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Abstract
The personalized PageRank algorithm is one of the most versatile tools for the analysis of networks. In spite of its ubiquity, 
maintaining personalized PageRank vectors when the underlying network constantly evolves is still a challenging task. To 
address this limitation, this work proposes a novel distributed algorithm to locally update personalized PageRank vectors 
when the graph topology changes. The proposed algorithm is based on the use of Chebyshev polynomials and a novel 
update equation that encompasses a large family of PageRank-based methods. In particular, the algorithm has the following 
advantages: (i) it has faster convergence speed than state-of-the-art alternatives for local personalized PageRank updating; 
and (ii) it can update the solution of recent extensions of personalized PageRank that rely on complex dynamical processes 
for which no updating algorithms have been developed. Experiments in a real-world temporal network of an autonomous 
system validate the effectiveness of the proposed algorithm.

Keywords PageRank · Updating algorithms · Local algorithms · Chebyshev polynomials · Graph signal processing · Semi-
supervised learning

1 Introduction

1.1  Context

Personalized PageRank is an algorithm to assign a score to 
the vertices of a network, indicating their importance. The 
algorithm is one of the great successes in network science. It 
has been used in a wide amount of applications that include 
ranking of websites (Page et al. 1999; Ding et al. 2003; 
Haveliwala 2003), clustering of similar objects (Chung 2009; 
Andersen et al. 2006; Tabrizi et al. 2013), classifying verti-
ces of a network (Avrachenkov et al. 2012; Merkurjev et al. 
2018; Dostal et al. 2014; Avrachenkov et al. 2012), detec-
tion of anomalous events (Fontugne et al. 2019; Yoon et al. 
2019; Yao et al. 2012), or recommender systems (Al Janabi 
and Kadiam 2019; Zhang et al. 2009; Nguyen et al. 2015), to 
name a few. Additionally, personalized PageRank possesses 
numerous properties (Langville and Meyer 2004; Ipsen and 
Wills 2006; Brezinski and Redivo-Zaglia 2006; Pretto 2002) 

that have recently inspired, in the semi-supervised learn-
ing context, a large family of PageRank generalizations that 
allow to tackle challenging settings such as signed graphs 
(Bautista et al. 2019), anomalous diffusion processes (De 
Nigris et al. 2017), infinite dimensional spaces (Mai and 
Couillet 2017), Sobolev spaces (Zhou and Belkin 2011), 
or time-graph dual spaces (Girault et al. 2014). However, 
despite the success of all these PageRank-based algorithms, 
they still pose problems from the algorithmic point of view. 
In particular, they do not adapt well to networks that evolve 
over time, a situation that we aim to address in this work.

1.2  Related works

While personalized PageRank is formally defined as the 
solution of a fixed point equation (see Section 2.1), it can 
be equivalently interpreted as the stationary distribution 
of a random walk diffusion process with restart. In this 
process, random walkers are placed in a subset of verti-
ces of the network according to some initial distribution, 
given by the so-called personalization vector, and then 
are diffused according to the following rule: at each step, 
a random walker can either transition to an adjacent ver-
tex with probability � or restart to its initial position with 

 * Esteban Bautista 
 esteban.bautista-ruiz@lip6.fr

1 Sorbonne Université, CNRS, LIP6, F-75005 Paris, France

http://orcid.org/0000-0003-3499-662X
http://crossmark.crossref.org/dialog/?doi=10.1007/s13278-022-00860-5&domain=pdf


 Social Network Analysis and Mining (2022) 12:31

1 3

31 Page 2 of 11

probability (1 − �) (Haveliwala 2003; Page et al. 1999). 
This interpretation of Personalized PageRank has been 
exploited by numerous works to develop fast algorithms 
for computing PageRank (Haveliwala 1999; Kamvar et al. 
2004; Fujiwara et al. 2012; Bahmani et al. 2011; Maehara 
et al. 2014; Avrachenkov et al. 2007; Andersen et al. 2006; 
Berkhin 2006). However, in cases where the graph evolves 
over time, such stationary distribution drifts and needs to 
be updated. While the algorithms above allow to fastly 
recompute a personalized PageRank vector, proceeding 
in this way becomes impractical for very large networks 
that constantly evolve, such as the web graph that has been 
reported to have 60 × 1012 nodes and evolve at a rate of 
600 × 103 new pages created every second (Ohsaka et al. 
2015). Additionally, several works (Ipsen and Wills 2006; 
Brezinski and Redivo-Zaglia 2006; Pretto 2002) have stud-
ied the impact of graph perturbations to PageRank vectors, 
showing that (i) the magnitude of the change to a PageR-
ank vector is upper bounded by the size of the perturbation 
(magnitude of the change to the graph transition matrix); 
and (ii) the PageRank scores only change significantly 
for the nodes that are close to the perturbed area. This 
implies that if a perturbation is small, then it is wasteful 
to recompute the PageRank vector from scratch. A better 
alternative consists in only updating the scores of nodes 
close to the perturbation. In the literature, this challenge is 
commonly referred to as local PageRank updating. There 
are three reference methods. Firstly, (Bahmani et al. 2010) 
proposes a Monte Carlo approach where multiple random 
walkers are run to estimate the entries of the PageRank 
vector based on how frequently walkers visit nodes. Sec-
ondly, the work of (Yoon et al. 2018) exploits the random 
walk with restart interpretation of personalized PageRank 
to show that the stationary distribution of this walk can be 
updated by running a local diffusion process in the affected 
area. Then, (Yoon et  al. 2018) runs this local process 
in a distributed fashion via the power method. Thirdly, 
the work of (Ohsaka et al. 2015) proposes a centralized 
updating algorithm based on the use of a residual and an 
approximation vector, sequentially pushing mass from the 
residual vector into the approximation vector using Gauss-
Southwell update rules. While these works have been sub-
ject of deep theoretical studies (Zhang et al. 2016) and 
successfully applied in practice (Yoon et al. 2020), they 
still suffer from two main limitations: (i) they have slow 
convergence rates, particularly when trying to attain very 
small approximation errors; and (ii) they fully rely on the 
random walk interpretation of PageRank and thus cannot 
be used to update the novel generalizations of PageRank 
used in semi-supervised learning (Bautista et al. 2019; De 
Nigris et al. 2017; Mai and Couillet 2017; Zhou and Bel-
kin 2011; Girault et al. 2014) which rely on more complex 
dynamical processes.

1.3  Goals, contributions and outline

In this work, we address the two limitations listed above. 
We propose a novel local updating algorithm based on Che-
byshev polynomials. These polynomials have already been 
used to fastly approximate personalized PageRank vectors 
from scratch (Bautista Ruiz 2019), showing faster conver-
gence speed than Gauss-Southwell and power iteration 
based methods (the building blocks of Ohsaka et al. (2015) 
and Yoon et al. (2018), respectively). However, Chebyshev 
polynomials have not yet been considered in the updating 
setting because they lack the ability to set an initial guess, 
which all the updating algorithms described above rely upon. 
Thus, the core of our proposal relies on a novel updating 
equation that is tailored for the large family of PageRank 
methods mentioned above. Concretely, it allows us to (i) use 
a previous personalized PageRank vector as an initial guess 
in the Chebyshev context; (ii) cast the updating challenge 
as the task of running a local diffusion process that we can 
efficiently compute (i.e. with just a few message exchanges) 
via the Chebyshev polynomials; (iii) update any of the 
recent generalized formulations of PageRank (Bautista et al. 
2019; De Nigris et al. 2017; Mai and Couillet 2017; Zhou 
and Belkin 2011; Girault et al. 2014) among which classical 
personalized PageRank arises as a special case.

The paper is organized as follows: Section 2 sets defini-
tions and reviews local updating methods. Section 3 pre-
sents Chebyshev polynomials and introduces the proposed 
algorithm. Section 4 numerically evaluates the algorithm. 
Section 5 concludes the work.

2  Definitions and state‑of‑the‑art

2.1  Definitions

Let G(V, E,W) be an undirected weighted graph where W 
refers to the adjacency matrix, E is the set of edges and V is 
the set of vertices. By D = diag(d1,⋯ , dN) we denote the 
diagonal matrix of degrees, where di =

∑
j Wij . The matri-

ces L = D −W  and P = D−1W  refer to the combinatorial 
Laplacian and random walk transition matrices of G , respec-
tively. The notation u ∼ v implies that u is adjacent to v. 
Additionally, we denote the personalized PageRank vector 
of G by pr�(y) . Recalling the interpretation of PageRank as 
a random walk process with restart, the parameter � refers to 
the restarting probability of the random walkers (also called 
teleportation parameter) and y is a probability vector with 
the initial distribution of the random walkers. The personal-
ized PageRank vector is thus defined as the solution to the 
following fixed point equation



Social Network Analysis and Mining (2022) 12:31 

1 3

Page 3 of 11 31

Let G̃(Ṽ, Ẽ, W̃) denote an undirected weighted graph which 
is an evolved or perturbed version of G . In analogy to the 
definitions for G , the matrices D̃ , L̃ and P̃ refer to the degree, 
Laplacian and random walk transition matrices of G̃ , respec-
tively. Additionally, we let p̃r�(y) be the personalized Pag-
eRank vector of G̃ with restarting probability � and initial 
distribution y. In this paper, we address the problem of esti-
mating p̃r�(y) from pr�(y) , which can be seen as the problem 
of updating pr�(y) to obtain the PageRank of the evolved 
network (under the same � and y). To have consistent sized 
matrices, we model nodes joining/leaving the network as 
isolated nodes that get connected/disconnected. By defini-
tion, isolated nodes correspond to zero rows and columns 
in the graph matrices and their degree and inverse degree 
are zero.

2.2  State‑of‑the‑art approaches for local PageRank 
updating

In this section, we briefly review the state-of-the-art methods 
of Yoon et al. (2018) and Ohsaka et al. (2015) for local PageR-
ank updating. We focus on these two approaches because they 
are deterministic methods that can update a PageRank vector 
up to any desired accuracy; hence, they directly compare to our 
proposed algorithm that we describe in Section 3.

Random Walk with Restart (RWR) (Yoon et al. 2018). 
This work is rooted in the power iteration method, which guar-
antees that the recursive formula

converges to p̃r�(y) when t → ∞ . Since it is guaranteed that 
a PageRank vector does not substantially change under small 
perturbations, the authors of Yoon et al. (2018) exploit the 
fact that Eq. (2) offers the possibility to set an initial guess 
p̃(0) , which they set to p̃(0) = pr�(y) . This procedure of using 
pr�(y) as an initial guess to compute p̃r�(y) is known in the 
literature as a warm restart. Clearly, the warm restart sets the 
trajectory of the recursive equation (2) very close to p̃r�(y) 
from the start, thus helping to drastically reduce the number 
of iterations needed to obtain very precise approximations. 
Notice however that, even though this reduces the number of 
iterations, the initial guess p̃(0) is a dense vector (most entries 
are nonzero). As a result, all the vertices in the graph must 
be involved in the computation of the new PageRank vector, 
albeit only the nodes of the perturbed area must be updated. 
The authors of Yoon et al. (2018) address this issue by show-
ing that (2), under a warm restart, can be rewritten as:

(1)pr�(y) = (1 − �)y + �PTpr�(y).

(2)p̃(t) = (1 − �)y + �P̃T p̃(t−1)

(3)p̃r�(y) = pr�(y) +
1

(1 − �)
p̃r�(r),

where r = �[P̃T − PT ]pr�(y) . Eq. (3) shows that updating 
an existing PageRank vector amounts to computing another 
PageRank vector with an initial seed r that is completely 
localized (only nonzero) in the 1-hop vicinity of the per-
turbed nodes. The vector p̃r�(r) can then simply computed 
by setting y = r and p̃(0) = r in (2), showing that running 
the recursion for a few iterations is essentially equivalent to 
locally diffusing r to the affected nodes and updating their 
values.

Push method (Ohsaka et al. 2015). This work is rooted in 
the Gauss-Southwell recursive formula which uses two vec-
tors to approximate p̃r�(y) : an approximation vector p̃ and a 
residual vector r̃  coding the difference between p̃r�(y) and p̃ . 
The method starts with an initial guess p̃(0) and then, at itera-
tion t, transfers mass from r̃(t−1) into p̃(t) using a set of update 
equations which ensure that the following equation holds

Clearly, minimizing the entries of r̃  implies that p̃ converges 
to p̃r�(y) . To attain this, if at iteration t the largest entry of 
r̃(t) corresponds to vertex u, then the state of the algorithm 
at iteration t + 1 is determined by the following set of update 
equations ( �u is the indicator vector of vertex u):

This procedure is repeated until all entries from the residual 
diminish below some user-defined threshold. The authors 
of Ohsaka et al. (2015) show that Eq. (4) still holds when 
setting p̃(0) = pr�(y) and r̃(0) = �[P̃T − PT ]pr�(y) . While r̃(0) 
is similar to the residual of the RWR method, in the push 
method, it is used differently: the locality of r̃(0) implies that 
only a few entries can surpass the tolerance threshold, mean-
ing that only a few push operations are needed to drive them 
below the threshold again and obtain a good approximation 
of the evolved PageRank vector.

3  Proposed method

3.1  PageRank computation via Chebyshev 
polynomials

In this subsection, we present the Chebyshev polynomi-
als, which are a general technique to approximate matrix 
functions and form the basis of our algorithm derived in 
Section 3.2. As discussed in the introduction, the two main 
drawbacks of current local PageRank updating algorithms 
are that (i) they are slow to converge; and (ii) they are not 

(4)p̃r�(y) = p̃(t) +
1

1 − �
p̃r� (̃r

(t)).

(5)p̃(t+1) = p̃(t) + r̃(t)
u
�u.

(6)r̃(t+1) = r̃(t) − r̃(t)
u
�u + �P̃T r̃(t)

u
�u.
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adapted to update the novel generalizations of personal-
ized PageRank which rely on more complex dynamical 
processes than random walks. Notably, the Chebyshev 
polynomials carry the potential to address these limita-
tions because (i) they can be used to approximate the effect 
of general diffusion operators, thus covering the recent 
generalizations of PageRank in the literature; and (ii) they 
have been shown to converge faster than methods based on 
power-iteration and Gauss-Southwell rules when comput-
ing standard personalized PageRank from scratch (Bau-
tista Ruiz 2019). 

Shuman et al. (2011)

In the context of signal processing on graphs, the Che-
byshev polynomials were introduced in Shuman et  al. 
(2011) as a mean to approximate functions of a graph 
matrix, achieving considerable success in the contexts of 
graph signal filtering (Cheng et al. 2019; Tseng and Lee 
2021; Tian et al. 2014) and graph neural networks (Def-
ferrard et al. 2016; Yan et al. 2021). They operate as fol-
lows: let R denote a graph matrix and h(R) be a function 
of it, which is defined as the function being applied to its 
eigenvalues (spectrum). Then, Shuman et al. (2011) shows 
that h(R) can be approximated by means of the truncated 
series:

where

(7)h(R) ≈
1

2
c0 +

K∑
t=1

ctT̄t(R),

� = �max∕2 , ct =
2

�
∫ �

0
cos(t�)h(�(cos(�) + 1))d� , and �max 

is an upper bound on the spectrum of R . Eq. (7) is known 
as the Chebyshev polynomial approximation of h(R) . The 
strength of the Chebyshev approximation is its coefficients 
ct : they are optimal in the ∞-norm sense (Tremblay et al. 
2018), meaning that for a given computational budget K they 
approximate h(R) with the least ∞-norm error. In contradis-
tinction, the coefficients of Power Iteration are ruled by the 
spectral gap of R , resulting in a polynomial that requires 
a large K for an equally good approximation (thus, it con-
verges slowly). While Gauss-Southwell is not a polynomial 
expression, its convergence speed is inversely proportional 
to the target error, thus being too penalizing for small errors. 
Another asset of (7) is that it allows to approximate the result 
of multiplying h(R) with a vector y in a distributed fashion. 
To see this, let us recall that y can be interpreted as a sig-
nal that lives on the vertices of the graph encoded by R . 
Thus, if nodes are given communication and computation 
capabilities, each node can compute its own value of the 
matrix-vector product h(R)y by transmitting and receiving 
messages (with the values of y) to and from their neighbors. 
This distributed algorithm is detailed in Algorithm 1.

It is important to stress that even though (Bautista Ruiz 
2019) shows that Chebyshev polynomials can converge to 
personalized PageRank vectors significantly faster than 
power iteration and Gauss-Southwell methods from scratch, 
they have not been considered in the updating scenario 
because they do not offer the possibility to give them an 
initial guess.

3.2  Local PageRank updating via Chebyshev 
polynomials

In this subsection, we detail our main contribution: an algo-
rithm based on Chebyshev polynomials that allows to locally 
update a large family of PageRank formulations. We start by 
noticing that classical personalized PageRank and its novel 
generalizations used in semi-supervised learning (Bautista 
et al. 2019; De Nigris et al. 2017; Mai and Couillet 2017; Zhou 
and Belkin 2011; Girault et al. 2014) can all be framed under 
one general equation where the only difference among meth-
ods lies in the matrix encoding the graph. To show this, let us 
introduce the change of variable � =

1

�+1
 . From Eq. (1), it is 

easy to see that personalized PageRank can be rewritten as the 
s o l u t i o n  t o :  LD−1pr�(y) + �pr�(y) = �y  ,  w h e r e 
LD−1 = (� − PT ) is the so-called random walk Laplacian. This 
expression, which is a discrete partial differential equation, 

(8)T̄t(R) =

⎧
⎪⎨⎪⎩

1, t = 0
R−𝜙

𝜙
, t = 1

2
�

R−𝜙

𝜙

�
T̄t−1 − T̄t−2, t ≥ 2
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implies that classical PageRank can alternatively be interpreted 
as the equilibrium state of a dynamical process in which the 
dynamics are ruled by the operator LD−1 . Notably, several of 
the novel generalizations of personalized PageRank admit the 
same interpretation, allowing their solutions to be expressed 
in the following general form:

where R denotes a generalized reference operator associ-
ated to graph G . Thus, the only difference among several 
personalized PageRank generalizations is the choice of the 
operator R . In Table 1, we list some of the possible choices 
of R and the methods associated to them.

Clearly, the advantage of Eq. (9) is that any algorithm that 
we derive based on R automatically covers a large family of 
PageRank methods. Therefore, the updating algorithm we 
propose in this work is an algorithm to update the solution of 
Eq. (9). To derive our updating algorithm, we start by notic-
ing that the solution of Eq. (9), for an evolved graph G̃ , can 
be expressed as a matrix function of R̃ in the following way

where the function is thus given by

While Eq. (10) can be leveraged to efficiently compute 
p̃r�(y) from scratch (for instance via the Chebyshev polyno-
mials), it is not useful in an updating scenario because it 
does not allow to set an initial guess. Therefore, our first goal 
is to derive a recursive equation that converges to (9), which 
we can then use to set pr�(y) as an initial guess. We stress 
that the natural approach of developing Eq. (10) in its geo-
metric series is not useful for our purposes, as such approach 
results in a recursive expression p̃(t) = y +

1

�
R̃p̃(t−1) that only 

converges to p̃r�(y) when 𝜇 > 𝜆max . To obtain a recursive 
equation that converges for all 𝜇 > 0 , hence for all � ∈ (0, 1] , 
we perform two changes: firstly, we transform operator R̃ 
into an equivalent operator S̃  that has eigenvalues 

(9)Rpr�(y) + �pr�(y) = �y,

(10)p̃r�(y) = �
(
R̃ + ��

)−1

y,

(11)h(R̃) = �
(
R̃ + ��

)−1

.

normalized to the range [−1, 1] ; secondly, we apply the same 
transformation to h(R̃) in order to find its equivalent h(S̃) . 
The operator S̃ can be simply obtained by means of the fol-
lowing transformation:

Now, let us refer to the diagonal matrices of eigenvalues of 
R̃ and S̃ by Λ and s, respectively. Then, by expressing (11) 
in terms of Λ and applying the same transformation to Λ as 
in (12), we obtain the expression for h(s), and hence h(S̃) , 
as follows:

where, for the sake of clarity, we have expressed matrix 
inversion in the form of division. The normalized spectrum 
of S̃ allows us to then develop the geometric series of h(S̃) 
to obtain the following recursive expression that converges 
for all 𝜇 > 0:

Eq. (16) highlights our restriction to undirected graphs: if 
the spectrum is complex, then the recursion is not guaran-
teed to converge. We thus leave the extension of (16) to 
directed graphs as future work. Finally, by setting

and applying (16) to y, we obtain the following recursive 
equation

that converges to p̃r�(y) as t → ∞ . Clearly, Eq. (19) allows us 
to set p̃(0) = pr�(y) and drive the trajectory of the recursion 
close to the exact evolved PageRank, reducing the number 
of iterations towards convergence.

However, Eq. (19) is not fully satisfactory. Firstly, using 
it to update a PageRank vector involves sending messages 

(12)S̃ =
(
2∕�max

)
R̃ − �.

(13)h(Λ) =
�

Λ + �

(14)=
�(

�max∕2
)
(s + 1) + �

(15)=
2�∕�max

s + 1 +
(
2�∕�max

) = h(s),

(16)h(S̃) =

(
2�

2� + �max

) ∞∑
t=0

(
−

�max

2� + �max

)t

S̃
t

(17)� =
2�

2� + �max
,

(18)� = −
�max

2� + �max
,

(19)p̃(t) = �y + �S̃p̃(t−1)
Table 1  Possible choices of the reference operator R reported in the 
semi-supervised learning literature

Method Std. 
PageRank 
(Page 
et al. 
1999)

L
�-Pag-

eRank 
(Bautista 
et al. 
2019)

Iter. 
PageRank 
(Zhou and 
Belkin 
2011)

Recen-
tered 
kernel 
(Mai and 
Couillet 
2017)

Time-
graph dual 
(Girault 
et al. 2014)

R LD
−1

L
�
D

−1
�

(LD−1)m −PWP , 
P = � −

1

N
11

T

D
−�
LD

�−1
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across the entire network due to the fact that p̃(0) = pr�(y) 
is dense, even though the update mostly takes place in the 
perturbed graph region. Secondly, it follows power-iteration 
convergence speed, which is slow. To amend these issues, 
we extend the result of Yoon et al. (2018) in Eq. (3) to a 
large family of PageRank methods by means of the follow-
ing Lemma. For the sake of notation clarity, we refer to the 
convergent state of (19) by p̃r�,� (y) = p̃(∞).

Lemma 1 Given a fixed set of coefficients � , � , and initial 
condition y, we have that

where

Proof We start with a warm restart in recursion (19) as 
follows:

Then, for the second iteration, we have

By successive applications of this procedure, we have that

(20)p̃r�,� (y) = pr�,� (y) +
1

�
p̃r�,� (r)

(21)r = �
[
S̃ − S

]
pr�,� (y)

(22)p̃(1) = �y + �S̃p̃(0)

(23)= �y + �S̃pr�,� (y)

(24)= pr�,� (y) − �Spr�,� (y) + �S̃pr�,� (y)

(25)= pr�,� (y) + �
[
S̃ − S

]
pr�,� (y)

(26)= pr�,� (y) + r

(27)p̃(2) = �y + �S̃p̃(1)

(28)= �y + �S̃
(
pr�,� (y) + r

)

(29)= pr�,� (y) − �Spr�,� (y) + �S̃
(
pr�,� (y) + r

)

(30)= pr�,� (y) + �
[
S̃ − S

]
pr�,� (y) + � S̃r

(31)= �y + �S̃pr�,� (y) + �S̃r

(32)= pr�,� (y) + �r + �S̃r

  ◻

Lemma 1 has several implications. Firstly, it states that 
updating a PageRank vector amounts to computing another 
PageRank vector with an initial distribution r that is com-
pletely localized (nonzero) in the 1-hop vicinity of the nodes 
that changed between G and ̃G . Secondly, it shows that the size 
of the update is upper bounded by the size of the perturbation. 
This is, it shows that ‖p̃r�,� (y) − pr�,� (y)‖ is upper bounded 
by ‖p̃r�,� (r)‖ and thus by ‖S̃ − S‖ . Thirdly, since computing 
p̃r�,� (r) involves diffusing r through the graph, then the local-
ity of r implies that only a few messages among the nodes 
in the affected region are enough update the affected nodes. 
Fourthly, it makes it obvious that it is not necessary to use the 
slow recursive equation (19) to perform the update. Instead, 
p̃r�,� (r) can be more efficiently computed by means of the 
Chebyshev polynomials. Therefore, our proposed algorithm 
consists in leveraging Eq. (20) and in approximating p̃r�,� (r) 
by means of Chebyshev polynomials. It is summarized in 
Algorithm 2. 

We conclude the section by highlighting that the generality 
of the Chebyshev polynomials and our derivations pave to way 
to explore updating algorithms for other centrality metrics, 
such as the recently proposed Ψ-score to measure influence in 
social networks (Giovanidis et al. 2021). Yet, this calls for a 
deep study of the spectral properties of such centrality metrics, 
which goes beyond the scope of this work. We thus leave the 
extension of our results to other centrality measures as future 
work.

(33)p̃(∞) = pr�,� (y) +

∞∑
t=0

� tS̃
t
r

(34)= pr�,� (y) +
1

�
p̃r�,� (r)
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4  Numerical evaluation

Goals. In this section, we evaluate the performance of 
the proposed algorithm. In particular, our goals are as 
follows: (i) to assess the performance gains obtained by 
the algorithm with respect to computing PageRank from 
scratch using the Chebyshev polynomials; (ii) to demon-
strate that the proposed algorithm can be used to update 
both standard and generalized PageRank vectors; (iii) to 
assess how the performance of the algorithm degrades as 
perturbations grow in size; (iv) to compare the proposed 
algorithm with the state-of-the-art alternatives; and (v) to 
evaluate the performance of the algorithm in a tracking 
scenario where a PageRank vector needs to be updated 
during a long period of time.

Metrics. We assess performance in terms of the number 
of messages that need be exchanged in order to approximate 
the evolved PageRank vector within a specified relative error 
( �2-norm sense). Since each node can update its PageRank 
score in constant time once it receives the neighbor’s values, 
the complexity of our algorithm is governed by the number 
of messages transmitted and the time it takes to transmit and 
receive messages. From these variables, only the number of 
message exchanges is ruled by our algorithm since the time 
it takes to transmit and receive messages is dependent of the 
technology where the algorithm is implemented. We thus 
consider the number of message exchanges a better metric 
that the routine’s running time.

Data. We perform our experiments in the Tech-AS-
Topology temporal network (Rossi and Ahmed 2015), 
which is a real-world network from an autonomous system 
with 34.8K nodes and 171.4K edges organized in 32.8K 
graph snapshots. This network contains both sparse and 
dense regions, meaning that perturbations can affect small 
or large regions. For the experiments, we pre-process the 
data by turning the snapshots into undirected graphs, result-
ing in a total of 215.4K timestamped edges. The first graph 
snapshot in the sequence contains 32K nodes and 111.6K 
edges. Then, in successive snapshots, new edges adhere into 
the network branching nodes already present or new nodes 
joining the graph. The dataset only contains edge additions; 
therefore, we simulate an edge deletion setting (see Experi-
ment 4) by reversing the time axis: we consider the origi-
nally last snapshot as the new first one and the originally 
first snapshot as the new last one. From this perspective, a 
new snapshot causes edges to disappear or nodes to leave.

4.1  Experiment 1

In our first experiment, we address goals (i) and (ii). 
For this, we fix a small graph perturbation. Then, as we 

vary the allowed number of messages, we measure how 
well Algorithm  2 approximates the true PageRank of 
the evolved graph. For comparison purposes, we apply 
the same test to a computation from scratch using Algo-
rithm 1. To show that the proposed algorithm can update 
generalized PageRank propositions as well as standard 
PageRank, we employ it to update standard PageRank vec-
tors and the recently proposed L�-PageRank vectors from 
Bautista et al. (2019). For this experiment, we use the first 
snapshot from the Tech-AS-Topology network as initial 
graph. Then, we use the second snapshot of the network 
as the perturbation: it contains 120 new edges and 1 new 
node joining the graph. We choose a vertex at random 
and use its indicator function as the initial distribution 
y (a common setting in local graph clustering). We use 
� = 0.5 , measure relative error in the �2 sense, and repeat 
the experiment for 20 realizations of y.

Results of Experiment 1 are displayed in Figure 1. Fig-
ure 1a shows the result of updating standard PageRank, 
while Figure 1b depicts the result of updating the general-
ized L�-PageRank (Bautista et al. 2019). They show that the 
proposed algorithm successfully updates both standard and 
generalized PageRank vectors. In both cases, the proposed 
algorithm offers significant approximation improvements 
compared to computing from scratch. We additionally verify 
that our updating algorithm converges at the same rate than 
the Chebyshev polynomials from scratch. This amends a 
tradeoff that needs to be made with current updating algo-
rithms: they are a good option if only few iterations are 

(a) Standard PageRank

(b) Generalized PageRank (Lγ -PageRank)

Fig. 1  Experiment 1. Performance of proposed algorithm vs a com-
putation from scratch. We assess approximation error as larger com-
putational budgets are given to the algorithms. We update both stand-
ard PageRank and a Generalized PageRank used in semi-supervised 
learning (Bautista et al. 2019)
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allowed but their slow convergence makes them worse than 
Chebyshev polynomials from scratch if several iterations 
are needed (Bautista Ruiz 2019). Lastly, we notice that the 
error bars (standard error) are negligible, indicating that the 
performance of the algorithm is irrespective of the choice 
of initial seed y and, consequently, of a particular PageRank 
vector to update.

4.2  Experiment 2

In our second experiment, we address goal (iii). For this, we 
fix a target approximation error. Then, as we vary the per-
turbation size, we measure the number of messages required 
by Algorithm 2 to approximate the true PageRank of the 
evolved graph within the specified error. For comparison 
purposes, we apply the same test to a computation from 
scratch using Algorithm 1. Since larger perturbations imply 
larger updates, our proposed algorithm should be highly 
sensitive to the size of perturbations. On the other hand, a 
computation from scratch should only augment messages 
proportionally to |Ẽ| − |E| . Therefore, we aim to empirically 
spot the point where the update needed is so large that our 
updating algorithm offers no benefit over a computation 
from scratch. For this experiment, we use the first snapshot 
from the Tech-AS-Topology network as initial graph. Then, 
we control the size of the perturbation by aggregating an 
increasingly larger number of subsequent snapshots. We set 
y as the indicator function of a random vertex and update its 
associated standard PageRank vector. We use � = 0.5 and 
set the error at 1 × 10−13.

Results of Experiment 2 are displayed in Figure 2. For 
small perturbations, the number of messages needed by 
our algorithm to attain the desired error is small. This 
number increases as the perturbation grows in size, reach-
ing a point where the updating algorithm does not provide 
any advantage with respect to a computation from scratch. 
For the Tech-AS-Topology network, this operational limit 
occurs for a perturbation of around 4000 new edges, which 
corresponds to roughly 3% of the edges from the initial 

graph. This confirms that our updating algorithm should 
preferably be used when the changes in the graph are 
small.

4.3  Experiment 3

In our next third experiment, we address goal (iv). For this, 
we fix a graph perturbation. Then, as we vary the target 
approximation error, we measure the number of message 
exchanges our proposed Algorithm 2 and the state-of-
the-art alternatives (Yoon et al. 2018; Ohsaka et al. 2015) 
require to approximate the true PageRank of the evolved 
graph within the specified error. We stress that our algo-
rithm and the RWR one (Yoon et al. 2018) are distributed 
and can thus be assessed in terms of transmitted messages. 
Yet, the push algorithm (Ohsaka et al. 2015) is centralized 
and normally studied in terms of push operations rather 
than messages. We notice that the complexity of each push 
operation is dominated by a matrix-vector multiplication 
that can be interpreted as transmitted messages; thus, we 
track this quantity for the Push method. For this experi-
ment, we use the first snapshot from the Tech-AS-Topol-
ogy network as initial graph. Then, we use the second 
snapshot of the network as the perturbation. We set y as 
the indicator function of a random vertex and update its 
associated standard PageRank vector. We use � = 0.5.

Results of Experiment 3 are displayed in Fig. 3. The 
proposed algorithm outperforms state-of-the-art alterna-
tives for local PageRank updating, being able to attain any 
desired relative approximation error with significantly less 
messages. Indeed, for approximation errors in the order 
of 10−14 , which are the best approximations we can obtain 
using Python’s float64 data types, the proposed Algorithm 
requires roughly 35% less messages than the second best 
method of RWR. We notice that the push algorithm is 
not competitive for very precise approximations, as the 
number of message operations it requires quickly becomes 
large.

Fig. 2  Experiment 2. Sensitivity of proposed algorithm to perturba-
tions. We assess the number of messages required to update within an 
error of 1 × 10

−13 as the number of added edges grows. The alterna-
tive from scratch (same conditions) is used as reference

Fig. 3  Experiment 3. Comparison of proposed algorithm with state-
of-the-art alternatives. We assess the number of messages required to 
update a PageRank vector within an increasingly smaller approxima-
tion error
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4.4  Experiment 4

In our fourth experiment, we address goal (v). For this, we 
fix a number of communication rounds (K). Then, as new 
graph snapshots arrive, we estimate the PageRank vector of 
the current snapshot by updating the PageRank vector esti-
mated for the previous snapshot using Algorithm 2. To dem-
onstrate that our algorithm addresses equally edge additions 
and deletions, we run the experiment in both settings. Since 
the data only contain edge additions, we simulate deletions 
by reversing the time axis, meaning that we start from the 
evolved network and run backwards to the primitive one. For 
comparison purposes, we estimate the exact PageRank of the 
current snapshot via a computation from scratch using Algo-
rithm 1 under the same number of communication rounds 
(K). We stress that this is an extremely challenging task for 
the updating algorithm because the vector to update is no 
longer the exact PageRank vector of the previous snapshot 
but an approximation of it, thus meaning that errors accu-
mulate over time. Therefore, we aim to empirically spot if 
our method can maintain a PageRank vector for a long time 
or if it soon becomes worse than the approximation obtained 
by the method from scratch. For this experiment, we use the 
aggregated first 100 snapshots from the Tech-AS-Topology 
network as initial graph. Then, we track the standard Pag-
eRank vector during the following 1000 snapshots (reverse 
for edge removals). The only exact PageRank vector is given 
to the initial graph. We set y as the indicator function of a 
random vertex, K = 15 and � = 0.5.

Results of Experiment 4 are displayed in Figure 4. The 
upper panel shows the relative error between the tracked 
vectors and the true PageRank of each snapshot when edge 
additions are considered, while the bottom panel depicts the 
same quantities for the case of edge deletions. The size of 
the perturbation in each new snapshot is shown as additional 
information in both panels. In both cases, the proposed algo-
rithm is able to effectively track the PageRank vector during 
the entire time horizon. For early times, the updating algo-
rithm returns extremely precise approximations: up to five 
orders of magnitude improvement with respect to a computa-
tion from scratch with the same computational budget. Then, 
we notice that errors steadily accumulate. However, it is at 
a sufficiently slow rate that, during the 1000 snapshots, the 
tracked vector is at least two orders of magnitude closer to 
the exact PageRank than the alternative from scratch.

5  Conclusion

We proposed a Chebyshev polynomial-based distributed 
algorithm to locally update personalized PageRank vectors. 
We showed that the proposed algorithm has faster conver-
gence than state-of-the-art alternatives, bringing us closer 

to the goal of effortlessly maintaining PageRank vectors in 
real world networks. Additionally, the algorithm can be used 
to update more general formulations of PageRank recently 
proposed in the context of semi-supervised learning. These 
improvements were possible due to a novel updating equa-
tion that encompasses a family of PageRank formulations 
and that makes it direct to employ Chebyshev polynomials to 
locally solve the updating challenge. Numerical evaluations 
showed that the proposed algorithm is an effective tool for 
tracking PageRank vectors for a long period of time when 
changes in the graph are small. An interesting prospective 
work would be to extend these results to undirected graphs 
that have non-real eigenvalues and to the case in which the 
PageRank initial distribution and teleportation parameters 
also evolve over time.
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