposed
algorithm is much faster than all the methods we experi-
mented with for all datasets with respect to node addition.
The comparison is presented in Fig. 5.

(a) ER3 (b) GNM2 (c) Random351

(d) BA3 (e) Weibo1 (f) Weibo4

Fig. 2 PageRank for randomly sampled 10 nodes of different algorithms

Social Network Analysis and Mining (2022) 12:141

1 3

Page 11 of 27 141

(a) Weibo1 (b) Weibo2 (c) Weibo3

(d) Weibo4 (e) Random351 (f) Random527

(g) Random751 (h) Random801 (i) BA1

(j) BA2 (k) BA3 (l) BA4

Fig. 3 Spearman correlation between all four approaches over the different datasets for node addition

 Social Network Analysis and Mining (2022) 12:141

1 3

141 Page 12 of 27

4.4.2 FPPR for node deletion

Accuracy: for testing FPPR deletion accuracy, we deleted 50
percent of the randomly chosen nodes from the network and
plotted the heatmap of Spearman rank correlation in Fig. 6
similar to node addition. It has been observed that FPPR is
performing well with respect to the benchmark PI method.
Median and mean Spearman’s correlation with PI method
for all the experiments performed for node deletion are 0.89
and 0.90, respectively. FPPR is also observed to be equal to
or better than FIPR and OSP.

Spearman’s rank correlation with changes in network:
the Spearman rank correlation coefficient is recorded after
regular intervals and plotted in Fig. 7. It is transparent that
there is a gradual dip in the Spearman rank correlation. The
reason for the downhill is that for deletion, FPPR uses Selec-
tive Breadth First Update (SBFU). In SBFU, the breadth-
first traversal is used, marking visited nodes. In such a case,
one node is visited only once, i.e., only one update is pos-
sible on each neighboring node. For the scenario shown in
Fig. 8a, considering the deletion of the node x, there is a
need to update the score of the neighbors of x more than
once because the scores of n1, n2, n3 are updated accord-
ingly as x deleted. Still, there is a link between n2, n3 and
n3, n1, which must be crawled. This needs further update of

score in node n3 and n1 as shown in Fig. 8b. SBFU cannot
update the neighboring nodes more than once, accumulating
errors over time.

Execution time: the execution time for all the comparing
methods with respect to node deletion is plotted in Fig. 9.
The FPPR takes a little higher or equal execution time as
FPPR’s deletion time depends on the set of updated nodes
along with its associated edges.

4.4.3 FPPR for link addition and deletion

Accuracy: the accuracy for the link addition is shown in
Fig. 10a–h. Median and mean Spearman’s correlation with
the PI method for all the experiments performed are 0.95 and
0.93 for link addition, and 0.94 and 0.90 for link deletion,
respectively. This shows that the proposed FPPR is highly
correlated with the benchmark PI method. The proposed
FPPR is also performing reasonably good in comparison
with FIPR except for GNM2 graphs.

As a part of the experiment, 10 percent of the ran-
domly chosen links are deleted from the graph, and Pag-
eRank scores are computed with respect to all comparing
algorithms. The accuracy for link deletion is depicted in
Fig. 10i–p. When coming to the deletion, FPPR performs
better than all the comparing methods. Note that all the

(a) Random351 (b) Random801 (c) BA2

(d) BA4 (e) Weibo2 (f) Weibo4

Fig. 4 Spearman correlation of FPPR vs PI over time. Each time tick denotes addition of 10 nodes in the network

Social Network Analysis and Mining (2022) 12:141

1 3

Page 13 of 27 141

graphs used for the link addition and deletion experiment
Monte Carlo method (MC) had a poor performance as the
graphs generated are highly dense.

Spearman’s rank correlation with changes in network:
the change in the spearman rank correlation is recorded in
regular intervals (after addition or deletion of every 10 links)
is shown in Fig. 11a–h and i–p. For link addition, the FPPR

spearman rank correlation with PI has minute fluctuations
and gradually decreases. For link deletion, there are sharp
transitions in the graph. This is due to the local update of the
FPPR for link deletion.

Execution time: the execution time of the proposed FPPR
is much faster than all the comparing methods for link addi-
tion and deletion as evident from Fig. 12.

(a) Weibo1 (b) Weibo2 (c) Weibo3

(d) Weibo4 (e) Random351 (f) Random527

(g) Random751 (h) Random801 (i) BA1

(j) BA2 (k) BA3 (l) BA4

Fig. 5 Comparing plots of execution time of different algorithms for node addition

 Social Network Analysis and Mining (2022) 12:141

1 3

141 Page 14 of 27

(a) Weibo1 (b) Weibo2 (c) Weibo3

(d) Weibo4 (e) Random351 (f) Random527

(g) Random751 (h) Random801 (i) BA1

(j) BA2 (k) BA3 (l) BA4

Fig. 6 Spearman correlation between all four approaches over the different datasets after 50% node deletion

Social Network Analysis and Mining (2022) 12:141

1 3

Page 15 of 27 141

4.5 Accuracy of FPPR with the change of parameter
�

As part of the experiment, the behavior of FPPR is noted
with respect to the change of the parameter � (the probability
of a random surfer restarting its walk). The parameter � is
set to values 0.2, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 and checked the
accuracy of FPPR. The results are captured in Fig. 13. It is
evident from the results that the changes in Spearman’s cor-
relation coefficient are very small (between 0.02 and 0.04) in
general except Weibo network where it is about 0.12.

4.6 Performance on large‑scale data

Four different large-scale temporal datasets have been used
to testify the performance of the proposed FPPR algorithms.
These networks have nodes ranging from 14 to 77 K while
the number of links are ranging from 500 K to 14.5 M. As
the datasets are temporal we added the nodes and edges on
the network based on their times and calculated the Spear-
man’s correlation at the end of the generation of the full
network. The results are shown in Fig. 14. The results of
Spearman’s correlation coefficient are very close to 1 for
3 out of 4 datasets while the results of L2 are also more
than 0.8. These results show high accuracy of the proposed
method. One of the main objectives of the experiment was
to see the performance in terms of execution time. The pro-
posed algorithm is able to generate results in less than 10
seconds for all the datasets. We also captured the accuracy
of the FPPR VS Power method along with the FPPR VS
matrix multiplication method using Pseudocode. 0 for few
graphs in Fig. 14c.

4.7 Approximation error with the exact PageRank

Although Power Iteration is a well-known method for prac-
tically performing the PageRank calculation, we wish to
see how this is different for matrix multiplication methods.
We experimented with small-size datasets and calculate

(a) Random351 (b) Random801 (c) BA2

(d) BA4 (e) Weibo2 (f) Weibo4

Fig. 7 Spearman correlation of FPPR vs PI over time. Each time tick denotes the deletion of 10 nodes in the network

x

n1n2
n3

w

w w

w
w

(a)

n1n2

n3

w w

(b)

Fig. 8 Examples

 Social Network Analysis and Mining (2022) 12:141

1 3

141 Page 16 of 27

Spearman’s correlation coefficient for the proposed FPPR
against both the Power Iteration method and the matrix
Multiplication method. The result is plotted in Fig. 15. As
expected the correlation coefficient is lower with the matrix

multiplication method; however, it is not too far from it. In
fact, in both cases, the results show a high correlation with
the ranking as the results are over 0.8 for all the datasets.

(a) Weibo1 (b) Weibo2 (c) Weibo3

(d) Weibo4 (e) Random351 (f) Random527

(g) Random751 (h) Random801 (i) BA1

(j) BA2 (k) BA3 (l) BA4

Fig. 9 Comparing plots of the execution time of different algorithms for node deletion

Social Network Analysis and Mining (2022) 12:141

1 3

Page 17 of 27 141

Fig. 10 Spearman correlation
between all four approaches
over the different datasets for
Link addition and deletion

(a) ER1 (b) ER2 (c) ER3

(d) ER4 (e) GNM1 (f) GNM2

(g) GNM3 (h) GNM4 (i) ER1

(j) ER2 (k) ER3 (l) ER4

(m) GNM1 (n) GNM2 (o) GNM3

(p) GNM4

 Social Network Analysis and Mining (2022) 12:141

1 3

141 Page 18 of 27

(a) ER1 (b) ER2 (c) ER3

(d) ER4 (e) GNM1 (f) GNM2

(g) GNM3 (h) GNM4 (i) ER1

(j) ER2 (k) ER3 (l) ER4

(m) GNM1 (n) GNM2 (o) GNM3

(p) GNM4

Fig. 11 Spearman correlation of FPPR VS PI over time. Each time tick denotes the addition/deletion of 10 links in the network

Social Network Analysis and Mining (2022) 12:141

1 3

Page 19 of 27 141

(a) ER1 (b) ER2 (c) ER3

(d) ER4 (e) GNM1 (f) GNM2

(g) GNM3 (h) GNM4 (i) ER1

(j) ER2 (k) ER3 (l) ER4

(m) GNM1 (n) GNM2 (o) GNM3

(p) GNM4

Fig. 12 Comparing plots of the execution time of different algorithms for Link addition & deletion

 Social Network Analysis and Mining (2022) 12:141

1 3

141 Page 20 of 27

4.8 Computation complexity

Computation complexities for all the operations, node addi-
tion, node deletion, link addition, and link deletion of differ-
ent algorithms along with the space complexity are shown

in Table 3. The worst-case complexity of the proposed algo-
rithm for node addition is O(k × dk

avg
) , where k is the number

of nodes/links added to the network as in each update the
Algorithm 1 updates for all the outgoing links (line 13) and

(a) BA3 (b) ER3 (c) GNM2

(d) Random351 (e) ReW3 (f) Weibo3

Fig. 13 PageRank of FPPR with respect to PI considering the change in the parameter �

Fig. 14 Results on large-scale
networks

(a) Spearman’s Correlation with PI Method (b) Total Execution Time

Social Network Analysis and Mining (2022) 12:141

1 3

Page 21 of 27 141

Fig. 15 Spearman correlation of FPPR with Power Iteration and
matrix multiplication method

Table 3 Computation
complexities and space
complexities of different
PageRank algorithms

Algorithm Addition time complexity Deletion time complexity Space complexity

Power Iteration Ω
(kn2)

1(1−�)
Ω

(kn2)

1(1−�)

O(n)

Monte Carlo method Ω
(knR)

(�)
Ω

(knR)

(�)
O(n)

FIPR O
(knR)

(|E|)
O

(knR)

(|E|)
O(nR)

OSP O(mlog(1−c)
�

(||qoffset||)
) O(mlog(1−c)

�

(||qoffset||)
) O(V2)

Our method O(k × dk
avg

) O(|Vs| + |Es|) O(|V| + |E|)

calculates for all incoming edges (line 2). Each calculation
can be done in linear time with the formula presented in
Eqs. (3)–(5). The worst-case complexity of the proposed
algorithm for node deletion, link deletion is O(|Vs| + |Es|)
and O(1) , respectively, where Vs is the set of nodes that are
updated, Es is the edges associated with those updated edges.
Space required for the proposed algorithm is 4 × |V| for node
and link addition to keep 4 vectors corresponding to linkID,
approxVisits, LinkIDlength, and outdegree. In order to have
better deletion techniques intermediate AV(u, v) are stored
for each links in the network. Hence, it is taking O(|E|)
space. That follows the cumulative space requirement is
O(|V| + |E|).

Algorithm 6 Real World graph simulation
1: Input: number of operations K
2: while K do
3: addnodeP rob ← random.uniform(0, 1)
4: addlinkProb ← random.uniform(0, 1)
5: delnodeProb ← random.uniform(0, 1)
6: dellinkProb ← random.uniform(0, 1)
7: if addnodeP rob < ρn+ then
8: algo.(1)
9: K−−

10: end if
11: if addlinkProb < ρl+ then
12: algo.(1)
13: K−−
14: end if
15: if delnodeProb < ρn− then
16: algo.(3)
17: K−−
18: end if
19: if dellinkProb < ρl− then
20: algo.(4)
21: K−−
22: end if
23: end while

 Social Network Analysis and Mining (2022) 12:141

1 3

141 Page 22 of 27

(a) ReWSIM1 (b) ReWSIM2 (c) ReWSIM3

(d) ReW1 (e) ReW2 (f) ReW3

(g) ReWSIM1 (h) ReWSIM2 (i) ReWSIM3

(j) ReW1 (k) ReW2 (l) ReW3

Fig. 16 Spearman correlation between all four approaches over the different datasets for RW growth and decay

Social Network Analysis and Mining (2022) 12:141

1 3

Page 23 of 27 141

(a) ReWSIM1 (b) ReWSIM2 (c) ReWSIM3

(d) ReW1 (e) ReW2 (f) ReW3

(g) ReWSIM1 (h) ReWSIM2 (i) ReWSIM3

(j) ReW1 (k) ReW2 (l) ReW3

Fig. 17 Spearman correlation of FPPR VS PI over time along with node and link growth

 Social Network Analysis and Mining (2022) 12:141

1 3

141 Page 24 of 27

(a) ReWSIM1 (b) ReWSIM2 (c) ReWSIM3

(d) ReW1 (e) ReW2 (f) ReW3

(g) ReWSIM1 (h) ReWSIM2 (i) ReWSIM3

(j) ReW1 (k) ReW2 (l) ReW3

Fig. 18 Spearman correlation of FPPR VS PI over time along with node and link decay

Social Network Analysis and Mining (2022) 12:141

1 3

Page 25 of 27 141

4.9 FPPR for real‑world graph simulation (modeling
growth and decay together)

Eventually, real-world graph simulators (Algorithm 6) are
used to test FPPR in both graph decay and graph growth. In
this real-world graph simulation, all four operations have
been incorporated: node addition, node deletion, link addi-
tion, and link deletion. All the four mentioned operations

are performed based on four independent probabilities
(�n+, �l+, �n−, �l−). We tried to capture graph growth and
decay by adjusting the independent probabilities. We used
them in our experiments to check the accuracy of FPPR con-
cerning other mentioned PageRank algorithms. The setup
used for graph growth and decay is as follows. For growing
graph, �n+ = 0.2, �l+ = 0.2, �n− = 0.01, �l− = 0.01 and for
decaying graph, �n+ = 0.1, �l+ = 0.01, �n− = 0.3, �l− = 0.2.

(a) ReWSIM1 (b) ReWSIM2 (c) ReWSIM3

(d) ReW1 (e) ReW2 (f) ReW3

(g) ReWSIM1 (h) ReWSIM2 (i) ReWSIM3

(j) ReW1 (k) ReW2 (l) ReW3

Fig. 19 Comparing plots of the execution time of different algorithms for RW growth and decay

 Social Network Analysis and Mining (2022) 12:141

1 3

141 Page 26 of 27

Accuracy: the accuracy test is performed on various real-
world datasets as shown in Table 2 and also on the graphs
generated by the real-world simulator (Algorithm 6). Both
the graph growth and decay are tested for accuracy. For
graph growth and decay, the number of operations (node
add, node delete, link add, link delete) are set to 50, 100, and
200. For growth, FPPR is in good correlation with respect
to the benchmark PI method. Median and mean Spearman’s
correlation with the PI method for all the real-world graph
growth simulation experiments are 0.90 and 0.86. For decay,
FPPR is reasonably correlated with the PI method, and
median and mean values of 0.76 and 0.76 were achieved.
In all the dataset graphs, FPPR performed better than the
FIPR. The results are shown in Fig. 16a–f for graph growth,
Fig. 16g–l for graph decay.

Spearman’s rank correlation with changes in network:
the changes in the Spearman rank correlation are captured in
regular intervals (after every ten operations) for both graph
growth and decay. The results are shown in Fig. 17a–f for
node growth, Fig. 17g–l for link growth and Fig. 18a–f for
node decay, Fig. 18g–l for link decay. The graph represents
time on the x-axis, the change in Spearman rank coefficient
of all the comparing methods with respect to the benchmark
PI method on the y-axis, and a bar plot showing the num-
ber of nodes/links on the z-axis. In the graph growth phase,
it is evident that the proposed FPPR is performing better
than or equal to FIPR. FPPR is even performing equally
with respect to the static MC method for the graphs RWS1,
RWS2, ReW1, and ReW3. FPPR had a gradual dip in Spear-
man rank correlation in the graph decay phase but performed
better than or equal to FIPR.

Execution time: the proposed FPPR has faster execu-
tion times compared to all the comparing methods in both
graph growth and decay phases. The results are presented
in Fig. 19a–f for graph growth and in Fig. 19g–l for graph
decay.

5 Conclusion

The present paper proposed a new algorithm for calculating
PageRank for dynamic directed graphs. The algorithm esti-
mates the PageRank concerning node addition, link addition,
node deletion, and link deletion. We showed through experi-
mental results that the results of the proposed algorithm are
highly correlated with that of the benchmark Power Iteration
method. In particular, the minimum correlation in ranking
found for the addition of node, deletion of node, the addi-
tion of link, and deletion of the link are 0.95, 0.82, 0.77,
and 0.83, respectively. The proposed FPPR is also shown to
perform better in the ranking than the FIPR algorithm and
better than or equal to the state-of-the-art OSP algorithm
for all different topological changes in the network. The

execution time is significantly faster while providing more
acceptable results.

While the PageRanks of growing and sinking networks
with the proposed FPPR method show comparable and bet-
ter results against FIPR, the execution time for the proposed
algorithm is very less. The proposed algorithm performs
better in terms of execution time and accuracy for all the
operations except the node deletion case.

References

Albert Réka, Barabási Albert-László (2002) Statistical mechanics of
complex networks. Rev Mod Phys 74(1):47–97

Avrachenkov K, Litvak N, Nemirovsky D, Osipova N (2007) Monte
Carlo methods in PageRank computation: when one iteration is
sufficient. SIAM J Numer Anal 45(2):890–904

Bahmani Bahman, Chowdhury Abdur, Goel Ashish (2010) Fast
incremental and personalized PageRank. Proc VLDB Endow
4(3):173–184

Bautista Esteban, Latapy Matthieu (2022) A local updating algorithm
for personalized PageRank via Chebyshev polynomials. Soc Netw
Anal Min 12(1):1–11

Breyer LA (2002) Markovian page ranking distributions: some theory
and simulations. Citeseer

Chien Steve, Dwork Cynthia, Kumar Ravi, Simon Daniel R, Sivakumar
D (2004) Link evolution: analysis and algorithms. Internet Math
1:277–304

Chuai Y, Zhao J (2020) Anger makes fake news viral online. arXiv:
2004. 10399

Desikan P, Pathak N, Srivastava J, Kumar V (2005) Incremental page
rank computation on evolving graphs. In: Special interest tracks
and posters of the 14th international conference on World Wide
Web, WWW ’05, New York. Association for Computing Machin-
ery, pp 1094–1095

Erdös P, Rényi A (2011) On the evolution of random graphs. Princeton
University Press, pp 38–82

Gupta P, Goel A, Lin J, Sharma A, Wang D, Zadeh R (2013) Wtf: the
who to follow service at twitter. In: Proceedings of the 22nd inter-
national conference on World Wide Web, WWW ’13, New York.
Association for Computing Machinery, pp 505–514

Isham Valerie, Seneta E (1983) Non-negative matrices and Markov
chains. J R Stat Soc. Ser A (Gen) 146(2):202

Iván Gábor, Grolmusz Vince (2011) When the web meets the cell:
using personalized PageRank for analyzing protein interaction
networks. Bioinformatics 27(3):405–407

Jiang Bin (2009) Ranking spaces for predicting human movement in an
urban environment. Int J Geogr Inf Sci 23(7):823–837

Kleinberg Jon M (1999) Authoritative sources in a hyperlinked envi-
ronment. J ACM 46(5):604–632

Knuth DE (2014) Art of computer programming. Volume 2: seminu-
merical algorithms. Addison-Wesley Professional

Langville AN, Meyer CD (2004) Updating PageRank with iterative
aggregation. In: Proc. of 13th international world wide web con-
ference, New York, pp 1124–1125

Lempel R, Moran S (2000) Stochastic approach for link-structure anal-
ysis (SALSA) and the TKC effect. Comput Netw 33(1):387–401

Leskovec Jure, Lang Kevin J, Dasgupta Anirban, Mahoney Michael
W (2009) Community structure in large networks: natural cluster
sizes and the absence of large well-defined clusters. Internet Math
6(1):29–123

Liao Q, Jiang S, Yu M, Yang Y, Li T (2017) Monte Carlo based incre-
mental PageRank on evolving graphs. In: Kim J, Shim K, Cao L,

http://arxiv.org/abs/2004.10399
http://arxiv.org/abs/2004.10399

Social Network Analysis and Mining (2022) 12:141

1 3

Page 27 of 27 141

Lee J-G, Lin X, Moon Y-S (eds) Advances in knowledge discov-
ery and data mining. Springer, Cham, pp 356–367

Ohsaka N, Maehara T, Kawarabayashi KI (2015) Efficient PageRank
tracking in evolving networks. In: Proceedings of the 21th ACM
SIGKDD international conference on knowledge discovery and
data mining, pp 875–884

Page Lawrence, Brin Sergey, Motwani Rajeev, Winograd Terry (1998)
The PageRank citation ranking: bringing order to the web. WWW
Internet Web Inf Syst 54(1999–66):1–17

Parjanya R, Kundu S (2022) Fppr: fast pessimistic PageRank for
dynamic directed graphs. In: Benito RM, Cherifi C, Cherifi H,
Moro E, Rocha LM, Sales-Pardo M (eds) Complex networks and
their applications X. Springer, Cham, pp 271–281

Richardson M, Agrawal R, Domingos P (2003) Trust management for
the semantic web. In: International semantic Web conference.
Springer, pp 351–368

Rossi R, Ahmed N (2015) The network data repository with inter-
active graph analytics and visualization. In: Proceedings of the
29th AAAI conference on artificial intelligence, AAAI’15. AAAI
Press, pp 4292–4293

Salehi O (2007) PageRank algorithm and Monte Carlo methods in
PageRank computation. PhD thesis, Bogazici University

Spearman C (1904) The proof and measurement of association between
two things. Am J Psychol 15(1):72

Tong H, Faloutsos C, Pan JY (2006) Fast random walk with restart and
its applications. In: 6th international conference on data mining
(ICDM’06). IEEE, pp 613–622

Vargas B (2020) Exploring PageRank algorithms: power iteration and
Monte Carlo methods. PhD thesis, California State University,
San Marcos

Yoon M, Jin W, Kang U (2018) Fast and accurate random walk with
restart on dynamic graphs with guarantees. In: Proceedings of the
2018 World Wide Web Conference, pp 409–418

Zar JH (2005) Spearman rank correlation. In: Encyclopedia of bio-
statistics. Wiley

Zhan Z, Hu R, Gao X, Huai N (2019) Fast incremental PageRank on
dynamic networks. In: Bakaev M, Frasincar F, In-Young K (eds)
Proc. of international conference on web engineering, volume
11496 LNCS. Springer, Cham, pp 154–168

Zhou Z (2015) Evaluation of Monte Carlo method in PageRank. PhD
thesis, University of Missouri-Columbia

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s);
author self-archiving of the accepted manuscript version of this article
is solely governed by the terms of such publishing agreement and
applicable law.

	FPPR: fast pessimistic (dynamic) PageRank to update PageRank in evolving directed graphs on network changes
	Abstract
	1 Introduction
	1.1 The model

	2 Related work
	2.1 PageRank
	2.2 Static Monte Carlo-based PageRank algorithms
	2.3 PageRank for dynamic networks

	3 Proposed fast pessimistic dynamic PageRank (FPPR) for evolving directed graphs
	3.1 FPPR for node addition and link addition
	3.1.1 FPPR algorithm for node deletion
	3.1.2 FPPR algorithm for link deletion

	4 Experiments and results
	4.1 Dataset
	4.2 Comparing methods
	4.3 Comparing parameters
	4.4 Results
	4.4.1 FPPR for node addition
	4.4.2 FPPR for node deletion
	4.4.3 FPPR for link addition and deletion

	4.5 Accuracy of FPPR with the change of parameter
	4.6 Performance on large-scale data
	4.7 Approximation error with the exact PageRank
	4.8 Computation complexity
	4.9 FPPR for real-world graph simulation (modeling growth and decay together)

	5 Conclusion
	References

